Shalini Sharma 
email: shalinis@iiitd.ac.in
  
Víctor Elvira 
  
Emilie Chouzenoux 
  
Angshul Majumdar 
  
Recurrent Dictionary Learning for State-Space Models with an Application in Stock Forecasting

Keywords: Stock Forecasting, Recurrent dictionary learning, Kalman filter, expectation-minimization, dynamical modeling, uncertainty quantification

In this work, we introduce a new modeling and inferential tool for dynamical processing of time series. The approach is called recurrent dictionary learning (RDL). The proposed model reads as a linear Gaussian Markovian state-space model involving two linear operators, the state evolution and the observation matrices, that we assumed to be unknown. These two unknown operators (that can be seen interpreted as dictionaries) and the sequence of hidden states are jointly learnt via an expectation-maximization algorithm. The RDL model gathers several advantages, namely online processing, probabilistic inference, and a high model expressiveness which is usually typical of neural networks. RDL is particularly well suited for stock forecasting. Its performance is illustrated on two problems: next day forecasting (regression problem) and next day trading (classification problem), given past stock market observations. Experimental results show that our proposed method excels over state-of-the-art stock analysis models such as CNN-TA, MFNN, and LSTM.

Introduction

Stock forecasting is a practice to determine the future net value of a firm or any other asset whose value changes with time. However, analyzing the stock market and following directional price trends is challenging. The struggles are mainly because the stock market is highly dynamic, chaotic, and unpredictable.

It depends on several macroeconomic factors like social, political, psychological, and economic variables [START_REF] Shah | Stock market analysis: A review and taxonomy of prediction techniques[END_REF]. Due to its high applicative impact, stock forecasting has been deeply investigated for several decades [START_REF] Fama | Random walks in stock market prices[END_REF][START_REF] Malkiel | Efficient capital markets: A review of theory and empirical work[END_REF][START_REF] Kwon | A hybrid neurogenetic approach for stock forecasting[END_REF][START_REF] Atsalakis | Surveying stock market forecasting techniques-part ii: Soft computing methods[END_REF][START_REF] Pai | A hybrid arima and support vector machines model in stock price forecasting[END_REF]. In seminal works, financial time series were modeled using classical techniques for time series modeling such as ARMA (auto-regressive moving average), and its variants ARIMA (auto-regressive integrated moving average) [START_REF] Box | Intervention analysis with applications to economic and environmental problems[END_REF] and ARIMAX (ARIMA with explanatory variable) [8]. ARMA models and their extended versions have then been replaced by state-space models (SSMs) [START_REF] Hyndman | Forecasting with exponential smoothing: the state space approach[END_REF][START_REF] Pandher | Forecasting multivariate time series with linear restrictions using constrained structural state-space models[END_REF]. SSMs [START_REF] Mccarthy | State space modeling of price and volume dependence: evidence from currency futures[END_REF] have risen in the last few decades because they can overcome drawbacks of ARMA systems [START_REF] Ng | Non-parametric estimation of forecast distributions in non-gaussian, non-linear state space models[END_REF][START_REF] Shephard | Partial non-Gaussian state space[END_REF]. They allow to model hidden states with a particular Markovian structure, that are not necessarily with same dimension nor space than the observation model. The Bayesian estimation in SSMs provides an uncertainty quanification, which is key in many applications, such as finance where decision making processes can be informed with the full posterior of the unknowns [START_REF] Sarkka | Bayesian Filtering and Smoothing[END_REF]. SSMs are well suited for applications where the structure of the time series is known and understood in advance, as they require the incorporation of structural and statistical information on the model. The linear-Gaussian model is arguably the most relevant SSM. The Kalman filter allows for exact inference in the linear-Gaussian, obtaining the filtering distribution (given all past and present data) in a closed form. The Kalman filter can be combined with smoothing algorithms in order to obtain smoothing distributions of all states (given all past, present and future observations), also in an exact manner [START_REF] Harvey | Forecasting, structural time series models and the Kalman filter[END_REF].

In stock forecasting applications, involving noisy samples with diverse sources, it can become difficult for SSMs to assume the structural details of the model in advance. In the last decade, various machine learning and deep learning tech-niques have also gained attention in solving problems of stock forecasting. Two structured neural network models, namely recurrent neural network (RNN) [START_REF] Handa | Financial time series forecasting using back propagation neural network and deep learning architecture[END_REF] and long short-term memory (LSTM) [START_REF] Zhang | At-lstm: An attention-based lstm model for financial time series prediction[END_REF][START_REF] Huang | A new financial data forecasting model using genetic algorithm and long short-term memory network[END_REF], are now considered as state-ofthe-art in the resolution of stock forecasting problems, due to their inherent ability for processing varying length sequences and predicting future trends.

The unsupervised strategies in [START_REF] Li | Forecasting the reits and stock indices: group method of data handling neural network approach[END_REF][START_REF] Ho | Predicting stock price movements with news sentiment: An artificial neural network approach[END_REF][START_REF] Hochreiter | Long short-term memory[END_REF][START_REF] Chung | Empirical evaluation of gated recurrent neural networks on sequence modeling[END_REF]] also show their capabilities to extract higher-order features that are well suited to identify complex patterns in financial data while requiring less human supervision. It is however worth mentioning that the above deep learning models require a rather large dataset to learn parametric functions in order to forecast efficiently for unseen data. Moreover, those techniques usually provide pointwise estimates without any measure of uncertainty.

In this work, we propose to bridge the gap between SSMs and machine learning strategies, to propose a novel approach for multivariate time series analysis in stock price forecasting and trading, called Recurrent Dictionary Learning (RDL). The RDL model relies on a linear SSM-based method combined with a dictionary learning step [START_REF] Tosic | Dictionary learning: What is the right representation for my signal?[END_REF]. Following the paradigm of RNN, the model feeds back the representation (output) of the previous instant along with the current input to generate the representation for the current instant. The dictionary learning step allows to learn the model parameters (here, observation and state matrices) from the data itself, instead of imposing explicit values for them. Furthermore, due to the SSM framework, the method is able to provide uncertainty measures on the estimates, whose interest will be illustrated in the context of trading. The proposed RDL algorithm proceeds in two steps, by following an expectation-minimization strategy. In the expectation step, the estimate and the associated uncertainty are computed, while in the maximization step, those quantities are used to update the dictionaries. We propose an online implementation of our RDL inference method, that is able to incorporate daily stock market data, in a progressive fashion through a sliding-window strategy. RDL forms the window of daily feature values from the stock market and number of days in window. It is then able to tackle, under a unified framework, both the problems of forecasting and trading for next day, providing the observation of stock market features for the past day within a finite window. The performance of RDL is assessed and compared with several benchmarks approaches on a publicly available dataset.

The rest of the paper is organized as follows. Relevant literature is reviewed in Section 2. The proposed model and inference algorithm are explained in Section 3. The experimental results are presented and discussed in Section 4.

Conclusions and future directions of research are finally given in section 5.

Related Work

From ARMA models to state-space models

Classical statistical time series modeling and analysis mostly assumed stationary stochastic processes. An important class of models and related methods is the autoregressive moving average (ARMA) models, which have been deeply studied in the literature and widely applied in countless relevant applications.

A survey of these conventional techniques in stock forecasting can be found in [? ]. Despite their wide applicability, ARMA-based methods present several disadvantages. First, it is well known that such techniques have a linear nature and they imposed additivity in the residuals, which limits their flexibility to model complex non-linear non-additive processes. ARMA models moreover often fail to perform well with non-stationary time series data. The autoregressive integrated moving average (ARIMA) are a wider class of models, developed to overcome some of the aforementioned limitations of ARMA models. There are a few studies that use Box-Jenkins techniques for stock forecasting [START_REF] Ariyo | Stock price prediction using the ARIMA model[END_REF][START_REF] Mondal | Study of effectiveness of time series modeling (ARIMA) in forecasting stock prices[END_REF][START_REF] Jarrett | ARIMA modeling with intervention to forecast and analyze chinese stock prices[END_REF][START_REF] Devi | An effective time series analysis for stock trend prediction using ARIMA model for nifty midcap-50[END_REF].

Box-Jenkins method deploy ARMA and ARIMA model in a diagnostic manner.

The iterative process involves identification, estimation, and diagnostic check to evaluate the fitted models for the available data. This approach evaluates which parts of the time series require can be improved. Box-Jenkins methods help to control the overfitting, which is essential for improving the modeling task.

However, ARIMA models still present some limitations, e.g., when dealing with the volatility clustering or fat tails in the noise distributions [START_REF] Petrica | Limitation of ARIMA models in financial and monetary economics[END_REF]. Moreover, the ARIMA models can behave unstably in misspecified models. The main disadvantage of such a Box-Jenkins class of techniques was that it could only handle smooth variations in the data [START_REF] Makridakis | Arma models and the box-jenkins methodology[END_REF][START_REF] O'donovan | Short term forecasting: An introduction to the Box-Jenkins approach[END_REF]. To overcome the limitations of ARIMA models, regressors were introduced along with current data. These class of models was named as ARIMAX. ARIMAX models often improve the forecasting performance [START_REF] Chadsuthi | Modeling seasonal leptospirosis transmission and its association with rainfall and temperature in thailand using time-series and arimax analyses[END_REF]. The main limitation of ARIMAX is the assumed linear relationship between the predictor and the target variable.

The model cannot deal with multi-colinearity in the data. Moreover, the inclusion of more regressors for the forecasting task (for the variable of interest and other time-series information) often results in a model overfitting. Finally, a generic limitation of all previous models is the lack of latent variables, which clearly limits the expressiveness of the resulting models. In the last decades, ARIMA models and its successive variants have been replaced with state-space models (SSMs) in many challenging applications, especially for modeling complex spatial-temporal processes. SSMs describe the evolution of a hidden state that evolves over discrete time steps (in principle, in a Markovian manner, but this can be easily extended) [START_REF] Sarkka | Bayesian Filtering and Smoothing[END_REF]. At each time step, an observation related to the given state is received. When the SSMs are linear and with AWGN, the Kalman filter provides the sequence of posterior (filtering) distributions of the hidden state given the previous data (plus some other distribution of interests, such as predictive distributions of different quantities) [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF]. The Kalman filter allows for the computation of those pdfs, which are Gaussian, in a sequential (hence efficient) manner, processing each observation at each time step, without the need of reprocessing past observations [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF][START_REF] Nóbrega | A sequential learning method with Kalman filter and extreme learning machine for regression and time series forecasting[END_REF]. Based on the Kalman algorithm, one can compute the sequence of smoothing distributions (pdf of a hidden state given all observations), which are also Gaussian in the case of the linear-Gaussian model, although in this case, the algorithm requires reprocessing all observations. Both algorithms are described in the next section, and more details can be found in [START_REF] Sarkka | Bayesian Filtering and Smoothing[END_REF]. There exist some works considering the linear-Gaussian SSM for stock forecasting [START_REF] Saini | Forecasting volatility in indian stock market using state space models[END_REF][START_REF] Zeng | State-space models[END_REF][START_REF] Zivot | State space modelling in macroeconomics and finance using ssfpack in s+ finmetrics[END_REF]. Note that an important limitation of the linear-Gaussian model is the need to know not only the noise covariances but also the linear operators of the model. In real world applications, this is rarely the case, which prevents a wider application of this useful model [START_REF] Sarkka | Bayesian Filtering and Smoothing[END_REF]Chapter 12].

When the SSM is non-linear (but the noise is still Gaussian), approximations are needed. For instance, the extended Kalman filter [START_REF] Ljung | Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems[END_REF][START_REF] Slim | Neuro-fuzzy network based on extended kalman filtering for financial time series[END_REF] or unscented Kalman filter [START_REF] Wan | The unscented kalman filter for nonlinear estimation[END_REF] have been proposed to perform the inference tasks in such generic models. The difference between the EKF and the UKF is that, the former approximates about only the mean while the latter approximates about several points including the mean. This is why UKF is supposed to improve the results over EKF. However, these Kalman-based extensions still present several limitations both in the performance but also in the range of SSMs where they can be used. Arguably, the most comprehensive tools for inferring the posterior distributions of interests in generic SSMs are the family of particle filters (PFs) [START_REF] Crisan | A survey of convergence results on particle filtering methods for practitioners[END_REF][START_REF] Djuric | Particle filtering[END_REF][START_REF] Doucet | A tutorial on particle filtering and smoothing: Fifteen years later[END_REF][START_REF] Casarin | Business cycle and stock market volatility: A particle filter approach[END_REF][START_REF] Javaheri | Filtering in finance[END_REF][START_REF] Smith | Second-order filter distribution approximations for financial time series with extreme outliers[END_REF]. PFs have shown outstanding performance where the models have high degree of uncertainty. This Monte Carlo technique can deal with virtually any SSM, including non-linearities and non-Gaussian nonadditive noises, often at the expense of increasing the computational complexity.

Recent works on PF allow to develop more efficient filters that require fewer particles [START_REF] Elvira | In search for improved auxiliary particle filters[END_REF][START_REF] Elvira | Elucidating the auxiliary particle filter via multiple importance sampling[END_REF]. Other methods allow for an online adaptation on the number of particles in an online manner [START_REF] Elvira | Adapting the number of particles in sequential monte carlo methods through an online scheme for convergence assessment[END_REF][START_REF] Elvira | New results on particle filters with adaptive number of particles[END_REF].

It is worth noting that while more sophisticated models (than the linear-Gaussian one) are useful for advanced applications, this is at the expense of complicating the inference process, including the loss of strong theoretical guarantees, the introduction of approximate errors, and the increased computational complexity. This trade-off suggests that staying within the Kalman framework while broadening the model capabilities is a research direction of high interest.

Note that all these techniques provide explicit uncertainty quantification in the estimates. The modeling and prediction of time series have been applied

to stock forecasting in the last five decades. However, there are relatively few references on the topic (compared to its wide application), arguably due to the secrecy practices associated with this competitive field. A comprehensive work on the application of Kalman filtering techniques for the said problem can be found in [START_REF] Harvey | Forecasting, structural time series models and the Kalman filter[END_REF].

Despite the simplicity and versatility of the Kalman model and filter, it can also fail in many applications due to the linear-Gaussian restriction but also due to the need of knowing the model at each time step. For instance, it is required to know the linear operator that maps from the state at a given time step, to the next time step. The Kalman model does not necessarily impose that this operator (or the operator that maps from the state to the observation at a given time) must remain fixed over time, but the knowledge of different operators at different times is then even more challenging. Knowing (or estimating) properly these models is key for the effectiveness of the Kalman filter in predicting future sequences, but also for providing interpretability to the model. Some works are devoted to estimate some particular parameters, but dealing with model uncertainty in such context is considered to be a tough problem [START_REF] Eichler | Graphical modelling of multivariate time series[END_REF][START_REF] Bach | Learning graphical models for stationary time series[END_REF][START_REF] Barber | Graphical models for time-series[END_REF][START_REF] Chouzenoux | GraphEM: EM algorithm for blind Kalman filtering under graphical sparsity constraints[END_REF].

In this work, we propose a method that ensures the ability to learn a possibly time-varying state and observation models, allowing also for the inference of the hidden state and the forecasting of future observations.

Machine learning-based techniques

Several machine learning approaches, including neural network solutions, have been proposed to address the problem of financial data prediction. Studies like works [START_REF] Atsalakis | Surveying stock market forecasting techniques-part ii: Soft computing methods[END_REF][START_REF] Abe | Deep learning for forecasting stock returns in the cross-section[END_REF][START_REF] Singh | Stock prediction using deep learning[END_REF][START_REF] Minh | Deep learning approach for short-term stock trends prediction based on twostream gated recurrent unit network[END_REF][START_REF] Xu | Stock movement prediction from tweets and historical prices[END_REF][START_REF] Hu | Listening to chaotic whispers: A deep learning framework for news-oriented stock trend prediction[END_REF][START_REF] Zhang | [END_REF][START_REF] Kim | A hybrid approach based on neural networks and genetic algorithms for detecting temporal patterns in stock markets[END_REF][START_REF] Hassan | A combination of hidden Markov model and fuzzy model for stock market forecasting[END_REF] consider as the input, a given period of the data (possibly corrected with some pre-processing), then used for predicting the price at a future date. These aforementioned techniques thus work in a windowed fashion, by processing (possibly overlapped) windows of the time series and hence the do not model the dynamical behavior. In particular, support vector machines, ANN [START_REF] Pai | A hybrid arima and support vector machines model in stock price forecasting[END_REF][START_REF] Zhong | A comprehensive cluster and classification mining procedure for daily stock market return forecasting[END_REF], MLP [START_REF] Hiransha | NSE stock market prediction using deep-learning models[END_REF], random forests [START_REF] Kumar | Forecasting stock index returns using ARIMA-SVM, ARIMA-ANN, and ARIMA-random forest hybrid models[END_REF] and deep learning [START_REF] Ding | Deep learning for event-driven stock prediction[END_REF][START_REF] Akita | Deep learning for stock prediction using numerical and textual information[END_REF][START_REF] Chong | Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies[END_REF][START_REF] Fischer | Deep learning with long short-term memory networks for financial market predictions[END_REF] have been successfully used for stock forecasting.

The mentioned techniques rely on neural architectures which becomes complex with the introduction of deep layers. These models process huge amount of data and learn complex and highly nonlinear mapping functions from the data in a black box manner. This is detrimental to the interpretability of the models and can lead to serious instability issues (e.g., in case of adversarial attacks). Moreover, the learning strategy, requiring to solve non-convex stochastic optimization problem, requires tedious parameter tuning and can be computationally expensive.

Recent studies also rely on a secondary source for stock forecasting, which is the textual information from either social networks or blogs [START_REF] Minh | Deep learning approach for short-term stock trends prediction based on twostream gated recurrent unit network[END_REF][START_REF] Xu | Stock movement prediction from tweets and historical prices[END_REF][START_REF] Hu | Listening to chaotic whispers: A deep learning framework for news-oriented stock trend prediction[END_REF]. Strictly speaking these are not artificial intelligence techniques for stock forecasting; they depend on human intelligence from blogs and posts. These techniques use natural language processing to extract relevant information from already existing secondary sources and predict based on the sentiment values associated with those sources.

Models based on RNN such as [START_REF] Gao | Improving stock closing price prediction using recurrent neural network and technical indicators[END_REF][START_REF] Che | Recurrent neural networks for multivariate time series with missing values[END_REF][START_REF] Schuster | Bidirectional recurrent neural networks[END_REF], are now considered to be highperformance state-of-the-art techniques to forecast time series due to their inherent property to memorize long sequences. RNNs can model the dynamical system continuously without the need for windowing and are thus naturally suitable for financial time-series analysis. However RNNs suffer from the vanishing gradient problem [START_REF] Rumelhart | Learning Internal Representations by Error Propagation[END_REF]. LSTM [START_REF] Nelson | Stock market's price movement prediction with LSTM neural networks[END_REF][START_REF] Samarawickrama | A recurrent neural network approach in predicting daily stock prices an application to the Sri Lankan stock market[END_REF][START_REF] Shen | A novel time series forecasting model with deep learning[END_REF] is one such variant of RNNs, which is popular due to its memory mimicking model that avoids the vanishing gradient problem in RNN. Another derivative of RNN that does not suffer from its vanishing gradient problem is GRU [START_REF] Fu | Using LSTM and GRU neural network methods for traffic flow prediction[END_REF][START_REF] Li | Ea-lstm: Evolutionary attentionbased lstm for time series prediction[END_REF][START_REF] Althelaya | Evaluation of bidirectional LSTM for short-and long-term stock market prediction[END_REF][START_REF] Hua | Deep learning with long short-term memory for time series prediction[END_REF]. Let us note that 1D CNN is sometimes preferred over LSTM and RNN, as they are highly noise resistant models and have the potential to extract highly informative and deep features which are independent from time [START_REF] Kiranyaz | Real-time patient-specific ECG classification by 1-d convolutional neural networks[END_REF][START_REF] Kashiparekh | Convtimenet: A pre-trained deep convolutional neural network for time series classification[END_REF][START_REF] Smirnov | Time series classification with recurrent neural networks[END_REF]. However, 1D CNNs are not suitable for continuous data and for working in a sliding window fashion. The major advantage of neural networks over SSM is their great function approximation ability. Nonetheless, unlike SSM-based models, neural networks provide point estimates. They cannot quantify the uncertainty about the point estimate. This is a crucial shortcoming in applications such as stock trading. Another practical limitation of neural network models, that we mentioned earlier, is that training them is computationally heavy, since the complexity increases in a polynomial law as the network size grows [START_REF] Abbe | Provable limitations of deep learning[END_REF].

Proposed method

In SSM-based approaches mentioned earlier, we need to make structural assumptions of the observation and hidden static models, before performing the inference. This is unrealistic in stock market modeling due to the highly volatile data. On the other hand, neural network models are capable of modeling dynamic behavior with few assumptions but they rarely provide uncertainty measure associated with their output. This work aims to propose a novel Recurrent Dictionary Learning (RDL) method to predict the behavior of stock market data, by combining advantages from both SSM and machine learning words.

The approach of neural network architectures comes from dictionary learning (DL) [START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF][START_REF] Li | Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning[END_REF][START_REF] Mairal | Task-driven dictionary learning[END_REF]. DL amounts to extracting features from the data using a linear decomposition, typically sparse, onto a dictionary that is to be learnt on a training set. Dictionary learning has been so far used for solving static problems [START_REF] Xu | A survey of dictionary learning algorithms for face recognition[END_REF][START_REF] Xu | Sample diversity, representation effectiveness and robust dictionary learning for face recognition[END_REF][START_REF] Li | A locality-constrained and label embedding dictionary learning algorithm for image classification[END_REF]. In this work, we present a dictionary learning framework for dynamical models, engineering it to work as a recurrent network. In this section, we present our general model for multivariate time-series prediction along with an associated inference technique relying on the expectation-minimization (EM) approach. We will later particularize our method to the problems of stock forecasting and trading, and we propose a windowing strategy allowing for on-the-fly prediction and decision making.

Recurrent Dictionary Model

Let us consider (x k ) 1≤k≤K the observed time-series of vectors of size N x and (z k ) 1≤k≤K is the sequence of vectors of size N z that we want to infer/estimate, (v k ) 1≤k≤K models the noise. Note that we consider here possibly multivariate signals and feature vectors, i.e., N x and N z can be greater than 1. Our RDL model is expressed as follows (see Fig. 1 for a schematic illustration in the noisefree case).

For every k ∈ {1, . . . , K}:

   z k = D 1 z k-1 + v 1,k , x k = D 2 z k + v 2,k . (1) 
z k-2 z k-1 z k D 1 D 1 D 1 D 2 D 2 D 2 x k-2 x k-1 x k Figure 1: Schematic diagram of RDL model (1) (assuming zero noise).
We assume that the process noise (v 1,k ) 1≤k≤K is zero-mean Gaussian with covariance matrix Q, and that the observation noise (v 2,k ) 1≤k≤K is zero-mean Gaussian with covariance matrix R. Then, Eq. ( 1) describes a first-order

Markovian linear-Gaussian model where (z k ) 1≤k≤K is the sequence of K unknown states. The goal is the joint inference, from the observed sequence (x k ) 1≤k≤K , of the dictionaries D 1 ∈ R Nz×Nz and D 2 ∈ R Nx×Nz , and of the predicted sequence (z k ) 1≤k≤K .

RDL inference algorithm

Under Gaussianity assumptions, the inference problem can be viewed as a blind Kalman filtering problem where both the predicted sequence and some model parameters (the observation and state linear operators) must be inferred/estimated from the data. We propose to solve the problem in an alternating manner, following the expectation-minimization scheme introduced in [14, chap.12] (see also [START_REF] Shumway | An approach to time series smoothing and forecasting using the EM algorithm[END_REF]). We alternate iteratively between (i) the estimation of the state, the dictionaries D 1 and D 2 being fixed and (ii) the update of the dictionaries, assuming fixed state.

State update

At this step we considered the dictionaries D 1 and D 2 to be fixed and known, and the goal is the inference of the hidden state. Assume that the initial state follows z 0 ∼ N (z 0 , P 0 ), where P 0 is a symmetric definite positive matrix of R Nz×Nz and z0 ∈ R. Then, (1) reads as a first-order Markovian linear-Gaussian model where (z k ) 1≤k≤K is the sequence of K unknown states. The Kalman filter provides a probabilistic estimate of the hidden state at each time step k, conditioned to all available data up to time k, through the filtering distribution:

p(z k |x 1:k ) = N (z k ; zk , P k ). (2) 
For every k ∈ {1, . . . , K}, the mean z k and covariance matrix P k can be computed by means of the Kalman filter recursions given as follows. For k = 1, . . . , K

Predict state:    z - k = D 1 zk-1 , P - k = D 1 P k-1 D 1 + Q. (3) 
Update state:

                     y k = x k -D 2 z - k , S k = D 2 P - k D 2 + R, K k = P - k D 2 S -1 k , zk = z - k + K k y k , P k = P - k -K k S k K k . (4) 
The Rauch-Tung-Striebel (RTS) smoother makes a backward recursion on the data which makes use of the filtering distributions computed by the Kalman filter in order to obtain the smoothing distribution p(z k |x 1...K ). In the following we summarize the RTS recursions:

For k = K, . . . , 1 
Backward Recursion (Bayesian Smoothing):

                     z - k+1 = D 1 zk , P - k+1 = D 1 P k D 1 + Q, G k = P k D 1 [P - k+1 ] -1 , z s k = zk + G k [z s k+1 -z - k+1 ], P s k = P k + G k [P s k+1 -P - k+1 ]G k . (5) 
As a result, the smoothing distribution at each time k has a Gaussian closedform solution given by

p(z k |x 1...K ) = N (z k ; z s k , P s k ). (6) 

Dictionary Update

In this step, we derive the update of D 1 and D 2 given the sequence of states estimated in previous step. Let us introduce the following function:

Q(D 1 , D 2 ) = 1 2 log |2πP 0 | + K 2 log |2πQ| + K 2 log |2πR| + 1 2 tr P -1 0 (P s 0 + (z s 0 -z0 )(z s 0 -z0 ) ) + K 2 tr Q -1 (Σ -CD 1 -D 1 C + D 1 ΦD 1 ) + K 2 tr R -1 (∆ -BD 2 -D 2 B + D 2 ΣD 2 ) (7) 
where (Σ, Φ, B, C) are defined from the outputs of the previously described RTS recursion:

               Σ = 1 K K k=1 P s k + z s k (z s k ) , Φ = 1 K K k=1 P s k-1 + z s k-1 (z s k-1 ) , B = 1 K K k=1 x k (z s k ) , C = 1 K K k=1 (P s k G k-1 + z s k (z s k-1 ) ). (8) 
Then, we can show that the above function is a lower bound of the marginal log-likelihood ϕ(D 1 , D 2 ) = log p(x 1:K |D 1 , D 2 ), i.e.,:

log p(x 1:K |D 1 , D 2 ) ≥ Q(D 1 , D 2 ) (∀(D 1 , D 2 )) (9) 
The update for D 1 and D 2 amounts for maximizing this lower bound, so as to increase value the marginal log-likelihood. Due to the quadratic form of function Q(D 1 , D 2 ), the maximization step takes a closed form, leading to the dictionaries updates:

   D + 1 = CΦ -1 , D + 2 = BΣ -1 . (10) 
The RDL inference algorithm finally reads as the alternation of the Kalman filter/smoother, with fixed parameters (D 1 , D 2 ) (E-step) and the update of the dictionaries (M-step) [START_REF] Sarkka | Bayesian Filtering and Smoothing[END_REF][Alg.12.5]. The advantage of the proposed method, as compared to alternating minimization strategies more commonly used in dictionary learning literature [START_REF] Gupta | Deconfuse: a deep convolutional transform-based unsupervised fusion framework[END_REF], is that it allows to make a probabilistic inference of the states and thus accounts explicitly on the uncertainty one may have on the estimates [START_REF] Pereyra | A survey of stochastic simulation and optimization methods in signal processing[END_REF], while benefiting from the assessed monotonic convergence guarantees provided by the EM framework [START_REF] Wu | On the convergence properties of the EM algorithm[END_REF], and more generally from the majorization-minimization principle [START_REF] Chouzenoux | A majorize-minimize subspace approach for l2-l0 image regularization[END_REF].

Application to stock forecasting and trading

Let us now focus on the stock market problem, particularly with the aim of performing forecasting and trading tasks from daily observations. We describe in this section how to adapt the RDL model and implementation to map with the specific characteristics of the considered application.

Online implementation

The standard RDL approach presents the drawback of requiring reprocessing the whole dataset in order to apply the update on the linear operators. This implicitly assumes static values over time for those operators during the whole sequence, which may not be well suited for the lack of stationarity in financial data. Furthermore, in such a context, the users may want rapid feedback on the stock price evolution, to immediately decide about to hold, buy or sell. We thus propose here a strategy to make RDL suitable for online processing, reminiscent from online implementations of majorization-minimization algorithms [START_REF] Chouzenoux | A stochastic majorize-minimize subspace algorithm for online penalized least squares estimation[END_REF]. We set a window (or mini-batch) size τ . At each time step k, the static parameters are estimated using the last τ observations contained in the set

X k = {x j } k j=k-τ +1 .
That is, we run the Kalman filter/smoother, only on the τ recent observed data, then we update the dictionaries using the smoothing results. This sliding-window strategy has two advantages. First, reducing τ allows for a faster processing. Second, it also allows for better modeling piecewise linear processes that are varying faster. The price to pay is that a smaller number of observations also limits the estimation capabilities. Hence, there is a trade-off in the seek of an optimal τ , that is generally process-dependent as we will see in the experiments. A warm start strategy is employed for the Kalman iterations initialization. More precisely, we will set the dictionaries to their last updated value, and we initialize the mean and covariance of the state at k -τ +1 using the last smoothing results from the last update of the dictionaries in this window. Note that if τ = K, the algorithm goes back to the original offline version.

Forecasting vs trading

The ultimate goal in stock trading is usually to decide whether to buy, hold, or sell a stock in the next day, given the available past data and the expert knowledge, in order to maximize the returns. One can tackle this problem either under the forecasting viewpoint, by considering a prediction (i.e., regression) problem on the future stock price, or under the trading viewpoint, considering the decision making (i.e., classification) among three candidate labels "hold", "buy" and "sell". The regression approach may bring more informed decisions better suited for interpretation and model assessment. Classification in contrast may help in analyzing the method empirically with metric analysis, and trading simulation. The proposed RDL method can be particularized to either one or the other task, as we explain hereafter.

Observation model for stock forecasting. In order to address the problem of forecasting the value of a given quantity of the market, we will consider the following observation model. For each k ∈ {0, . . . , K -τ }, we observe (x j ) k≤j≤k+τ ∈ R 5 where x j [START_REF] Shah | Stock market analysis: A review and taxonomy of prediction techniques[END_REF] is the daily opening price, x j [START_REF] Fama | Random walks in stock market prices[END_REF] is the daily adjusted close price,

x j [START_REF] Malkiel | Efficient capital markets: A review of theory and empirical work[END_REF] is the daily high value, x j [START_REF] Kwon | A hybrid neurogenetic approach for stock forecasting[END_REF] is the daily low value, and x j [START_REF] Atsalakis | Surveying stock market forecasting techniques-part ii: Soft computing methods[END_REF] is the daily net asset volume. As explained earlier, running our RDL within this window allows to provide the mean estimate. xk+τ+1 = D 2 z - k+τ [START_REF] Mccarthy | State space modeling of price and volume dependence: evidence from currency futures[END_REF] associated with a covariance matrix S k+τ , for the next day (i.e., the day coming right after the end of the observed window) indexed by k + τ + 1. Note that, though our model will perform prediction on the whole five-dimensional vector, we will particularly be interested in the ability of our model to perform prediction on a single entry of the vector of interest, in practice the adjusted close price.

Observation model for trading. In the case of trading, we will consider a different set of observed inputs. For each k ∈ {0, . . . , K -τ }, we will observe (x j ) k≤j≤k+τ ∈ R 8 , where x j [i], i = 1, . . . , 5 are the same as in the previous case.

Moreover, [x j [START_REF] Pai | A hybrid arima and support vector machines model in stock price forecasting[END_REF], x j [7], x j [8]] ∈ {0, 1} 3 represents the decision "hold", "buy", or "sell", computed daily for each stocks so as to maximize annualized returns.

Soft hot encoded scores are used to represent the retained label, e.g., if the decision "hold" is considered for instance at time j, we will observe x j [6] = 1,

x j [7] = 0 and x j [8] = 0. Here again, our method is able to provide mean and covariance estimates, for the next day. The class label for the next day trading decision will be simply defined as

k+τ +1 = argmax i∈{1,2,3} x k+τ +1 [i + 5], (12) 
using the same notation as in [START_REF] Mccarthy | State space modeling of price and volume dependence: evidence from currency futures[END_REF].

Probabilistic Validation

The probabilistic approach in the Kalman framework provides the distribution of the next observation conditioned to previous data (the so-called predictive distribution of the observations), given by

p(x k |x 1:k-1 ) = N x k ; D 2 z - k , S k (13) 
with x k the observation at time k, S k = D 2 (D 1 P k-1 D 1 + Q) + R, and z - k , P k are defined in Sec. 3.2.1 (see [START_REF] Sarkka | Bayesian Filtering and Smoothing[END_REF]Section 4.3] for more details). We can then evaluate the method in a probabilistic manner by inspecting, for each time step, the probability that we had assigned for the events that finally happen. More precisely, from the Gaussian predictive pdf of the observations in Eq. [START_REF] Shephard | Partial non-Gaussian state space[END_REF] provided by the Kalman filter, let us compute the probability mass function (pmf) p k in the two-dimensional simplex, i.e., 0 ≤ p k [i] ≤ 1, i ∈ {1, 2, 3}, and

3 i=1 p k [i] = 1. The component p k [i]
contains the probability, estimated by the Kalman filter, that the observation x k [i + 5] will be larger than x k [j + 5], with j = {1, 2, 3} \ i. This can be done by marginalizing the first five components on the predictive distribution Eq. ( 13), obtaining the three dimensional marginal predictive distribution p(x k [6 : 8]|x 1:k-1 ) (slightly abusing the notation). Then, for each dimension, we can compute the probability of the Gaussian r.v. being larger than the other two dimensions. This requires the evaluation of an intractable integral, but can be easily approximated with high precision by direct simulation from p(x k [6 : 8]|x 1:k-1 ). In practice, we will use 10 4 samples from a 3-dimensional standard normal, that can be easily recycled for all time steps (by simply coloring and shifting according to the covariance and mean, respectively). Once we have determined p k , we can validate the method by using the standard cross-entropy loss as log-loss = 1

K K k=1 3 i=1 -(L k [i] log(p k [i])), (14) 
where L k ∈ {0, 1} 3 represents the ground truth labels at time k (again using soft hot encoding representation).

Experimental Results

Dataset Description

We consider a dataset obtained from Yahoo finance repository1 comprising of daily stock prices on a period of about 20 years (between 01/01/1998 to 01/10/2019), for 185 stocks, and gathering stocks from developed markets (USA, UK) and developing markets (India and China). The financial markets of the USA and UK are considered the most advanced markets in the world, while the financial markets of India and China are regarded as new emerging markets.

Such a mix of stocks sources is interesting, as the investors are always curious to invest in a blend of advanced markets (i.e., developed markets) and emerging markets (i.e., developing markets) [START_REF] Griffith-Jones | Basel II and developing countries: diversification and portfolio effects[END_REF]. The investments in developed markets promise some fixed good returns, whereas investments in developing markets hold the potential of higher growth and higher risks. Sampling the stock market with varying market scenarios such as keeping a mix of advanced markets (top performers), and developing market (mid performers), also aims at limiting the issue of occurrence of bias in the compared computational models, while testing their robustness to different trends. The diversification helps investors and researchers to explore the market and observe model behaviour at critical points with highly non-stationary data [START_REF] Kumar | Expanding the role of marketing: from customer equity to market capitalization[END_REF].

We will focus on two distinct problems: (i) the forecasting of next day adjusted close price, and (ii) the prediction of the best next day trading decision (among "hold", "buy" and "sell"). In both cases, we observe daily values of five features of each stock, namely its adjusted close price, opening price, low price, high price, and net asset volume. As an illustration, we display in Fig. 2 the evolution of the five observed features, along time, for the symbol 600684.SS.

One can notice that four out the five features (except the net asset volume) are highly correlated, while the net asset volume presents a significantly different evolution. Moreover, the volatility of all features, in particular the adjusted close price we aim at forecasting, can be noticed, thus making the problem quite challenging.

In order to proceed to the trading problem, we also include in the observation vector the ground truth labels that we simply determined using the procedure of [99, Alg.1] aiming at retrospectively maximizing the annualised returns. 

Practical settings 4.2.1. Compared methods

We will apply our RDL method using either the regression model for next day adjusted close price forecasting (i.e., N x = 5) or the classification model for next day trading (i.e., N x = 8), using the models depicted in Sec. 3.3.2. We will make use of the sliding window strategy described in Sec. 3.3.1, for different values for τ . In all the experiments, z0 is initialized as a zero vector, and P 0 , Q and R are set as multiple of identity matrix with scale values 10 -5 , 10 -2 and 10 -2 , respectively. We set N z = 5 for the dimensionality of the hidden state, also corresponding to the number of features considered per observation, as it was observed empirically to yield the best results. Moreover, we will set We perform comparisons with several methods from the field of machine learning and signal processing, namely CNN-TA [START_REF] Sezer | Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach[END_REF], MFNN [START_REF] Long | Deep learning-based feature engineering for stock price movement prediction[END_REF], LSTM [START_REF] Fischer | Deep learning with long short-term memory networks for financial market predictions[END_REF] and ARIMA [START_REF] Ariyo | Stock price prediction using the ARIMA model[END_REF]. Note that those methods are supervised, in the sense that We adopt a "walk-forward" approach, for training ARIMA, CNN-TA, MFNN and LSTM, following the methodology of [START_REF] Sezer | Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach[END_REF]. The strategy is depicted in Fig. 3.

We randomly initialize the weights of benchmark methods, for each stock's training. Since these methods are supervised, a large enough time horizon of data is needed as an input to learn the model weights. Here, we set an horizon of 10 years, which shows a good compromise between model stability and memory requirements. We train the models for 10 years and test for the subsequent 1 year data. Then, we slide by a 1 year horizon, training and testing in the same fashion, and repeating the process until the year 2018. Therefore, in total, 11 years of data (from 2008 to 2018) were used as test data, and have associated prediction results. The training of our proposed RDL approach is done in an online manner, processing the data of a particular window size and then predicting the future time step, in a sliding fashion. This has the major advantage of avoiding the load of very large data, and of providing on-the-fly forecasting results. Let us emphasize that, for the sake of a fair analysis, we evaluate results between RDL and its competitors, for the same 11 years period (2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015)(2016)(2017)(2018).

For the forecasting problem, we compare the proposed RDL with both ARIMA and LSTM. We set up the ARIMA parameters to (p, d, q) = (5, 1, 5) as it was observed to lead to the best practical performance. LSTM has been modified from its original version, in order to perform forecasting instead of classification. We have removed the softmax output layer and include instead a For the trading problem, we compared RDL with CNN-TA, MFNN and LSTM, using their original implementations and settings, described respectively in [START_REF] Sezer | Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach[END_REF], [START_REF] Long | Deep learning-based feature engineering for stock price movement prediction[END_REF] and [START_REF] Fischer | Deep learning with long short-term memory networks for financial market predictions[END_REF]. The performance of the methods will be evaluated considering the empirical performance of the model, i.e., how well the model is able to distinct between the three classes. We will also assess the performance of the models in terms of trading efficiency by measuring and comparing their annualised returns. Finally, we will show how the uncertainty quantification provided by RDL (see Sec. 3.3.3) can be used efficiently to let the trader decide where to invest in the market, and diversify his portfolio.

All presented scores in both problems are averaged on 50 random initializations for all methods. Standard deviations of the scores, over the 50 runs, are also provided in some of our tables.

Software and hardware specifications

Data pre-processing and RDL model simulations are conducted in Python 3.6, equipped with the Sklearn, NumPy packages and pandas libraries. CNN-TA is developed with Keras, while MFNN, LSTM, are developed with PyTorch.

ARIMA simulations are conducted using the statsmodel2 Python library. We will also rely on Sklearn, Ta-lib3 and Ta4j4 libraries for evaluating the quantitative indicators. All the experiments are carried on using a Dell T30, Xeon E3-1225V5 3.3GHz with GeForce GT 730, and Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz 16GB RAM, 200GB HDD, equipped with an Nvidia 1080 8GB and Ubuntu OS.

Numerical results for the forecasting model

We first present the analysis for stock forecasting (regression). We will evaluate the methods in their ability to predict a single feature value, here the daily adjusted close price. The five input features are normalized so that their values range in the same scale, to limit bias towards large values features such as the net asset volume. We analyse the performance of RDL approach for different window size and we compare it with two state of the art methods for stock forecasting, namely LSTM and ARIMA.

Influence of window size

Table 1 displays the performance, in terms of MAE and RMSE, of our RDL method when using different window size τ in the online implementation (see Sec. 3.3.1). We can observe that the performance is improving as the window size increases, until reaching a plateau. This trend is confirmed by Figure 4, which illustrates the forecasting results of RDL for several values of τ , on four representative cases. While it is clear that τ = 5, 10 or 15 may not be sufficient to learn appropriately the model, we can observe that from τ = 25, the forecasting results start getting satisfying. In the further experiments on forecasting, we will set τ = 50, as it leads to a good compromise between time complexity and prediction accuracy. 

Comparison with benchmark models

Table 2 provides the comparative performance of prediction of next day closing price feature when using RDL, LSTM or ARIMA. It is noticeable that RDL outperforms the two benchmark models. It is also very stable, as can be able to provide satisfying results in all the considered examples.

Numerical results for the trading model

We now present the results when focusing on the trading problem, that is the prediction for the decision "hold", "buy" or "sell" for next day. 

Influence of the window size

Table 3 depicts the experimental performance of RDL, while Fig 7 shows

the computational time required to train and test RDL method, on the whole dataset, for different window sizes. As in the forecasting case, the window size plays also plays an important role, as it is essential to analyze the apt window size to produce optimal predictions while preserving a reasonable computational time. The performance tends to improve as the window size increases, since the model incorporates more data. Moreover, the computational time increases when τ increases, but in a reasonable manner. We notice then a stabilization of the performance, from τ = 575. This value will be retained in the upcoming experiments. 

Classification metrics

We present in Fig. 6 the confusion matrices which summarized the classification performance for the 185 stocks by the proposed approach, as well as for the three competitors. First, we see that for all the approaches, the Hold class is better predicted than the two other classes, LSTM getting the best scores over the competitors in terms of false negative. However, LSTM (and to a mild Additionally, in Table 5 we present the computational time required by RDL, for the retained τ = 575, and the benchmark models, to process the whole dataset. As can be seen, neural network models requires a lot of time while training-testing due to their complex architectures and huge amount of data that has to be processed. In contrast, the online training procedure we proposed for our RDL model allows fast processing of the data, in a sliding window fashion. Moreover, the resulting train model is a simple linear SSM, thus less costly to evaluate during testing phase than complex deep networks.

Annualised returns analysis

Investors consider one more parameter while trading for stocks, ie.. annualized returns (AR). AR is a critical factor as it helps the investors to decide the 6 presents the AR results obtained when applying the market simulations strategy from [START_REF] Sezer | Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach[END_REF], to the trading predictions provided by our proposed model and the other benchmark techniques, on 9 randomly selected stocks, as well as the average AR for all stocks. The best-annualized returns are highlighted in bold. One can notice that the proposed method leads to higher returns in averaged during the test period of 10 years when compared to AR obtained using the trading predictions from the deep learning techniques.

Portfolio diversification

Many investment professionals claim that the key to smart trading is "diversification of portfolio" [START_REF] Griffith-Jones | Basel II and developing countries: diversification and portfolio effects[END_REF]. Diversification allows investors to maximize returns by investing in different domains that would react differently in the same market events, thus managing better the risk. Ideally, a diversified portfolio would contain stocks with various levels of market capitalization. Market capitalization refers to the total market value of all outstanding shares [START_REF] Kumar | Expanding the role of marketing: from customer equity to market capitalization[END_REF]. Companies can be divided according to their market capitalization value, into small-cap, mid-cap, large-cap, as we will explain hereafter in detail. a diversified portfolio that includes stocks from the three classes of companies.

Small-cap companies are young and seek to expand aggressively. As comes the growth potential, the risk factor follows in a direct proportion. Small-caps are more volatile and vulnerable to losses during the negative trends (downtime) of the financial market.

Mid-cap is a pooled investment that focuses on including stocks with a middle range of market capitalization. Mid-cap offers investors more enormous growth potential than large-cap stocks, but with less volatility and risk as compared to small-caps.

Large-cap companies are typically large, well established, and financially sound.

Large-cap is the market leader, relatively less volatile, and has a steady riskreturn factor with relatively lower risk compared to mid-cap, small-cap.

As explained in Sec. 3.3.3, the proposed RDL methodology allows to provide through probabilistic quantification, a piece of information that can be used by a knowledgeable practitioner to trade accordingly to have a diversified portfolio.

Such probabilistic validation can help maximize the returns by having a mix of small-cap, mid-cap, large-cap stocks.

We provide in Table 7 the log-loss value (the smaller, the better), computed as described in Sec. 3.3.3, computed for RDL results, for the few stocks of the dataset for which the market capitalization categories were available. 5 The log-loss quantifies the accuracy of the probabilistic predictions of the proposed method, penalizing more the situations where the method assigns a low probability to an event that finally occurs. One can notice that the log-loss value can reach very low value (i.e., good prediction accuracy) when trading the large cap stocks, probably due to the less volatile nature of such stocks. In contrast, the log-loss is in average higher for small caps, as they are highly volatile.

Result Discussion

One importance difference between RDL and the competitors is that our approach is not supervised, in the sense that we do not need to load a long time series to learn the model in a batch manner. Therfore, RDL processes data as it comes and in a sequential manner. This is convenient in terms of memory and processing cost. This perspective helps to explain the good results

of RDL, as it always uses all available information to make a one day ahead prediction, while keeping a low complexity. The challenge for RDL, that we also tackle in this paper, is to adequately learn the linear matrices of the model trained the benchmark models, on each small sliding window, it would be very costly, and most likely with a reduced performance (the models would be overparametrized). Under this perspective, we can consider that RDL deals with a piece-wise linear state-space model with smooth changes of the linear operators (that are estimated over time), while still retaining the linear-Gaussian structure which allows to extract all the benefits of the Kalman filtering/smoothing.

Conclusion

We have proposed a new tool, called RDL, for dynamical modelling and predicting financial time series. Our method has the ability to provide theoretically sought state inference along with uncertainty estimation. It also includes an iterative model estimation mechanism relying on an expectation-minimization methodology. We provide an online version of such estimation method based on a sliding window approach. Results show that our method achieves better results than state-of-the-art models that are tailored for the problems of stock forecasting and stock trading.

The proposed RDL approach relies on a linear state-space model on the observed features, with linear Markovian relationship between two consecutive hidden states. In future work, we aim to come up with a more sophisticated model including non-linear activation functions.
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Figure 2 :

 2 Figure 2: Symbol 600684.SS. (left) Evolution of features adjusted close price, opening price, low price and high price ; (right) Evolution of feature net asset volume.

D 1 =

 1 Id, and will focus on the estimation of D 2 . The entries of the latter matrix are randomly initialised at time 0 from a uniform random distribution on [0, 10 -1 ]. Warm start strategy is used to initialize for the next processed windows, as explained in Sec. 3.3.1. All presented results are averaged on 50 random trials.

Figure 3 :

 3 Figure 3: Sliding walk-forward validation technique used for hyperparameters tuning of benchmark methods.

  fully-connected layer to obtain a one node output. Adam optimizer with learning rate 10 -4 , 200 epochs and batch-size 16 is used to minimize the mean square error (MSE) loss function. The performance are compared in terms of mean absolute error (MAE) and root mean square error (RMSE), on the prediction of the next day adjusted close price, in the test period, averaged over all stocks.

Figure 4 :

 4 Figure 4: Forecasting results of RDL method, using different values for the window size τ : (a) AAPL, (b) ABX, (c) BAC, (d) 600841.SS. We only display here a period of 1000 days for the sake of readibility.

Figure 5 :

 5 Figure 5: Forecasting results of RDL, LSTM and ARIMA models: (a) ALKYLAMINE.BO, (b) ALOKTEXT.BO, (c) SPICEJET.BO, (d) TATASTEEL.NS.

Figure 6 :

 6 Figure 6: Confusion matrices for trading decision.

Figure 7 :

 7 Figure 7: Time for processing the dataset (train and test), in hours, using RDL with different window sizes τ .

  from small time windows (maximum 600 days in our tests), and jointly, perform the forecasting. The efficient learning and prediction tasks are supported by Kalman filter/smoother combined with the EM. The flexibility of RDL, with potentially different linear operators along time (the linear operators are updated from a window to the next one), is beneficial to model non-linear and non-stationary time series. Moreover, the Gaussian linear SSM yields simple updates for the EM, reducing considerably the 'training' time. In contrast, if we

Table 1 :

 1 Forecasting results of RDL for different window size.

	Window τ	MAE RMSE
		5	0.14	13.75
		10	0.13	12.67
		15	0.12	11.97
		25	0.09	11.93
		50	0.05	10.25
		75	0.03	10.14
		100	0.02	10.12
		125	0.02	10.11
	Method	MAE	RMSE
	RDL	0.05 (0.002) 10.25 (0.32)
	ARIMA	1.23 (0.04)	78.6 (1.28)
	LSTM	6.12 (0.02)	297.9 (1.27)

Table 2 :

 2 Comparison of methods for the forecasting problem: mean (standard deviation) of MAE and RMSE scores, over 50 random initializations.

Table 3 :

 3 Classification results of RDL for different window sizes.

  extent, CNN-TA and MFNN) present a large number of false positive for the Hold class. Those methods seem to adopt an over-conservative strategy privileging the Hold class over the others. This contrasts with the results obtained by RDL, which is able to preserve a certain balance among classes. This can be seen in the confusion matrices, by noticing that the maximum values are taken in the diagonal, as it should be expected by a valid classifier. To complete this analysis, we present in Table4other classification metrics, namely recall, precision, and F1 Score of the proposed approach against the three deep learning models. RDL clearly outperforms the competitors, which is consistent with the previous observations. In this trading problem, all methods report rather small standard deviation values. LSTM and CNN-TA appear to be slightly more stable than the other methods. But this is however at the price of very poor classification scores for the classes Sell and Buy.

			Precision			Recall			F1 Score
	Method								
		Hold	Sell	Buy	Hold	Sell	Buy	Hold	Sell	Buy
	RDL	0.88 (0.01)	0.15 (0.01)	0.12 (0.01)	0.45 (0.02)	0.52 (0.01) 0.51 (0.013) 0.59 (0.01)	0.19 (0.016) 0.23 (0.012)
	MFNN	0.79 (0.017) 0.11 (0.017) 0.04 (0.007) 0.47 (0.008) 0.37 (0.011) 0.16 (0.011)	0.58 (0.012)	0.11 (0.008)	0.06 (0.012)
	LSTM	0.84 (0.06)	0.07 (0.016) 0.06 (0.007) 0.89 (0.009) 0.05 (0.007) 0.05 (0.005)	0.86 (0.005) 0.05 (0.0014) 0.05 (0.0034)
	CNN-TA	0.84 (0.008) 0.11 (0.009) 0.09 (0.015) 0.85 (0.007)	0.07 (0.01)	0.10 (0.014)	0.85 (0.008)	0.08 (0.023)	0.09 (0.009)

Table 4 :

 4 Comparison of methods for the trading problem; mean (standard deviation) of Precision, Recall and F1 Score, over 50 random initializations.

Table 5 :

 5 Averaged time over 50 random runs for processing the dataset (train and test), in hours, for RDL and its competitors.monetary gain/loss they are going to incur while investing in the stock. The predictions (buy, sell, hold) provided by the model are then used to carry out the market simulation where a similar virtual environment is created by buying,

selling, and holding the stock as per the predictions. The market simulations are a strategy that mimics the investor/trader who makes trading decisions according to signals from the algorithmic model using real money, which then allows to compute AR. Table

Table 6 :

 6 Annualized Returns

		Stock symbols	Log-Loss
	Small-cap	ALOKTEXT.BO ALKYLAMINE.BO ZEEMEDIA6.BO	1.11 1.22 1.03
		PVP.BO	0.42
		IOC.BO	1.25
	Mid-cap	TATACHEM.BO SPICEJET.BO	0.56 0.47
		BHEL.BO	0.01
		AAPL	0.85
	Large-cap	AMZN HINDZINC.BO ONGC.BO	0.27 1.03 0.007
		SIEMENS.NS	0.001

Table 7 :

 7 Log-loss values provided by RDL, for the stocks with available market capitalization categories.
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