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1 Introduction

The starting point of the present work is the model proposed in [1, 2, 3]. The latter has shown its capability to
treat mixed flows of air and water in pipes with gravity effect. Very complex configurations such has pipe with
a syphon have been tested with very satisfactory results. In a dynamical point of view, these situations are very
close to those that are encountered when dealing with the phenomena of overspilling in inversed U-shaped tubes.

The compressible two-layer mixed-flows model (nicknamed CTL model in the following) is a two-fluid model
which can be seen as an extension of the Baer-Nunziato model with isentropic phases (i.e. without energy
equations). It is thus based on a mass balance equation and a momentum balance equation for each phase,
supplemented by an equation on the height of liquid or the gas phase. A major difference with the Baer-
Nunziato model arises in the definition of the non-conservative terms which are modified in order to account
for the gravity. Obviously, relaxation source terms are different, but they are not considered in the present work.

In [1, 2, 3] efficient numerical schemes have been tested, mainly on the basis of fractional step approaches.
The latter are very often used for the simulation of two-fluid models [5, 4, 6, 7]. One known drawback of these
numerical techniques is that the underlying operator splitting implies a decoupling of the different physical
effects. In some situations where these different effects strongly interact, this may leads to poor results on
coarse meshes which are the targeted meshes for industrial applications. The aim of the present work is to test
a numerical scheme that allows a complete coupling of all the physical effects. As a first step, source terms are
not considered and we thus focus on the convective part of the CTL model proposed in [1, 2, 3].

The present document is organised as follow. The mathematical properties of the CTL model are not re-
called here, on that point many details can be found in [1, 2, 3]. We thus begin in section 2 with the description
of the numerical strategy: the algorithm for the time stepping is described in section 2.1 and the scheme used
to approximate the spacial derivatives is detailed in section 2.2. In section 3, a verification test case is proposed
and it allows to understand the behavior and the performance of the numerical scheme.

2 An implicit numerical scheme on staggered meshes

As mentioned in the introduction, we intend to develop a scheme that solves simultaneously all the physical
effects. We have thus chosen an Euler implicit scheme for the time stepping. For this technique, it is required
to solve a highly non-linear system which couples all the spacial degree of freedom at each time-step. Therefore,
each time-step has a high CPU cost and, in order to limit the cost of whole simulation, the aim is then to limit
this number of degree of freedom. It is thus mandatory to build a very accurate spacial discretization which can
provides accurate approximations even on coarse meshes. This is the reason why we have chosen here to build
the spacial discretization on staggered meshes, which are classically more accurate than schemes on co-located
meshes. Obviously, the fact that we intend to simulate flows in one-dimensional pipes helps to make the choice
of a staggered scheme.

Let us first recall the system of equations we are interested in, which models the configurations depicted by
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figure 1: 
∂t (α2) + U2∂x (α2) = 0,
∂t (α1ρ1) + ∂x (α1ρ1U1) = 0,
∂t (α1ρ1U1) + ∂x

(
α1(ρ1U

2
1 + P1(ρ1))

)
− PI∂x (α1) = 0,

∂t (α2ρ2) + ∂x (α2ρ2U2) = 0,
∂t (α2ρ2U2) + ∂x

(
α2(ρ2U

2
2 + P2(ρ2))

)
− PI∂x (α2) = 0,

(1)

where we have α1 + α2 = 1. The pressure PI involved in the non-conservative terms are closed according to
[1, 2, 3]:

PI = P1(ρ1)− gα1Hρ1

2
,

and a pressure law ρk 7→ Pk(ρk) has to be provided for each phase. H corresponds to the total height and it
is supposed constant and uniform here, see also figure 1. It should be noted that we consider here the case
of a horizontal pipe, but that the model remains meaningful for non horizontal pipes with slope variations.
System (1) is written using the set of non-conservative variables Y = (α2, ρ1, U1, ρ2, U2) gathering the following
variables:

• α1 which is the fraction of the total height occupied by phase 1, the remaining of the height given by α2

being occupied by phase 2;

• ρk and Uk are respectively the density and the velocity of phase k.

An overview of the associated configurations can be found in figure 1.
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Figure 1: Configuration for the CTL model while considering horizontal pipes.

Let us also define the conservative variables W = (α2,m1, Q1,m2, Q2) for which we have set: the partial
masses mk = αkρk and the momentum Qk = mkUk. Considering the variables W , system (1) can be equivalently
written: 

∂t (α2) +Q2/m2 ∂x (α2) = 0,
∂t (m1) + ∂x (Q1) = 0,
∂t (Q1) + ∂x

(
Q2

1/m1 + α1P1(m1/α1)
)

+ PI(α1,m1) ∂x (α2) = 0,
∂t (m2) + ∂x (Q2) = 0,
∂t (Q2) + ∂x

(
Q2

2/m2 + α2P2(ρ2/α2)
)
− PI(α1,m1) ∂x (α2) = 0,

(2)

The whole numerical scheme is based on system (2) and the conservative variable W . Such a choice make it
more easy to ensure that numerical approximations fulfill balance relations for the mixture. Indeed, it is an
important point to quote that since α1 + α2 = 1, system (2) (and obviously system (1)) leads to a balance
equation for the total mass (m1 +m2) and for the total momentum (Q1 +Q2).

2.1 An implicit time-stepping

We propose here to use an implicit time-stepping algorithm for system (2). The simplest choice is to use an
Euler scheme. In order to describe some properties of the scheme, let us write system (2) in a more convenient
and compact form:

∂t (W ) + ∂x (F (W )) + C(W )∂x (W ) = 0, (3)

with
F (W ) = (0, Q1, Q

2
1/m1 + α1P1, Q2, Q

2
2/m2 + α2P2) and C(W ) = (Q2/m2, 0,PI , 0,−PI).
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When considering an approximated solution Wn of the solution at time tn, the implicite Euler scheme for (3)
gives the following update formula for the approximated solution Wn+1 of the solution at time tn+1 = tn + ∆t:

Wn+1 = Wn −∆t
(
∂x
(
F (Wn+1)

)
− C(Wn+1)∂x

(
Wn+1

))
. (4)

Computing Wn+1 thus requires to solve a non-linear system. Using a Newton or quasi-Newton method to solve
(4) may be tricky. Hopefully, it should be noted from relation (4) that Wn+1 is a fix point for the function
Wn+1 7→ F(Wn+1) with:

F(Wn+1) = Wn −∆t
(
∂x
(
F (Wn+1)

)
− C(Wn+1)∂x

(
Wn+1

))
.

It seems then quite natural to solve (4) by the mean of the Picard’s method. The latter has the advantage to
be easily implemented and to avoid the computation of approximations of the derivatives of system (4), which
may become very complex and costly. Nevertheless, in order to converge the Picard’s method required to be ap-
plied on a contracting mapping. This condition can be fulfilled by the function F for small enough time step ∆t.

Let us exhibit, at less formally if not rigorously, such constraint on the time-step. When considering regular
solutions, function F reads:

F(Wn+1) = Wn −∆t A(Wn+1)∂x
(
Wn+1

)
,

where A(W ) = ∂W (F (W )) + C(W ) is the convection matrix of system (3). Therefore for two sets of variables
Za and Zb, we have:

F(Zb)−F(Za) = −∆t (A(Zb)∂x (Zb)−A(Za)∂x (Za))

Formally, using a Taylor expansion leads to:

F(Zb)−F(Za) = −∆t A(Za)∂x (Zb − Za)−∆t ∂Z (A(Za)) (Zb − Za)∂x (Za) + ∆t o(|Zb − Za|).

We now assume that the spatial derivatives in function F are approximated through a first order formula with
respect to a space size ∆x. Moreover, since we are dealing with regular solutions, we assume that Za and Zb,
are such that Zb = Za + o(∆x). We then get that ∆x ∂x (Za) = Zb − Za + o(∆x) and thus:

F(Zb)−F(Za) = −∆t

∆x
A(Za)(Zb − Za) + o(1).

Therefore, a sufficient condition for F to be a contraction mapping in those conditions is:

∆t

∆x
λ(A(Za)) < 1, (5)

where λ(A(Za)) is the spectral radius of A. We recover here a classical CFL condition for explicit schemes
based on the whole set of the wave speed of the system, and thus based on the pressure wave speed. In our
case, this constraint arises from a requirement of the Picard’s method. It is not clear if such a condition would
be necessary when using a Newton method for solving (4). With such kind of algorithm, such a CFL condition
could be hidden in the fact that the starting point of the (quasi-)Newton’s methods must be in the neighborhood
of the solution (for instance if the result of the previous iterate is used as a starting point).

The CFL condition above has been exhibited considering regular solutions. In our practical experiments,
we have set:

∆t <
(

max
i

(λ(A(Wn
i ))
)−1

∆x/2, (6)

where Wn
i is the approximated value in cell i at the beginning of the iteration n → n + 1, i.e. at time tn. It

seems to allow the convergence of the Picard’s method even for solutions involving shock waves.

2.2 Spacial discretisation on staggered meshes

The spatial derivatives in system (4) are approximated using a first order finite volume scheme on staggered
meshes. We consider that the primal mesh is associated with the “thermodynamical” quantities: α2 and mk,
whereas the dual mesh is associated with the momentums Qk. Cell i of the primal mesh is the interval [xi, xi+1]
with xi+1 = xi + Li. Then cell i of the dual mesh is “centered” on the left boundary of the cell i of the primal

mesh: it corresponds to the interval [xi − Li−1/2, xi + Li/2], which has thus a length L̃i = Li−1/2 + Li/2. We
also define the following mean quantities on the cell i of the primal mesh:

αn+1
k,i =

1

Li

∫ xi+1

xi

αn+1
k (x)dx, and mn+1

k,i =
1

Li

∫ xi+1

xi

mn+1
k (x)dx,
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and on cell i of the dual mesh:

Qn+1
k,i =

1

L̃i

∫ xi+Li/2

xi−Li−1/2

Qn+1
k (x)dx.

A sketch of all these notations is proposed in figure 2.
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Figure 2: Notations and settings of the staggered meshes: the primal mesh is in blue, and the dual mesh is in
red.

The main advantage of such meshes when considering finite volume schemes is that the mass equations are
easily written in a discrete form. Indeed, the natural manner for discretizing the mass equations is:

mn+1
k,i = mn

k,i −
∆t

Li

(
Qn+1
k,i+1 −Q

n+1
k,i

)
. (7)

On the contrary, in the equations for α2 and for the momentums, quantities defined on both the primal and
the dual meshes are combined in the fluxes. The discretization of these equations thus requires interpolations
of some quantities. Obviously, many different consistent interpolations may be proposed, leading to different
schemes. In the sequel, we propose to use for the fraction α2 a scheme that is close to the Lax-Friedrichs method
adapted to the non-conservative case:

αn+1
2,i = αn2,i −

∆t

Li
Ũn+1

2,i δα̃n+1
2,i −∆t

L̃i + L̃i+1

2

(
αn+1

2,i+1 − α
n+1
2,i

L̃i+1

−
αn+1

2,i − α
n+1
2,i−1

L̃i

)
, (8)

where the upwind part of the update uses the interpolated velocity:

Ũn+1
2,i =

Qn+1
2,i+1 +Qn+1

2,i

2 mn+1
2,i

,

and the quantity:

δα̃n+1
2,i =


αn+1

2,i − α
n+1
2,i−1, if Ũn+1

2,i > 0,

αn+1
2,i+1 − α

n+1
2,i , otherwise.

The momentum equations are discretized following the formula:

Qn+1
k,i = Qnk,i − ∆t

L̃i

(
En+1

c,i,+

mn+1
k,i

+ αn+1
k,i Pk(mn+1

k,i /α
n+1
k,i )− En+1

c,i,−

mn+1
k,i−1

− αn+1
k,i−1Pk(mn+1

k,i−1/α
n+1
k,i−1)

)
− −∆t

L̃i
Π̃n+1
i (αn+1

k,i − α
n+1
k,i−1),

(9)

where En+1
c,i,+ and En+1

c,i,− are upwind kinetic energies defined as:

En+1
c,i,+ =


Qn+1
k,i , if Q̃n+1

k,i,+ =
Qn+1

k,i+1+Qn+1
k,i

2 > 0,

Qn+1
k,i+1, otherwise;
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and

En+1
c,i,− =


Qn+1
k,i−1, if Q̃n+1

k,i,− =
Qn+1

k,i +Qn+1
k,i−1

2 > 0,

Qn+1
k,i , otherwise.

The pressure term Π̃n+1
i arising in the discretized counterpart of the non-conservative product is defined as:

Π̃n+1
i =

P1(mn+1
1,i /α

n+1
1,i ) + P1(mn+1

1,i−1/α
n+1
1,i−1)

2
− gH

2

Lim
n+1
1,i + Li−1m

n+1
1,i−1

Li + Li−1
.

At this point, equations (7), (8) and (9) are the equations to be solved in order to compute the approximated
value Wn+1. It should be mentioned that the associated function F defined in the previous section 2.1 is not
continuous because of the upwind terms introduced in equations (8) and (9). Neverthless, it seems that it does
not avoid the Picard’s method to behave correctly in our numerical experiments when considering the CFL
condition (6) for the time step ∆t.

3 Verification test case

We propose in this section to test the numerical method described in section 2 on a Riemann problem involving
only shocks and a contact discontinuity. A very similar test case was used in [1, 2, 3]. The wave configuration
of this Riemann problem is depicted in figure 3. As in [1, 2, 3], we consider here a linear law for phase 1 and a
perfect gas law for phase 2:

P1(ρ1) = C2
1,ref (ρ1 − ρ1,ref ) + P1,ref ,

with C1,ref = 1500 m/s, ρ1,ref = 998.1115 kg/m3, P1,ref = 1.0133e5 Pa;

P2(ρ2) = P2,ref

(
ρ2

ρ2,ref

)γ2
,

with P2,ref = 1.01325e5 Pa, ρ2,ref = 1.204 kg/m3, γ2 = 1.4.

The total height H is set to 1. The intermediate states Ym, m ∈ {1, 2, 3, 4}, YL and YR, defining the Riemann
problem considered here are gathered in table 1. We consider the final time tend = 2.3 10−3 s. Convergence
curves are plotted in figure 4 for meshes containing from 100 to 200000 cells. It should be noted from figure 4
that we almost recover the expected asymptotic rate of convergence of 1/2 for α2, ρ1 and Q1. The variables ρ2

and Q2 still present an convergence rate slightly greater than 1/2, even for the finest meshes. The approximated
solution obtained for a mesh containing 1000 cells is plotted in figure 5.
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Figure 3: Configuration of the different waves for the Riemann problem: Uk ± ck-waves are shocks whereas the
U2-wave is obviously a contact discontinuity. The initial discontinuity between left and right states, respectively
YL and YR, is located at x = 1/2.
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α2 ρ1 (kg/m3) U1 (m/s) ρ2 (kg/m3) U2 (m/s)
YL 0.5 998.111500000000 10 1.204 5
Y1 0.5 998.161101784576 9.9254584 1.204 5
Y2 0.5 998.161101784576 9.9254584 1.26422702503085 −11.83896
Y3 0.4976253 998.16208780496 9.82255768821687 1.26012920420671 −11.83896
Y4 0.4976253 998.16208780496 9.82255768821687 1.23491558633234 −18.826134
YR 0.4976253 998.062877627989 9.673461 1.23491558633234 −18.826134

Table 1: Intermediate states for the Riemann problem.
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Figure 4: Convergence curves for meshes containing from 100 to 200000 cells.
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