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Stability analysis of time-delay systems

in theparametric space ?

Vukan Turkulov a, Milan R. Rapaić a, Rachid Malti b
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Abstract

This paper presents a novel method for stability analysis of a wide class of linear, time-delay systems (TDS), including retarded
non-neutral ones, as well as those incorporating incommensurate and distributed delays. The proposed method is based on
frequency domain analysis and the application of Rouché’s theorem. Given a parametrized TDS, and some parametric point
for which the number of unstable poles is known, the proposed method is capable of identifying the maximum surrounding
region in the parametric space for which the number of unstable poles remains invariant. First, a procedure for investigating
stability along a line is developed. Then, the results are extended by the application of Hölder’s inequality to investigating
stability within a region. Contrary to existing approaches, the proposed method is uniformly applicable to parameters of
different types (delays, distributed delay limits, time constants, etc.). Efficacy of the proposed method is demonstrated using
illustrative examples.
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1 Introduction

Time delays are effectively used to model a wide range
of physical, economic, social and biological phenomena.
Examples include modeling industrial processes and
their control, epidemic dynamics, operations research
and computer network flows. TDS are linear but infinite-
dimensional, rendering their behavioral analysis more
challenging as compared to their finite-dimensional
counterparts.

1.1 Literature Overview

Stability analysis of TDS has been a flourishing research
field during the last several decades, with numerous ap-
proaches developed for different classes of TDS.

Historically, various analytical stability conditions have
been proposed. Examples of such criteria can be found
in Datko (1978); Su & Liu (1993); Bus lowicz (2008). If
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firstname.lastname@ims-bordeaux.fr (Rachid Malti).

applicable, the main advantage of analytical conditions
is that they often strongly and unambiguously guarantee
stability. However, they are usually quite complex, only
sufficient, or they only apply to TDS of a specific form.
Another important set of existing approaches is based
on finding curves or surfaces in delay parametric space
which delimit regions based on the number of unstable
poles. This is proven to be equivalent to finding points
for which the characteristic function contains at least
one zero on the imaginary axis (Datko (1978); Cooke &
Grossman (1982)). Such approaches have been success-
fully demonstrated for retarded systems with two and
three independent delays (Hale & Huang (1993); Gu,
Niculescu & Chen (2005); Sipahi & Olgac (2005); Gu &
Naghnaeian (2011)), providing interesting and insight-
ful graphical representations of the stability regions. A
similar methodology is utilized in Morărescu, Niculescu
& Gu (2006) to obtain the stability crossing set in a
control problem which includes uncertainties in the de-
lay parameters. Additionally, Sipahi & Delice (2009);
Delice & Sipahi (2010) compute projections of stability-
delimiting surfaces from higher dimensional parametric
spaces onto two or three dimensional parametric spaces.
A simpler problem regarding only one delay has been
similarly treated in Olgac & Sipahi (2002).

A popular time-domain set of approaches uses Lyapunov-
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Krasovskii functionals and Razumikhin theorem to
analyze both delay-dependent and delay-independent
stability of TDS. One benefit of these methods is
their applicability to broad classes of TDS includ-
ing nonlinear ones. The main disadvantages of such
approaches are conservatism and computational com-
plexity. Different chosen functionals and method ex-
tensions/modifications have been studied, yielding dif-
ferent levels of pessimism and computational efficacy
(see for example Fridman (2001); Kharitonov & Zhabko
(2003); Parlakci (2007); Han (2009); Efimov & Fridman
(2020)). Furthermore, interesting approaches targeting
non-linear homogeneous TDS are discussed in Efimov,
Polyakov, Perruquetti & Richard (2015), and a method
that analyzes Lyapunov functions implicitly is proposed
in Polyakov, Efimov, Perruquetti & Richard (2014).

A numerical “frequency-sweeping” framework is pro-
posed in Chen & Latchman (1995), providing necessary
and sufficient conditions for delay-independent stabil-
ity of commensurate and non-commensurate retarded
TDS. The same framework is extended in Niculescu &
Che (1999), providing necessary and sufficient conditions
for the delay-dependent cases as well. More recently, an
improved frequency-sweeping approach has been pre-
sented in Li, Niculescu & Çela (2013, 2015), providing a
framework for solving the complete stability of retarded
systems with commensurate delays. Further improve-
ments have been made in Li, Niculescu & Çela (2017),
proposing an iterative approach which indirectly extends
the framework to incommensurate TDS. The proposed
methodology is effective for determining the number of
unstable poles for an arbitrary parameter point.

Systems containing distributed delays pose different
challenges due to their specific form. Interesting tech-
niques for stability analysis of such systems can be found
in Morărescu, Niculescu & Gu (2007); Gu, Kharitonov
& Chen (2003); Zeng, He, Wu & She (2015).

Many stability analysis methods are built upon
previously-obtained general behavioral analysis of TDS.
Examples of such results can be found in Cooke &
Grossman (1982); Bellman & Cooke (1963); Michiels &
Niculescu (2007).

The high level of activity in the research field of TDS has
also resulted in several monographs which provide good
introductions to the subject and a plethora of stability
analysis methods (Dugard & Verriest (1998); Gu et al.
(2003); Niculescu & Gu (2004); Wu, He & She (2010);
Fridman (2014); Michiels & Niculescu (2014)).

The method presented in this paper can be used to an-
alyze stability with respect to both delay and non-delay
parameters, provided that hypotheses defined in section
2 hold. The strength of the presented method, compared
to various existing methods, can further be described by
a combination of two facts. Firstly, the method presents

necessary and sufficient conditions for stability equiva-
lence, in the sense that it finds the maximum stability
equivalence region around a given starting point. Sec-
ondly, it is applicable to a broad class of TDS, including
retarded, incommensurate and distributed delays.

A simplified methodology, giving stability conditions
along a parametric line in the case of a specific sys-
tem involving two delays, was previously considered in
Turkulov, Rapaić & Malti (2019).

1.2 Paper Outline

The paper is organized as follows: Section 2 defines prob-
lems considered in the remainder of the paper. The main
results of the paper are presented in sections 3 and 4.
Section 3 lays out the theory for extending the stability
along a line, with additional special methods well-suited
for retarded TDS. Section 4 extends the methodology
to analyze stability within a region, again with an addi-
tional specific variant provided for retarded TDS. Both
sections 3 and 4 include examples for retarded and non-
retarded TDS. Finally, section 5 presents a short sum-
mary with several closing comments.

1.3 Notation

The paper utilizes standard mathematical notations.
Symbol s denotes the Laplace variable. Angled brackets
〈·, ·〉 represent the dot product. The p-norm of a vec-
tor x is denoted as ||x||p. The set of non-negative real
numbers is denoted as R+

0 and the set of non-negative
integers by N0. Boundary of set X is denoted ∂X and
the interior of set X is denoted int

(
X
)
. The Bromwich-

Wagner contour enveloping the entire right half of the
complex plane is denoted as C and defined as

C = Ca ∪ Cc
Ca = {s = jω | ω ∈ R}

Cc =

{
s = lim

ρ→∞
ρejϕ

∣∣∣ ϕ ∈ (−π
2
,
π

2

)} (1)

The characteristic function of a linear TDS is denoted as

f : C× T → C, (2)

where T ⊂ (R+
0 )n denotes a parametric space. A para-

metric point is denoted as τ = [τ1, τ2, . . . , τn] ∈ T . The
gradient vector field of f over the parametric space is
denoted as ∇f . NUf (τ ) denotes the number of zeroes
of characteristic function f(s, τ ) with non-negative real
part, where each zero is counted as many times as its
multiplicity.

The set of all parameter points of f(s, τ ) sharing the
same number of zeroes with non-negative real part as a
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starting point τ0 ∈ T is defined as

M#
f (τ0) = {τ ∈ T | NUf (τ ) = NUf (τ0)}. (3)

Define the maximum surrounding stability equivalence
region of τ0,Mf (τ0), as a set of points τ satisfying the
following conditions:

(1) τ ∈M#
f (τ0) ⊂ T

(2) There exists a path P which connects τ0 with τ ,

such that P ⊂ int
(
M#

f (τ0)
)
.

2 Problem definition

Consider a linear TDS with a characteristic function

f = f(s, τ ). (4)

Assuming that for some τ0 ∈ T the number of unstable
poles NUf (τ0) is known, two versions of the problem
are defined:

(P1) Stability equivalence along a line. Find
the maximum segment E ⊂ T along a prede-
fined direction originating from τ0 such that
NUf (τ0) = NUf (τ ),∀τ ∈ E .

(P2) Stability equivalence inside a region. Find
Mf (τ0), representing the maximum surrounding
stability equivalence region surrounding τ0.

Likewise, the paper presents two versions of the method
(line-based and region-based) for solving both of the
aforementioned problems.

For the method to be applicable, the following hypothe-
ses must hold:

(H1) System characteristic function must be holomor-
phic in the closed right half complex-plane and con-
tinuous on the imaginary axis for all τ ∈ T . These
conditions hold for a majority of TDS, but they fail
for most systems with spatially distributed and/or
fractional dynamics.

(H2) The characteristic function must satisfy

lim
ρ→∞

∣∣f(ρejϕ, τA)
∣∣∣∣∣∫ τB

τA 〈∇f(ρejϕ, τ ), dτ 〉
∣∣∣ =∞, (5)

∀τA, τB ∈ T , ∀ϕ ∈ (−π2 ,
π
2 ), where

∫ τB

τA denotes a

line integral along a curve γ connecting points τA

and τB such that γ ⊂ T .

Lemma 1 The hypotheses (H1) and (H2) hold true for
all characteristic functions of the form

f(s, τ ) = sm +

m−1∑
i=0

αi(τ )sie−sβi(τ ) (6)

where p ≥ 1, αi(τ ), βi(τ ) : T → R are differentiable
functions ∀i = 0, 1, · · · ,m − 1 and βi(τ ) ≥ 0 for all
τ ∈ T .

PROOF. Observe that for all ϕ ∈ (−π2 ,
π
2 ) and all

τA ∈ T∣∣f(ρejϕ, τA)
∣∣ =∣∣∣∣∣ρmejmϕ +

m−1∑
i=0

αi(τ
A)e−βi(τ

A)ρejϕρieijϕ

∣∣∣∣∣ ∼ρ→∞ ρm.

(7)

Further, observe that

∇f(s, τ ) = D1(s, τ ) +D2(s, τ ) (8)

D1(s, τ ) =

m−1∑
i=0

sie−sβi(τ )∇αi(τ ) (9)

D2(s, τ ) =

m−1∑
i=0

−si+1e−sβi(τ )αi(τ )∇βi(τ ) (10)

Denominator of (5) is bounded by∣∣∣∣∣
∫ τB

τA

〈∇f(ρejϕ, τ ), dτ 〉

∣∣∣∣∣ ≤ I1 + I2, (11)

Ii =

∫ τB

τA

∣∣〈Di(ρe
jϕ, τ ), dτ 〉

∣∣ , i = 1, 2 (12)

It is not difficult to see that I1 ∼
ρ→∞

ρm−1. For I2, we

have

I2 ≤
m−1∑
i=0

ρi+1

∫ τB

τA

gi(τ )

gi(τ ) =
∣∣∣e−ρ cosϕβi(τ )αi(τ )〈∇βi(τ ), dτ 〉

∣∣∣ . (13)

Applying Mean Value Theorem (MVT) to the integral
of gi(τ ) yields

∫ τB

τA

gi(τ ) = (τA − τB)gi(τ
′) (14)

for some τ ′ ∈ (τA, τB). If gi(τ ) is always zero, the
proof is concluded. Otherwise, if gi(τ ) > 0 for some
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τ ∈ (τA, τB), it holds that gi(τ
′) > 0 and∇βi(τ ′) 6= 0.

Since βi(τ ) is differentiable and non-negative, βi(τ
′) >

0, leading to
lim
ρ→∞

I2 = 0. (15)

Therefore,∣∣∣∣∣
∫ τB

τA

〈∇f(ρejϕ, τ ), dτ 〉

∣∣∣∣∣ ∼ρ→∞ ρm−1, (16)

leading to (5) and concluding the proof. 2

Throughout the paper, special attention will be given to
TDS of retarded type, modeled by

ẋ(t) = A0x(t) +

n′∑
i=1

Aix(t− τ ′i) (17)

where τ ′i ≥ 0, i = 1, · · · , n are the corresponding delays.
Although more specific than (4), such systems still model
a broad class of problems, while their specific form eases
the application of the proposed method and increases its
computational feasibility. The characteristic function of
such systems is given by

f ′(s, τ ′) = det

(
sI −A0 −

n′∑
i=1

Aie
−sτ ′

i

)
. (18)

By substituting the original delay parameters τ ′ with a
derived set of parameters τ , it can straightforwardly be
shown that (18) can be expressed as

f(s, τ ) = f ′(s, τ ′) =

n∑
i=1

Pi(s)e
−sτi , (19)

where Pi are polynomials and n ≥ n′. Expression (19)
is a special case of (6).

Finally, it is important to stress that the stability ad-
dressed in this paper is the exponential stability. A
linear TDS is considered to be exponentially stable if
and only if all zeroes of its characteristic function have
strictly negative real parts. A similar method investi-
gating BIBO stability of fractional non-commensurate
systems subject to perturbations in differentiation or-
ders is proposed in Malti & Rapaić (2017); Rapaić &
Malti (2019).

3 Stability equivalence along a line

In this section, a solution to (P1) is given. Let us char-
acterize variations of τ along a line starting from τ0 by
a single scalar non-negative parameter θ as

τ (θ) = τ0 + θτd, (20)

where τd is an arbitrarily chosen unit direction vector.
Define the starting value of θ as θ0 = 0, corresponding
to τ (0) = τ0. For simplicity, the characteristic function
in this section is expressed as

f(s, τ (θ)) ≡ f(s, θ). (21)

The problem (P1) reduces to finding the maximum value
of θ for which the number of non-negative zeroes of f is
preserved. Such stability-limiting value of θ is defined as

θlim = sup
{
θ′
∣∣∣NUf (τ0) = NUf (τ (θ)),∀θ ∈ [θ0, θ

′)
}
.

(22)

3.1 Sufficient condition

As a first step towards finding θlim, sufficient stability
equivalence condition along a line is provided.

Theorem 2 Let f be defined as in (21) and satisfying
(H1) and (H2). Let θ0 ≥ 0 be an initial point for which
NUf (τ (θ0)) is known, such that f(jω, τ (θ0)) 6= 0,∀ω ∈
R. Let τ (θ) be defined as in (20), and ∆θ = θ−θ0. Then,

NUf (τ (θ0)) = NUf (τ (β)),∀β ∈ [θ0, θ] (23)

holds if

∆θ < min
ω∈R+

0

|f(jω, θ0)|

max
θ0≤β≤θ

∣∣∣∂f
∂θ

(jω, θ = β)
∣∣∣ . (24)

PROOF. Due to (H1), Rouché’s theorem can be ap-
plied to f as

|f(s, θ)− f(s, θ0)| < |f(s, θ0)|,∀s ∈ C ⇒
NUf (τ (θ0)) = NUf (τ (θ)). (25)

Furthermore, the fundamental theorem of calculus can
be applied to (25), resulting in∣∣∣∣∣
∫ θ

θ0

∂f

∂θ
(s, θ = β)dβ

∣∣∣∣∣ < |f(s, θ0)|,∀s ∈ C ⇒

NUf (τ (θ0)) = NUf (τ (θ)). (26)

Due to (H2), inequality (26) holds ∀s ∈ Cc. Taking the
symmetry of f(s, θ) into account, further analysis needs
to be performed only for s = jω, ω ∈ R+

0 . Notice that∣∣∣∣∣
∫ θ

θ0

∂f

∂θ
(jω, θ = β)dβ

∣∣∣∣∣ ≤
∫ θ

θ0

∣∣∣∣∣∂f∂θ (jω, θ = β)

∣∣∣∣∣dβ ≤
(θ − θ0) max

θ0≤β≤θ

∣∣∣∂f
∂θ

(jω, θ = β)
∣∣∣. (27)

4



Introducing the conservative bound (27) to (26) results
in

(θ−θ0) max
θ0≤β≤θ

∣∣∣∂f
∂θ

(jω, θ = β)
∣∣∣ < |f(jω, θ0)|,∀ω ∈ R+

0

⇒ NUf (τ (θ0)) = NUf (τ (θ)). (28)

It can trivially be observed that

m(θ) = (θ − θ0) max
θ0≤β≤θ

∣∣∣∂f
∂θ

(jω, θ = β)
∣∣∣ (29)

is a non-decreasing function with respect to θ. Conse-
quently, if inequality (28) holds for some value of θ, it
also holds for all values of β ∈ [θ0, θ]. Based on that fact
and by introducing ∆θ = θ − θ0, we obtain

∆θ <
|f(jω, θ0)|

max
θ0≤β≤θ

∣∣∣∂f
∂θ

(jω, θ = β)
∣∣∣ ,∀ω ∈ R+

0 ⇒

NUf (τ (θ0)) = NUf (τ (β)),∀β ∈ [θ0, θ]. (30)

Steps smaller than ∆θ retain stability if (30) holds ∀ω ∈
R+

0 . Thus, a valid step limit can be obtained by finding
the minimum of (30) with respect to ω (the worst-case
scenario), resulting in (24) and concluding the proof. 2

3.2 Necessary and sufficient conditions

Under assumptions of Theorem 2, by applying (24), one
can obtain a stability equivalence interval defined by the
endpoint

θ1 = θ0 + ∆θ. (31)

The method can now be applied again, taking previously
obtained value θ1 as the new starting point. Formally,
the method can be iterated a certain number of times

θk+1 = θk + ∆θk, ∀k ∈ N0. (32)

It will be proven that the sequence θk converges to θlim
when θlim exists, and diverges when θlim does not exist.
For the purpose of the following discussion, it is impor-
tant to note that the denominator of (24) is always finite
and positive ∀ω ∈ R.

Lemma 3 Let θlim be defined in (22) and let a sequence
θk be obtained by (32), with increments ∆θk fulfilling
(24). If θlim exists, then θk ≤ θlim,∀k ∈ N0.

PROOF. The lemma is directly satisfied by Theorem 2,
as (24) presents sufficient stability equivalence condition
for each iteration k. 2

Lemma 4 Let θlim be defined in (22) and let a sequence
θk be obtained by (32), with increments ∆θk fulfilling
(24). If lim

k→∞
θk exists, then lim

k→∞
θk = θlim.

PROOF. Proof by contradiction. Assume that
limk→∞ θk converges to some θ# < θlim. As a con-
sequence of Lemma 3, such θ# must be smaller than
θlim. The bare existence of a convergence limit implies
that values ∆θk get arbitrary small as k → ∞. This,
combined with (24) implies that the value of

min
ω
|f(jω, θk)| (33)

becomes arbitrary small as k → ∞ and θ → θ#. How-
ever, it is not possible that (33) becomes arbitrarily small
near θ# because:

(1) Function |f(jω, θ)| is continuous with regards to θ.
(2) By definition (22), θlim is the smallest value of θ ∈

[θ0,∞) for which ∃ω ∈ R such that

|f(jω, θ)| = 0. (34)

Thus, ∃α ∈ R+ and ∃ε ∈ R+ such that

min
ω
|f(jω, θ)| > α, ∀θ ∈ (θ# − ε, θ# + ε), (35)

contradicting the assumption that θk → θ#. In other
words, values of ∆θk cannot be arbitrarily small in the
neighborhood of any θ# < θlim. 2

Lemma 5 Let θlim be defined in (22) and let a sequence
θk be obtained by (32), with increments ∆θk fulfilling
(24). If θk is not strictly increasing, then θlim exists and
∃k0 such that θk = θlim,∀k ≥ k0.

PROOF. From (24), ∆θk ≥ 0, hence the sequence
θk is non-decreasing. Assume that for some k0, θk0 =
θk0+1. From (32) it can be seen that θk0 = θk0+1 if and
only if ∆θk0 = 0. This further implies from (24) that
|f(jω, θk0)| = 0, proving the existence of θlim as de-
fined in (22). From (22) and Lemma 3, the only such
possible value of θk0 is θlim. Furthermore, it can triv-
ially be observed that ∆θk = 0,∀k ≥ k0, implying
θk = θlim,∀k ≥ k0, thus concluding the proof. 2

Combining Lemmas 3-5, the following theorem concern-
ing convergence of (32) can be proven.

Theorem 6 Let θlim be defined in (22) and let a se-
quence θk be obtained by (32), with increments ∆θk ful-
filling (24). If θlim exists, then θk converges to θlim. Oth-
erwise, if θlim does not exist, then θk diverges.
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PROOF. Assume that θlim exists. From (24), the se-
quence θk is non-decreasing. If θk is not strictly increas-
ing, then θk trivially converges to θlim as a consequence
of Lemma 5. Otherwise, θk is strictly increasing. From
Lemma 3, the sequence θk will never overshoot θlim.
Hence, the sequence θk must converge to a value in the
interval [θ0, θlim]. From Lemma 4, the only such a pos-
sible value of convergence is θlim.

On the other hand, assume that θlim does not exist.
Similarly as in Lemma 4, the convergence of non-
decreasing sequence θk would imply that the values of
minω |f(jω, θk)| get arbitrary small as k → ∞. This is
not possible because the non-existence of θlim implies
that ∃α > 0 such that

min
ω
|f(jω, θk)| > α, ∀θ > θ0. (36)

Thus, the steps ∆θk cannot become arbitrarily small,
concluding the proof. 2

Theorem 6 shows that the sequence θk, defined by (32)
and (24), presents necessary and sufficient conditions for
finding the stability limit θlim ≤ ∞.

Implementation issues While it is natural to imple-
ment iterative algorithms on a digital computer, such
implementations introduce issues related to finite preci-
sion and representation of large numbers. If θk is con-
vergent, it is expected, as θk iteratively increases, that
the steps ∆θk start converging towards zero. Since the
algorithm cannot be run indefinitely and the computer
precision is finite, a termination criterion needs to be in-
troduced. The simplest one is to terminate the algorithm
when the step ∆θk becomes smaller than a prescribed
value δ, although more sophisticated termination crite-
ria can be established as well. A similar problem occurs if
θk is divergent, since it might lead to ∆θk > δ, ∀k ∈ N0.
Therefore, the algorithm is also terminated if θk becomes
larger than a prescribed value Θ. Finally, (24) depends
on finding the global minimum of a function. A wrongly
evaluated minimum might lead to an incorrect jump
∆θk, invalidating the results. Thus, care must be taken
when performing the necessary global optimizations in
order to avoid invalid jumps. To that end, a scaling fac-
tor η ∈ (0, 1) could be introduced in in order to scale
down the obtained jumps ∆θk, reducing the likelihood
of invalid results. Taking that into account, the final al-
gorithm is presented as Algorithm 1.

Remark 7 In this section, the stability equivalence has
been extended along a straight line defined by (20). How-
ever, the line can be replaced by any curve parametrized
by a scalar θ, provided that τ (θ0 = 0) = τ0. For example,
one might analyze stability along an arc of an n-sphere.

Require: δ > 0,Θ > 0, θ0 ∈ [0,Θ), η ∈ (0, 1)
θk := θ0
∆θk :=∞
while ∆θk > δ and θk < Θ do

∆θk := ηmin
ω

|f(jω, θk)|

maxθk≤β≤θ
∣∣∣∂f∂θ (jω, θ = β)

∣∣∣
θk := θk + ∆θk
k := k + 1

end while
θlim = θk

Algorithm 1. Computation of θlim

Example 8 Consider a distributed delay system mod-
eled by

ẋ(t) = −
∫ 0

−τ
ekαx(t+ α)dα. (37)

Its stability is investigated with respect to τ and k.

System characteristic function is given by

f(s, τ, k) = s2 + sk + 1− e−τ(s+k), (38)

fulfilling (H1) and (H2). Algorithm 1 is applied to manu-
ally chosen starting points (0.05, 1), (4.9, 0.1), (8, 0.04),
(11.3, 0.08), (14.5, 0.04), (17.5, 0.08), for which the num-
ber of unstable poles, respectively 0, 2, 4, 2, 4, 2, has been
determined using Cauchy’s argument principle. The ob-
tained lines for which the number of unstable poles is
preserved are plotted in figure 1. The algorithm diverges
in the positive (north and east) directions of both axes,
indicating that the stability limit is∞ (Theorem 6). Al-
though applying the algorithm to a plethora of rays gives
a good sketch of stability/instability regions, the result
does not guarantee stability equivalence in a dense set
of (τ, k). This shortcoming is overcome in section 4 by
analyzing stability inside a region. 2

3.3 Application to retarded TDS

Although applicable to a wide class of linear systems, the
proposed algorithm is particularly simple in case of non-
neutral retarded TDS, which characteristic equation is
given by (19). Based on (20), each element of τ can
directly be expressed as

τi = τ0i + θτdi , (39)

which can be plugged into (19), resulting in a character-
istic function of the form

f(s, θ) =

m∑
i=0

fi(s)e
−sθai , (40)
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Fig. 1. Stability analysis of example 8

where m is the system order, ai are real scalars and fi(s)
are complex functions independent of θ. This result is im-
portant because of the convenient form of (40). Namely,
in order to implement the general method (24), evalua-

tion of |f(jω, θ0)| and maxθ0≤β≤θ |
∂f
∂θ (jω, β)| is required.

The former expression is directly evaluated from (40).
For the latter one, observe that

max
θ0≤β≤θ

∣∣∣∂f
∂θ

(jω, θ = β)
∣∣∣ ≤

max
θ0≤β≤θ

n∑
i=0

∣∣∣aijωfi(jω)e−jωaiθ
∣∣∣ =

n∑
i=0

aiω
∣∣fi(jω)|,

(41)

which yields an elegant expression, albeit conservative.
Similarly as before, the conservatism is not problematic;
it only decreases the size of algorithm steps ∆θ, but does
not change its end result. Hence, the following corollary
to Theorem 2 can be formulated.

Corollary 9 Let f be defined as in (19). Let θ0 ≥ 0 be
an initial point for whichNUf (τ (θ0)) is known, such that
f(jω, τ (θ0)) 6= 0,∀ω ∈ R. Let τ (θ) be defined as in (20),
and ∆θ = θ − θ0. Then,

NUf (τ (θ0)) = NUf (τ (β)),∀β ∈ [θ0, θ] (42)

holds if

∆θ ≤ min
ω∈R+

0

|f(jω, θ)|∑n
i=0 aiω|fi(jω)|

, (43)

where fi(s) and ai are parameters resulting from
parametrization of f as in (40).

This corollary allows an easier implementation of Al-
gorithm 1, because the denominator of (43) is already
maximized, as compared to (24). Moreover, the expres-
sion on the right-hand side of (43) is independent of ∆θ,
allowing direct evaluation of a permissible jump. Other
aspects of Algorithm 1, such as the termination crite-
rion, remain unchanged.

As a final note, this specialized version of the method is
not limited to retarded TDS. In fact, it can be applied to
any system that has a characteristic function as in (40).

Example 10 Consider a system with a characteristic
function given by

f(s, τ ) = s2 + 2se−sτ1 + e−sτ2 . (44)

Its stability is investigated with resepct to τ = [τ1, τ2].

Since the system is retarded, the simplified version of
the algorithm (using Corollary 9) is applied. The algo-
rithm is initialized at five different points, namely (0, 0),
(1.75, 1.2), (0.88, 2.73), (0.2, 3.1), (0.71, 3.22), for which
the number of unstable poles, respectively 0, 2, 2, 2, 4, is
determined using the methodology from Li et al. (2017).
The results are displayed on figure 2 and compared to
the stability crossing set (SCS) obtained by Gu et al.
(2005) for verification purposes. 2
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4 Stability equivalence within a region

In this section, a solution to (P2) is given.

4.1 Sufficient condition

Theorem 11 Let f be defined as in (4) and satisfying
(H1) and (H2). Let τ0 ∈ T be any parameter point sat-
isfying f(jω, τ0) 6= 0,∀ω ∈ R. Let p and q be real scalars
satisfying

1

p
+

1

q
= 1, 1 ≤ p, q ≤ ∞. (45)

Then, ∀εq such that

0 < εq < min
ω∈R+

0

|f(jω, τ0)|
max
||v||q<εq

||∇f(jω, τ0 + v)||p
, (46)

the following holds

NUf (τ0) = NUf (τ ),∀τ ∈
{
τ0+v

∣∣∣ ||v||q ≤ εq} .
(47)

PROOF. To build towards the proof, it is beneficial to
start by analyzing stability equivalence of two arbitrary

parameter points. To that end, define a parameter point
τ as

τ (v) = τ0 + v, (48)

where τ0 ∈ T represents a chosen starting point and v
represents a change vector. The objective is to discuss
the stability equivalence of parameter points τ0 = τ (0)
and τ (v). From Rouché’s theorem, it is known that sta-
bility equivalence of these points is guaranteed if

|f(s, τ (v))− f(s, τ (0))| < |f(s, τ (0))|,∀s ∈ C. (49)

For simplicity, f(s, τ (v)) is denoted f(v) in the remain-
der of this section. The LHS of (49) can further be elab-
orated to obtain

|f(v)− f(0)| =

∣∣∣∣∣
∫
γ

〈
∇f(r), dr

〉∣∣∣∣∣ =∣∣∣∣∣
∫ 1

0

〈
∇f(r(β)), r′

〉
dβ

∣∣∣∣∣ ≤
∫ 1

0

∣∣∣∣∣〈∇f(r(β)), r′
〉∣∣∣∣∣dβ,

(50)

where r(β) represents parametrization of curve γ which
connects the 0 vector with v for β ∈ [0, 1] and r′ rep-
resents the derivative of r(β) with respect to β. Intro-
ducing the conservative bound (50) in (49) and utilizing
(H2) and the symmetry of f yields

∫ 1

0

∣∣∣∣∣〈∇f(r(β)), r′
〉∣∣∣∣∣dβ < |f(0)|, s = jω, ∀ω ∈ R+

0 .

(51)
By defining the curve γ as r(β) = βv,

∫ 1

0

∣∣∣∣∣〈∇f(r(β)), r′
〉∣∣∣∣∣dβ =

∫ 1

0

∣∣∣∣∣〈∇f(βv),v
〉∣∣∣∣∣dβ. (52)

The application of Hölder’s inequality further yields

∫ 1

0

∣∣∣∣∣〈∇f(βv),v
〉∣∣∣∣∣dβ ≤

∫ 1

0

||∇f(βv)||p ||v||q dβ.

(53)
The results presented so far guarantee stability equiva-
lence for a specific change vector v. To guarantee stabil-
ity equivalence within a region, choose some εq > 0 and
define W as

W(τ ) =
{

(τ + v) ∈ T
∣∣∣ ||v||q ≤ εq} . (54)

A region of parameter points around τ0 can thus be
defined asW(τ0). The shape of the region is defined by
q, and the size of the region is defined by the value of
εq. Notice that for any v which satisfies ||v||q < εq, it
is possible to substitute (53) with a more conservative

8



0 1 2
τ1

0

1

2

3

τ 2

SCS

Starting points

(p, q) = (1, ∞)

(p, q) = (1.5, 3)

(p, q) = (2, 2)

(p, q) = (4, 4/3)

(p, q) = (9, 1.125)

Fig. 3. Results of applying (56) to example 10

expression

∫ 1

0

||∇f(βv)||p ||v||q dβ ≤ max
||v||q<εq

||∇f(v)||p εq.

(55)
Finally, (51) and (55) imply that a permissible stability
equivalence region defined by εq can be obtained by

εq < min
ω∈R+

0

|f(jω,0)|
max
||v||q<εq

||∇f(jω,v)||p
, (56)

concluding the proof. 2

The application of (56) is analogous to performing a
single step of the line version of the algorithm. Figure (3)
shows the results of applying (56) to example 10, with
different shapes corresponding to different combinations
of (p, q) and different starting points. The number of
unstable poles is equivalent for all the points inside each
individual region.

It remains now to set up a framework for connecting all
the shapes within the maximum surrounding stability
equivalence region around any τ0 ∈ T , namelyMf (τ0).

4.2 Necessary and sufficient conditions

Analogously to the line-based version of the method,
necessary and sufficient conditions are established for
characteristic functions to have the same number of non-
negative zeroes when their parameters vary in a region.
First, choose p and q satisfying (45) and assume that
applying (56) on a parameter point τ yields a stability
equivalence regionW(τ ). Choose a starting point τ 0 and
define a set S0 as

S0 = {τ0}. (57)

Construct a monotonously growing sequence of sets

Sk+1 = Sk ∪
⋃

τ∈∂Sk
W(τ ), ∀k ∈ N0. (58)

It is now established that Sk converges toMf (τ0).

Theorem 12 Let f be defined as in (4) and satisfy-
ing (H1) and (H2). Let p and q be real scalars satisfy-
ing (45). Let τ0 ∈ T be any parameter point satisfying
f(jω, τ0) 6= 0,∀ω ∈ R. Define S0 as in (57), Sk as in
(58), and W(τ ) as in (54), where steps εq satisfy (46).
Then,

lim sup
k→∞

Sk =Mf (τ0). (59)

PROOF. Choose any point τ∗ ∈ Mf (τ0). By defini-
tion ofMf (τ0), there exists a path P defined by a con-
tinuous function g : [0, 1] → P ⊂ int

(
Mf (τ0)

)
such

that g(0) = τ0 and g(1) = τ∗. Define the sequence

mk = max
{
x ∈ [0, 1]

∣∣∣ g(x) ∈ Sk
}
. (60)

For any fixed k, the set Sk is closed and bounded, and
therefore compact. Consequently, the maximum in (60)
is well-defined. Define the sequence τk = g(mk), which
represents the farthest point along the path P (refer-
enced from τ0) such that τk ∈ Sk at iteration k. There
are two possible scenarios:

(1) τk−1 < τ∗, implying τk ∈ ∂Sk. In this scenario,
τk is one of the points on which (58) is evaluated
at iteration k.

(2) τk−1 = τ∗, implying that the endpoint τ∗ has
already been reached.

Let us further analyze scenario (1). Since τk ∈
int
(
Mf (τ0)

)
, it holds that |f(jω, τk)| > 0,∀k ∈

N0,∀ω ≥ 0, further implying that the resulting εq from
(56) is strictly positive ∀k ∈ N0. Consequently, either
mk = 1, or mk < mk+1, meaning that τk gets strictly
closer to τ ∗ along P at each successive iteration unless
τk = τ∗. Thus, ∃k0 such that τ∗ ∈ Sk,∀k ≥ k0.
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Since the same reasoning can be applied to any chosen
point τ∗ ∈Mf (τ0), the proof is concluded. 2

Remark 13 Of course, in any practical implementation
it is impossible to construct the sequence Sk in the de-
scribed manner. Instead, the construction ofSk+1 is based
on a finite set of samples belonging to ∂Sk, which can be
achieved in several ways.

Figure 4 shows the results of applying (58) to example
8. The obtained stability regions are similar regardless
which starting point is chosen in the interior of the rep-
resented regions. 1

4.3 Application to retarded TDS

Analogously to the line version of the method, the con-
venient form of non-neutral retarded TDS characteristic
function given by (19) can be utilized to further simplify
(56). To evaluate ||∇f(jω, τ )||p in (56), it is beneficial
to first find the upper bounds for partial derivatives of f
with regards to each parameter component τi. Assuming
ω ≥ 0, observe that∣∣∣∣ ∂f∂τi (jω, τ )

∣∣∣∣ =

∣∣∣∣− jωPi(jω)e−jωτi
∣∣∣∣ = ω

∣∣∣∣Pi(jω)

∣∣∣∣ (61)

which allows to set a conservative upper bound

||∇f(jω, τ )||p =

(
n∑
i=1

(
ω
∣∣Pi(jω)

∣∣)p) 1
p

(62)

which does not depend on τ !

Corollary 14 Let f be defined as in (19) and let τ0 ∈ T
be any parameter point satisfying f(jω, τ0) 6= 0,∀ω ∈ R.
Let p and q be real scalars satisfying (45). Then, ∀εq such
that

0 < εq ≤ min
ω≥0

|f(jω, τ0)|(∑n
i=1

(
ω|Pi(jω)|

)p) 1
p

, (63)

the following holds

NUf (τ0) = NUf (τ ),∀τ ∈
{
τ0+v

∣∣∣ ||v||q ≤ εq} .
(64)

Figure 5 shows the result of iterative applications of (63)
to example 10.

1 If a starting point is on the boundary of two regions, then
condition f(jω, τ0) 6= 0 is not satisfied and theorems 2, 6,
11 and 12 cannot be applied.

5 Conclusions and discussions

This paper presents a new methodology for analyzing
stability of linear TDS. Necessary and sufficient con-
ditions for expanding the stability equivalence along a
line and inside a region are provided. Special attention
is given to the class of retarded TDS. The effectiveness
of the method is displayed on two examples. Example
8 presents a distributed delay system, the stability of
which is being analyzed with regards to one delay and
one non-delay parameter. To the best of authors’ knowl-
edge, there are no effective methods for analyzing inter-
actions of delay and non-delay parameters, particularly
in the case of distributed TDS. Example 10 presents
a simple retarded TDS with two delays, the results of
which are compared to existing state-of-the-art meth-
ods.

The resulting methods can be used to build a com-
plete framework for iteratively exploring stability re-
gions. There are three general options for building such
a framework:

(1) Utilize only the line-based algorithm. While this
option may provide a good sketch of the stability
region such as the ones shown in figures 1 and 2,
it only guarantees stability on the lines themselves.
This can especially be problematic due to the delay-
interference phenomenon described in Michiels &
Niculescu (2007), although running the algorithm
from a plethora of starting points in various direc-
tions alleviates this issue to a certain extent.

(2) Utilize only the region-based method. This ap-
proach overcomes issues that option (1) suffers
from and is the one used by the authors for obtain-
ing figures 4 and 5.

(3) Combine both line-based and region-based meth-
ods. Benefit of a combined approach is the generally
better performance of the line-based algorithm for
extending stability as much as possible in a certain
direction, while obtaining the generally more favor-
able stability equivalence regions from the region-
based method.
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skim kašnjenjem. In Zbornik radova - 63. Konfer-
encija za elektroniku, telekomunikacije, računarstvo,
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