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Abstract

In this paper, we provide a theoretical foundation for
pointwise map recovery from functional maps and highlight
its relation to a range of shape correspondence methods
based on spectral alignment. With this analysis in hand,
we develop a novel spectral registration technique: Fast
Sinkhorn Filters, which allows for the recovery of accu-
rate and bijective pointwise correspondences with a su-
perior time and memory complexity in comparison to ex-
isting approaches. Our method combines the simple and
concise representation of correspondence using functional
maps with the matrix scaling schemes from computational
optimal transport. By exploiting the sparse structure of the
kernel matrices involved in the transport map computation,
we provide an efficient trade-off between acceptable accu-
racy and complexity for the problem of dense shape corre-
spondence, while promoting bijectivity. 1

1. Introduction
Non-rigid shape matching remains at the core of many

computer vision tasks including statistical shape analysis
[4], texture mapping [10], and deformation transfer, [41],
among others.

Among many existing approaches for this problem [43,
38], a prominent overall strategy is to exploit spectral quan-
tities, such as the eigenfunctions of the Laplace-Beltrami
operator, which are naturally invariant to isometric shape
deformations. Within this category, the functional map
framework, introduced in [28] proposes an efficient way to
represent and compute mappings and achieves the state-of-
the-art accuracy in difficult shape matching problems [23].

One of the advantages of this framework is that it al-
lows to formulate shape correspondence as a simple opti-
mization problem relating the basis functions on the two
shapes, from which a dense point-to-point correspondence
can be extracted. This framework has been successfully ap-

1Demo Code: https://github.com/paigautam/CVPR21_
FastSinkhornFilters
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Figure 1: We formally justify pointwise map recovery
from functional maps using the adjoint, and introduce Fast
Sinkhorn Filters: an efficient method promoting bijectivity
in this process. This yields better pointwise maps (color
transfer) with improvement in bijectivity (errors in red).

plied in both axiomatic [28, 16, 14, 32] and learning-based
[18, 35, 13, 8] settings. However, one of the recurring issues
of virtually all works in this domain, is defining and using
the exact relation between functional and pointwise maps.
This problem is especially relevant in the conversion step
from functional to point-to-point correspondences. This
conversion has been specifically treated in several works,
including [28, 33, 11, 34, 15, 45, 23] among others. De-
spite this significant effort, the precise rigorous relation be-
tween the two representations still remains ill-defined. In
this paper, we provide a rigorous theoretical justification
for pointwise conversion from a functional map, and dis-
cuss how it is related to the problem of aligning the spectral
embeddings of non-rigid shapes. We highlight that unlike a
functional map, which is not well-suited for pointwise con-
version, the adjoint operator can naturally be used for point-
to-point map extraction both theoretically in the smooth set-
ting, and in practice on discrete shapes.

With this foundation in hand, we propose a general
framework for iterative spectral alignment, and illustrate
that many previous shape matching methods are regular-
ized variants of our meta algorithm. Finally, we introduce
an effective regularized procedure using Sinkhorn’s algo-
rithm to compute accurate near-bijective pointwise corre-
spondences that can scale to densely-sampled shapes. We
find that existing approaches do not allow the recovery of
an accurate, smooth and bijective point-to-point correspon-
dence with acceptable time and memory complexity. Such
methods are either too inaccurate (e.g., nearest-neighbor),
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or too time and memory consuming (e.g., linear-assignment
solvers) thereby making them infeasible for practical appli-
cations.

We use our analysis of spectral alignment to construct
a sparse kernel assignment matrix which is then efficiently
processed using matrix scaling to output an entropic regu-
larized transport plan. Finally by extracting the maximum
likelihood estimate of this plan, we demonstrate that our ap-
proach, termed Fast Sinkorn Filters, produces accurate re-
sults often at a fraction of the cost of existing methods in
both direct and iterative pointwise conversion applications.

2. Related Work

Shape matching is a very well-studied area of computer
vision and computer graphics and its full overview is be-
yond the scope of our paper. Below we review the work
most closely related to ours and focus primarily on the func-
tional maps framework. We refer the interested readers to
recent surveys including [43, 42, 3, 38] for an in-depth treat-
ment of other shape matching approaches.

Functional Maps Our work focuses primarily on the
functional map framework, which was introduced in [28]
for solving near-isometric shape correspondence problems,
and extended in many follow-up works, including [16, 1,
17, 32, 11, 6] among others (see also [29] for a general
overview). The key idea in these techniques is to estimate
linear transformations between spaces of real-valued func-
tions, represented in a reduced functional basis. This linear
structure implies that functional maps can be conveniently
encoded as small matrices and optimized for using standard
linear algebraic techniques.

In addition to the convenience of the representation it-
self, it has been observed by several works in this do-
main that many natural properties on the underlying point-
wise correspondences can be expressed as objectives on
functional maps [16, 36, 32, 6]. For example, orthonor-
mal functional map matrices correspond to locally volume
preserving maps [28, 16, 36], near isometries must re-
sult in functional maps that commute with the Laplacian
[28, 46, 32, 20, 19], while conformal maps must preserve
certain functional inner products [36, 6, 47].

These results typically assume that the functional map
is induced as the pull-back of some underlying point-to-
point correspondence. However, the space of linear func-
tional transformations is strictly larger, which means that
additional regularization is required. In [27, 26] the rela-
tion between pointwise and functional maps was studied
and the authors proposed an optimization term [27] aimed
to promote only functional maps arising from point-to-point
ones. That work still used the default conversion scheme
from [28], however.

Functional Map Conversion More closely related to
ours are works that directly consider the question of point-
to-point correspondence recovery from functional maps.
This step is instrumental in all functional maps-based cor-
respondence methods. As we highlight below, the original
method [28] suggested a recovery technique based on con-
sidering images of indicator functions at points and then an
efficient method based on iterative closest point in the spec-
tral domain. Unfortunately, no justification or analysis was
provided for whether this procedure has any analogue in the
smooth setting.

Several follow-up works noted that the conversion step
can have a fundamental limiting effect on the accuracy of
the recovered maps [33, 11, 34, 15, 45, 23]. This has led
to algorithms that incorporate smoothness using Coherent
Point Drift in the spectral domain [33], penalizing spurious
high-frequencies during conversion [10] and using higher-
order objectives such as maximizing kernel density [44, 45],
among others. Nevertheless, despite this significant effort
the fundamental question of the relation between functional
and pointwise maps in the smooth setting (i.e., indepen-
dently of the shape discretization) remains open. This is
unfortunate, as for example, discrete differential geometry
operators [24] such as the Laplacian are discretized pre-
cisely using principles from the smooth manifolds, which
contributes to their robustness to domain changes.

Interestingly, recent learning-based methods have also
highlighted the importance of both robust discretization-
insensitive conversion [18, 8, 35, 13] and of enforcing cor-
rect losses during training using either functional [35] or
point-to-point correspondences [18, 12, 13]. In the latter
category, conversion between functional and point-to-point
maps is done as a non-learned layer in the network and thus
must be correctly and consistently defined. The role of the
adjoint was considered very recently in a learning context
[22] although that work did not address standard functional
map conversion nor draw links to existing methods.

We also note that several works have studied the impor-
tance of iterative conversion between pointwise and func-
tional (or, more broadly, probabilistic) correspondences
[23, 31, 44, 45]. As the conversion step is performed re-
peatedly within these approaches, it strongly contributes to
the overall final accuracy [23].

Due to the ubiquitous nature of the conversion between
functional and point-to-point correspondences, our analy-
sis has direct implications in all of these scenarios. As
we demonstrate below, the conversion that we consider and
the resulting spectral alignment methods, while based on
the same underlying principles as in some previous works
[28, 10, 15], is theoretically better justified, more robust and
results in practical improvement especially in challenging
cases of shapes with different discretizations. Specifically,
we remark that earlier approaches for pointwise conversion



like [28, 15] lack a formal discussion of delta functions and
the importance of combining them with adjoint operators
as we show in Theorem 1. Hence the pointwise conver-
sion schemes in these methods are purely heuristic and ul-
timately rely on the same recovery approach as [28]. Addi-
tionally, we provide a proof of optimal spectral alignment
which is essential to justify the application of regularised
optimal transport in order to enable a fast, accurate and bi-
jective pointwise conversion.

Optimal Transport We also note briefly that optimal
transport is another widely-used relaxation for matching
problems [40, 21, 45, 9]. Our use of Sinkhorn algorithm is
directly inspired by advances in this area [7, 39]. Moreover,
as we demonstrate below, existing techniques that use the
formalism of optimal transport for solving assignment prob-
lems including the Product Manifold Filter with the heat
kernels [21, 45] fall within the general spectral alignment
formalism that we study. However, in contrast to these ex-
isting methods which often rely on large dense matrices like
geodesic distances or heat kernels, our formulation of the
regularized transport problem is more efficient, as it only in-
volves sparse matrix manimulation. Our use of Sinkhorn’s
algorithm is thus both robust and provides good results even
for non-rigid 3D shapes with non-uniform sampling.

3. Regularized Spectral Alignment
In this section, we provide a formalism for pointwise

map conversion from functional maps, and discuss how this
is related to the problem of aligning the spectral embedding
of shapes. We then propose a general framework for iter-
ative spectral alignment, and illustrate that many previous
shape matching refinement methods are regularized variants
of our meta algorithm.

3.1. Background and Operators in Smooth settings

Functional maps Suppose we are given two smooth sur-
faces X ,Y and a pointwise map TXY that maps a point in
X to a point in Y . As introduced in [28], the functional
map associated with the given pointwise map TXY is de-
fined via pullback (denoted as TFYX ): for any real-valued
function f : Y → R, its image g = TFYX (f) is a real-valued
function on X so that g(x) = f

(
TXY(x)

)
for any x ∈ X .

Note the change in direction between TXY and TFYX .
Although a functional map can be used directly to trans-

port real-valued functions, in most cases, we are also in-
terested in how to recover the pointwise map TXY from a
functional map TFYX . In the original work [28] (Remark 4.1
in Section 4), the method that is alluded to is to use TFYX to
map indicator functions, i.e. functions that equal 1 at some
point and zero elsewhere. Unfortunately, this has a major
problem in L2 (the space of square integrable functions),
since such pointwise indicators are equivalent to the zero

function. This means that in an orthonormal basis, such as
the LB eigenfunctions, such functions will be represented
as vectors of zeros. As a result, we cannot apply such a
method in practice directly.

A more principled approach can be obtained by using the
functional map adjoint as we discuss below.

Adjoint Operator Given a functional map TFYX , the ad-
joint functional map operator TAXY is a linear operator that
maps real-valued functions on X to those on Y , and is de-
fined implicitly [15], so that ∀ f : Y → R, g : X → R:

〈 TAXY(g), f 〉Y = 〈 g, TFYX (f) 〉X (1)

Here we denote with 〈 , 〉X and 〈 , 〉Y theL2 inner prod-
uct for functions respectively on shape X and Y . The ad-
joint always exists and is unique by the Riesz representation
theorem (see also Theorem 3.1 in [15]). Note that the ad-
joint operator of functional maps has been considered, e.g.,
in [15] although its role in pointwise map recovery was not
explicitly addressed in that work.

Note that the adjoint operator TAXY , unlike the functional
map, maps the functions in the same direction as the point
wise map TXY . Besides the consistent direction, the adjoint
operator has another nice property that it always maps Dirac
deltas to Dirac deltas as shown in Theorem 1 below.

Importantly, Dirac deltas are not functions but are in-
stead special cases of distributions, which are continu-
ous linear functionals over the space of smooth square-
integrable functions (also known as test functions). Thus,
for a distribution d, given any smooth test function h, d(h)
is a real-value. One can construct a distribution df from
a square-integrable function f via integration: df (h) =∫
f(x)h(x)dµ(x). For the special case of the Dirac deltas,

i.e., d = δx, we have δx(h) = h(x) for any test function h.
Then by definition, we write 〈 δx, h 〉 = h(x).

Theorem 1. Let TAXY be the adjoint operator associated
with a point-to-point mapping TXY as in Eq. (1). Then
TAXYδx = δTXY(x) for all x ∈ X .

Proof. Using Eq. (1) for any f : Y → R, we get:

〈 TAXYδx, f 〉Y = 〈 δx, TFYX f 〉X = 〈 δx, f ◦ TXY 〉X = f
(
TXY(x)

)
Therefore, TAXYδx equals some distribution d such that
〈 d, f 〉Y = f

(
TXY(x)

)
for any function f on Y . By unique-

ness of distributions this means that: TAXYδx = δTXY(x).

To summarize, given a pointwise map TXY , we can ob-
tain a functional map TFYX . We can then define the adjoint
functional map TAXY . To recover TXY , we first define a
Dirac delta function δx for each point x on X and map it
using TAXY . Its image TAXYδx gives the Dirac delta function
defined at the corresponding point TXY(x) ∈ Y as required.



3.2. Operators and Deltas in Discrete Settings

The discussion above holds in the smooth setting. Our
goal now is to demonstrate that the same results hold in the
discrete setting and moreover leads to practical algorithms
for pointwise map recovery.

We assume that each shape is represented as a trian-
gle mesh. A smooth function f is discretized as a vector
f that is defined at each of the vertices. We also assume
to be given a symmetric mass matrix A so that the func-
tional inner product 〈 f, g 〉 is discretized as fTAg (see
[24]). As is commonly done in geometry processing [37],
we will sometimes assume that A is a diagonal matrix of
area-weights. While this assumption not strictly required, it
simplifies some of the calculations below.

Any pointwise map TXY from a triangle mesh X to a tri-
angle mesh Y can be written as a binary matrix ΠYX of size
nX × nY (number of vertices on shapes X ,Y respectively)
so that ΠYX (x, y) equals to 1 if TXY(x) = y and equals
to 0 otherwise. We can see that, ΠYX ∈ RnX×nY is a dis-
crete functional map in the full basis that transfers discrete
function f ∈ RnY from Y to a function g on X via matrix
multiplication, i.e., g = ΠXY f ∈ RnX .

Discrete Dirac deltas Recall the definition of Dirac deltas
in the smooth setting: < δx, h >= h(x) must hold for
any test function h. Discretizing this equation on a trian-
gle mesh we get: δTxAh = h(x) for any function h. Let
ex denote the indicator at x: i.e., a vector that equals to 1
in the position corresponding to x and zeros elsewhere. We
then get δTxAh = eTxh. Since this must hold for all h and
since A is symmetric, we get: Aδx = ex, or equivalently
δx = A−1ex. If we assume A to be diagonal, we obtain that
δx is a vector such that: δx(y) equals to 1/A(x) if y = x
and equals to 0 otherwise. Remark that δx is not the same as
the indicator (also known as the hat) function on the mesh.
Instead, we must factor the area of the corresponding point.
Intuitively this is because the Delta function is “responsi-
ble” for the entire region around a given point.

Discrete Adjoint Operators in Full Basis As defined in
the smooth setting, the adjoint operator can be derived from
the functional map via 〈 TAXY(g), f 〉Y = 〈 g, TFYX (f) 〉X .
Similarly, the discrete adjoint operator in the full basis,
ΓXY ∈ RnY×nX is a matrix that maps discrete functions
from X to Y , i.e., 〈 ΓXYg, f 〉Y = 〈 g,ΠYX f 〉X .

Denoting the area matrices of shapes X , Y as AX ,AY ,
we have: fTAYΓXYg = fTΠTYXAXg, which must hold
for all pairs of f ,g. Therefore, we have:

ΓXY = A−1
Y ΠTYXAX (2)

If AX ,AY are diagonal matrices, this leads to:

ΓXY(y, x) =

{
AX (x)/AY(y) if TXY(x) = y

0 otherwise
(3)

Remark that Theorem 1 also holds in the discrete setting.
Specifically, for any discrete Dirac delta δx = A−1

X ex on
X , we have ΓXYδx = A−1

Y ΠTYXAXA
−1
X ex = A−1

Y ΠTYXex =
A−1
Y eTXY(x) = δTXY(x) as required.

Discrete Adjoint Operators in a Reduced Basis Given
the constructions above, it is easy to translate them to the
setting, where functions are represented through their coef-
ficients in some possibly reduced basis, such as the eigen-
functions of the Laplace-Beltrami operator.

Suppose we are given a basis on triangle meshes X ,Y
that we store as columns of matrices ΦX ,ΦY respec-
tively. We assume that these bases are orthonormal with
respect to the corresponding mass matrices AX ,AY , i.e.,
ΦTXAXΦX = Id and ΦTYAYΦY = Id. Note that the ba-
sis matrice have size: ΦX ∈ RnX×kX and ΦY ∈ RnY×kY ,
where kX ≤ nX , kY ≤ nY . In practice, the number of ba-
sis elements k is in range of [ 50 , 200 ], while the number
of vertices n can be tens of thousands.

In the reduced basis, a functional map simply “trans-
lates” the coefficients of functions expressed in the given
basis. Specifically, following [29] we have that a func-
tional map in the reduced is simply given as: CYX =
Φ†XΠYXΦY . Note that CYX ∈ RkX×kY is a functional
map in the reduced basis mapping coefficients of functions
from Y to X . Applying the same idea to the adjoint opera-
tor, we obtain the adjoint operator in the reduced basis, i.e.,
DXY = Φ†YΓXYΦX . Plugging in Eq. (2), we have

DXY= Φ−1
Y ΓXYΦX = Φ†YA

−1
Y ΠTYXAXΦX

= ΦTYΠTYX
(
Φ†X
)T

= CTYX
(4)

Here we used the fact that Φ†S = ΦTSAS (S = X ,Y) since
the basis is assumed to be orthonormal. This calculation
shows that D in the reduced basis is simply the transpose of
the functional map C in the opposite direction.

We note that Theorem 1 also holds approximately in
the discrete setting with the reduced basis. Recall that
the discrete Dirac delta on shape X in the full basis is
δx = A−1

X ex. We can compute its corresponding coef-
ficient vector dx w.r.t. the reduced basis ΦX , i.e., dx =
Φ†XA

−1
X ex = ΦTXAXA

−1
X ex = ΦTXex We then have:

DXYdx=
(
Φ†YA

−1
Y ΠTYXAXΦX

)
ΦTXex

= ΦTYAYA
−1
Y ΠTYXAXΦXΦTXex = ΦTYΠTYXAXΦXΦTXex

≈ ΦTYΠTYXex = ΦTYeTXY(x) = dTXY(x)

Here, the approximation error comes from the functional
basis truncation. Since ΦT

(
AΦΦT − Id

)
= 0 holds, ex can

be considered as an approximation for AXΦXΦTXex. We
therefore have DXYdx ≈ dTXY(x).

In summary, in this section, we justified that the adjoint
operators in the discrete setting, both in the full basis or
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Figure 2: Top: a pair of near-isometric deformed spheres.
Bottom: a pair of non-isometric deformed spheres. We com-
pare the pointwise map recover error between using the ad-
joint operators (Eq. (5) and (6)) and using the functional
maps as suggested in [28].

reduced basis, lead to the same result as highlighted in The-
orem 1. Specifically, the discrete adjoint operators always
map the discrete Dirac deltas (coefficients) to Dirac deltas
(coefficients). Note that the same claim does not hold for
the functional map itself, both because the map direction is
reversed and because area elements might be different.

3.3. Pointwise Map Conversion

Overview Recall that in the smooth setting, we can al-
ways convert a given pointwise map into a functional map
and then use Eq. (1) to obtain the adjoint operator; we can
then recover the original pointwise map from an adjoint op-
erator as shown in Theorem 1 without any additional as-
sumptions on the map (e.g., isometric or local volume pre-
serving maps). This one-to-one relationship between point-
wise maps and the adjoint functional map also holds exactly
in the discrete setting in both the full and reduced basis, up
to basis truncation errors in the latter.

This suggests the following pipeline for computing
pointwise correspondences: first we can use existing meth-
ods [28, 31, 30] to compute a functional map CYX through
optimization using some descriptors. Then the adjoint op-
erator can be obtained by setting DXY = CTYX . Finally, we
can extract a pointwise map TXY from DXY by using DXY
to map the coefficients of the Dirac deltas.

Map conversion We now discuss in detail how to ex-
tract a pointwise map TXY from an adjoint functional map
DXY . Recall that we have DXYdx ≈ dTXY(x), which can

Algorithm 1: Iterative Meta Algorithm (IMA)
Input : A pair of shapes X ,Y with basis ΦX ,ΦY
Output: Pointwise map TXY and adjoint map DXY
Initialization : An initial guess of DXY
while Not converged do

(1) Extract map TXY from DXY (e.g. Eq. (5))
(2) Convert the extracted TXY to DXY (Eq. (4))

end

be equivalently written as DXYΦTXex ≈ ΦTYeTXY(x). There-
fore, we have TXY(x) = NNsearch

(
ΦY , e

T
xΦXD

T
XY
)
, where

NNsearch
(
P,q

)
returns the closest point (nearest neigh-

bor) in P for the query point q, where points in P are stored
in rows. We then iterate through all the points x in shape X
and obtain the pointwise map:

TXY = NNsearch
(
ΦY ,ΦXD

T
XY
)

(5)
We can similarly extract a pointwise map TYX in the

opposite direction from DXY via:
TYX = NNsearch

(
ΦXD

T
XY ,ΦY

)
(6)

We emphasize that this is different from the pointwise map
conversion proposed in [28] and used in follow-up works
including [15], where the functional map matrix CYX is
used directly to transport Delta functions. As remarked
above, this procedure, unfortunately has no justification in
the smooth setting.
Synthetic example Fig. 2 shows two pairs of deformed
spheres with different underlying mesh structure, and we
compare the map conversion error between using the ad-
joint operators and the functional maps when transferring
Delta functions. Remark that for a pair of shapes that are
near-isometric (top of Fig. 2), implying that local areas are
preserved by the underlying map, using functional maps to
recover the pointwise correspondence is comparable (while
nevertheless being slightly worse) to the results of using
the adjoint operators. However, when two shapes are far
from isometry (bottom of Fig. 2), using the adjoint opera-
tors achieves significantly better results than using the func-
tional maps, which may not even converge with increasing
basis size (bottom right).

3.4. Spectral Embedding Alignment

The discussion above focuses on the functional map
representation and the conversion step between functional
maps and point-to-point ones. Another, very fruitful, per-
spective on the same procedure can be obtained by consid-
ering the spectral embeddings of the two shapes and align-
ments between them.

Given a shape X with the reduced basis ΦX we call its
spectral embedding the point cloud obtained by construct-
ing a point for each row of ΦX , using each columns as coor-
dinates. From Section 3.1, this is the same as constructing
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a point cloud where the coordinates of each point represent
the coefficients of its delta function in the reduced basis.

Optimal linear alignment Recall from the discussion
above we have DXYdx ≈ dTXY(x). Since dx represents
the coefficients of δx in the reduced basis of shape X , and
DXYdx represents the coefficients of the image in the re-
duced basis, this means that the operator DXY aligns the
spectral embeddings of the shape X and Y . This can also
be written as follows: DXYΦTX ≈ (ΠYXΦY)T .

Interestingly, the adjoint operator can also be deduced as
the optimal linear transformation that aligns the spectral
embeddings, given a point-to-point map. I.e.,

DXY = arg minX
∥∥XΦTX −

(
ΠYXΦY

)T∥∥ (7)

which can be easily demonstrated via:

X∗ = arg minX
∥∥XΦTX −

(
ΠYXΦY

)T∥∥
= arg minX

∥∥ΦXX
T −ΠYXΦY

∥∥
=
(
Φ†XΠYXΦY

)T
= CTYX = DXY

(8)

Intuitively this means that the adjoint is the optimal lin-
ear operator that aligns two spectral embeddings given a
pointwise map. Again, we stress that the same interpreta-
tion does not hold for the functional map itself, due to the
reasons mentioned above.

Iterative meta algorithm (IMA) As remarked above the
spectral embedding ΦX of a shape X can be interpreted as
a point cloud in kX dimensional space. Further, the ad-
joint functional map DXY is the optimal linear transforma-
tion that aligns the spectral embeddings of X and Y given a
point-to-point map.

Since a priori we do not have access to either the point-
to-point map or the functional map (or its adjoint), this sug-
gests the following iterative procedure: we first estimate an

initial functional (or adjoint) map; we then iteratively ex-
tract a pointwise map TXY from the adjoint map DXY , and,
again, compute the adjoint map DXY from the obtained
pointwise map TXY . We call this scheme an Iterative Meta
Algorithm (summarized in Algorithm 1).

Regularized spectral alignment In practice, this sim-
ple procedure does not work well though the convergence
is guaranteed for the following reasons: (1) The dimen-
sionality of the spectral embedding is typically quite high.
This means that there could be many local minima in the
alignment energy. (2) This procedure provides no guaran-
tees on what kind of map (pointwise or functional) recov-
ered. For example in the full basis (i.e., when the num-
ber of basis functions equals the number of points) there
is a linear transformation for any point-to-point map that
aligns the spectral embeddings perfectly. Thus, this proce-
dure will terminate in a single iteration. For these reasons,
some additional information must be injected into this ba-
sic method. For example, some existing methods such as
ICP [28], PMF [45], ZoomOut [23] can be cast as variants
of IMA with additional regularization.

Specifically, ICP [28] promotes orthonormal functional
maps by projecting the singular values of the functional map
to 1 at each iteration, which correspond to locally area-
preserving correspondences. PMF [45] introduces bijectiv-
ity as a hard constraint for pointwise map conversion which
turns the procedure to an assignment problem and is solved
using the auction algorithm. At the same time, effectively
by varying the time parameter of the kernel matrices in-
volved, the size of basis used for spectral embedding is
progressively increased between iterations. ZoomOut [23]
promotes orthonormal functional maps for each principal
submatrix via increasing the size of basis for the spectral
embedding progressively between iterations. See appendix
for pseudo-code of the mentioned algorithms.



Algorithm 2: Fast Sinkhorn Filtering
Input : ΦX ,ΦY ,DXY , Parameters λ, k0, N0

Output: Pointwise maps ΠXY and ΠYX
Step1: Populate Sparse Kernel Assignment Matrix
Kλ ∈ RnX×nY as follows:

1. Align the spectral basis functions:
FX = ΦXD

T

YX ∈ RnX×k and FY = ΦY ∈ RnY×k

2. For each row in FX , find the k0 nearest neighbors in
FY and let: dij =

∥∥FX (i, :)−FY(j, :)
∥∥ be the aligned

spectral distance between the ith point in shape X to
the jth point in shape Y . Set Kλ

ij = e−λ d
2
ij

Step2: Estimate Regularized Transport Plan PXY
Set a = 1

nY
1nY , b = 1

nX
1nX , Initialize:u0 = a

for k = 1, 2, ...N0 do
vk ← a/

(
Kλ

T

uk

)
#elementwise division

uk ← b/(Kλvk)

end
PXY = Diag(uN0

) Kλ Diag(vN0
)

Step3: Extract vertex-to-vertex maps
ΠXY = argmax(PTXY),ΠYX = argmax(PXY)

4. Fast Sinkhorn Filters
We propose to solve the spectral embedding alignment

as a linear assignment problem such that the pointwise map
Π is a doubly stochastic matrix with search spaceQ. There-
fore, we can formulate our problem as:

PXY = arg minΠ∈Q
〈
d , Π

〉
F

(9)

where Q =
{

Π
∣∣Π ∈ RnX×nY≥0 , Π1nY = µX , ΠT1nX = µY

}
;

µX and µY are initial masses for X and Y predefined on
each vertex, and d ∈ R×nX×nY is a matrix of the pairwise
euclidean distances between the aligned embeddings:

dij =
∥∥ΦX (i, :)DTXY − ΦY(j, :)

∥∥ (10)

To solve the above problem efficiently, we use the well-
known Sinkhorn algorithm that comes from optimal trans-
port theory, which is a tool that allows the computation of
distances between functions in a common domain. Specifi-
cally, given two probability distributions in a common met-
ric space, the optimal transport distance is the cumulative
effort required to shift the mass from each location of the
first distribution to some location in the second distribu-
tion such that the linear assignment cost is minimized. Im-
portantly, an adjustment to the linear assignment cost of
Eq. (11) allows for a much faster and computationally supe-
rior numerical solver called the Sinkhorn Algorithm. There-
fore, we want to solve:

PXY = arg minΠ∈Q
〈
d , Π

〉
F
− λ H

(
Π
)

(11)

Table 1: Comparing different pointwise map conversion
methods. We measure different metrics on the recovered
maps from 200 pairs of FAUST regular (left) and 190 pairs
of FAUST remeshed (right).

Methods
Accuracy
(×10−3)

Bijective
(×10−3)

Coverage
(%)

Smoothness
Runtime

(s)
Auction 3.6 / 55 0 / 0 100 / 99 5.7 / 52.7 11.7 / 5.9

NN 9.5 / 42 8.2 / 27 75.8 / 47.8 4.8 / 6.5 0.5 / 0.2
CPD 7.6 / 32 10 / 25 82.6 / 71.1 4.7 / 6.8 13.3 / 6.5

Sinkhorn 4.9 / 33 1.7 / 7 93.6 / 79.7 5.5 / 11.1 2.1 / 1.4

where H
(
Π
)

= −
∑
i,j

πij log(πij). We can see that when λ =

0, this problem is equivalent to the original spectral align-
ment problem Eq. (9). As discussed in [39], with nonzero
λ, −H

(
Π
)

makes the energy Eq. (11) strictly convex, and
therefore a unique minimizer exists.

The input to a regularized transportation problem is a
nX -by-nY distance matrix. We first compute a kernel as-
signment matrix from the input pairwise distances:

Kλ =
[
kλij = e−

1
λd

2
ij

]
i=1,2..nX , j=1,2..nY

(12)

where the distances dij are defined in Eq. (10). This ma-
trix is then iteratively subject to a matrix scaling procedure
leading to a regularized transport plan. See Figure 3.

Note that computing and storing a distance matrix of di-
mension nX × nY can be a very time and memory con-
suming task, especially when the resolution of the shapes is
very large. In addition, the value of the kernel in Eq. (12)
is significant only for distances that are quite small. Taking
advantage of this simple insight, we modify the kernel func-
tion of Eq. (12) and construct a sparse kernel assignment
matrix that is populated by the distance values for only a few
nearest neighbors for each point:Kλ =

[
kλij
]
i=1,2..nX , j∈N{i}

.
See Algorithm 2 for a detailed outline. Our construction

of the sparse kernel in Sinkhorn iterations leads to improved
accuracy and bijectivity without incurring a large runtime.
Therefore our solution is a competitive combination of fast,
accurate and bijective simultaneously which is in contrast
to prior pointwise registration methods as shown in Table 1.

5. Experiments and Evaluation
We evaluate the different pointwise conversion algo-

rithms: Nearest Neighbor, Auction [2], Coherent Point Drift
[25], and our Sinkhorn Filter on 200 pairs of FAUST [5] and
190 test pairs of the FAUST remeshed datasets [31]. The
auction algorithm [2] solves for a permutation matrix for
the linear assignment problem. The coherent point drift al-
gorithm is a point set registration technique that models the
correspondence as a probability density which is optimized
via expectation maximization [25, 33, 34]. All 4 registra-



Table 2: Here we show a quantitative evaluation on 300 FAUST regular shape pairs (left) v.s. 190 FAUST remeshed pairs
and 153 SCAPE remeshed pairs (right). We compare our methods (ICP with Sinkhorn and ZoomOut with Sinkhorn) with
the baselines across different metrics.

Measurements
/

Methods

Geometric Metrics Functional Metrics Average
Runtime

(s)
Accuracy
(×10−3)

Bijectivity
(×10−3)

Coverage Smoothness Orthogonality
Laplacian

Commutativity
ZoomOut

Energy
Chamfer
Distance

Ini 67.3 / 46.5 80.1 / 30.2 41.3 / 49.5 9.54 / 6.88 11.9 / 2.49 353 / 767 11.8 / 6.58 5.29 / 3.85 - / -
ICP 76.0 / 30.4 75.0 / 10.2 76.8 / 76.4 8.09 / 5.11 1.38 / 1.07 224 / 493 4.21 / 3.46 2.89 / 2.56 10.2 / 5.32

ICP (sink) 68.6 / 29.5 4.38 / 8.07 90.1 / 87.3 13.0 / 5.89 1.42 / 1.21 255 / 448 4.69 / 3.38 2.92 / 2.42 30.4 / 15.8
Deblur 61.9 / 44.4 75.0 / 22.4 39.9 / 43.7 7.62 / 4.80 11.2 / 2.63 361 / 805 12.1 / 6.79 4.64 / 3.31 10.9 / 10.4
RHM 41.9 / 32.0 22.7 / 15.1 78.3 / 76.5 4.28 / 3.40 4.00 / 1.91 273 / 647 6.01 / 4.51 3.91 / 2.89 41.4 / 47.4
PMF 26.4 / 86.4 1.99 / 37.7 100 / 100 24.0 / 34.9 1.11 / 2.44 164 / 576 4.02 / 7.97 2.72 / 4.09 737 / 312

BCICP 21.6 / 26.4 4.48 / 12.6 88.9 / 77.6 4.73 / 4.22 1.21 / 1.00 186 / 404 3.38 / 3.24 2.52 / 2.42 184 / 364
ZoomOut 15.8 / 22.7 13.6 / 6.47 88.0 / 82.1 3.49 / 3.46 1.32 / 0.99 153 / 405 3.18 / 2.95 1.89 / 2.16 9.60 / 6.49

ZoomOut (sink) 12.6 / 20.8 1.57 / 6.44 93.9 / 88.5 3.44 / 3.40 1.37 / 0.99 148 / 394 3.21 / 3.07 1.91 / 2.17 28.2 / 19.08

tion methods were initialized with the same pair of basis
that were aligned with the adjoint map in Eq. (5).

Table 1 highlights the performance of each of these al-
gorithms that are essential components to almost all cor-
respondence methods including prominent recent ones like
[9, 23, 45]. We measure the following metrics: accuracy,
bijectivity, smoothness, coverage and average runtime for
each conversion. Please refer to the supplementary for de-
tailed definitions of these metrics. Notice that the auc-
tion algorithm although superior in a very ideal setting of
equal sampling and identical connectivity, is not robust to
a change in the discretization of the surface. On the other
hand, even though the nearest neighbor has the smallest run-
time, it suffers from poor accuracy, bijectivity and cover-
age. The coherent point drift also suffers from a similar
drawback of poor bijectivity. In contrast, the Fast Sinkhorn
Filter shows an accurate and bijective output within a very
reasonable runtime and these properties are robust to the
remeshing of the underlying surface.

We further demonstrate the efficacy of our Sinkhorn fil-
ter by using it in conjunction with two prominent variants
of the iterative meta algorithm (Algorithm 1): ICP [28]
and ZoomOut[23]. We replace the nearest neighbor algo-
rithm in both methods with the Sinkhorn filter and compare
the Sinkhornized versions of ICP and Zoomout with pre-
vious competing refinement methods on the FAUST regu-
lar [5] and FAUST and SCAPE remeshed [31] datasets as
shown in Table 2 and visualized in Figure 4. We compare
extensively using the commonly used geometric and func-
tional metrics. Please see the detailed definitions in the ap-
pendix. The sinkhornized versions of ICP and ZoomOut are
both attributed with: better accuracy (20% improvement on
FAUST regular and 8% on remeshed datasets), and better
bijectivity in the maps w.r.t. the original ICP/ZoomOut.

6. Conclusion
In conclusion, in this paper we propose a theoretical

foundation to the problem of pointwise conversion of func-
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Figure 4: Sinkhornizing ICP and Zoomout: Comparison
between the original and sinkhornized ICP and Zoomout re-
finement algorithms. (top) Pointwise map errors visualized
on target shape. Replacing the nearest neighbor conver-
sion step inside ICP/Zoomout with our Fast Sinkhorn Filter
achieves improved accuracy and better spectral alignment.

tional maps and discuss its connection to regularized spec-
tral alignment. Based on this foundation we propose a novel
spectral registration technique using optimal transport for
spectral alignment, and demonstrate that it improves accu-
racy and bijectivity of correspondences both independently
as well as in conjunction with existing iterative meta algo-
rithms. One limitation of the Sinkhorn filter is the poor gen-
eralization to the challenging cases of partiality which we
would like to address in future work.
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[19] Or Litany, Emanuele Rodolà, Alex Bronstein, and Michael
Bronstein. Fully spectral partial shape matching. Computer
Graphics Forum, 36(2):247–258, 2017. 2

[20] Or Litany, Emanuele Rodolà, Alexander M Bronstein,
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