Vukan Turkulov 
email: vukanturkulov@uns.ac.rs
  
Milan R Rapaić 
email: rapaja@uns.ac.rs
  
Rachid Malti 
  
Stability analysis of time-delay systems in the parametric space

Keywords: Stability, Time-delay systems, Distributed-delay systems

come    

Introduction

Time delays are effectively used to model a wide range of physical, economic, social and biological phenomena. Examples include modeling industrial processes and their control, epidemic dynamics, operations research and computer network flows. TDS are linear but infinitedimensional, rendering their behavioral analysis more challenging as compared to their finite-dimensional counterparts.

Literature Overview

Stability analysis of TDS has been a flourishing research field during the last several decades, with numerous approaches developed for different classes of TDS.

Historically, various analytical stability conditions have been proposed. Examples of such criteria can be found in [START_REF] Datko | A procedure for determination of the exponential stability of certain differential-difference equations[END_REF]; [START_REF] Su | Robust stability for linear uncertain time-delay systems with delay-dependence[END_REF]; Bus lowicz (2008). If applicable, the main advantage of analytical conditions is that they often strongly and unambiguously guarantee stability. However, they are usually quite complex, only sufficient, or they only apply to TDS of a specific form. Another important set of existing approaches is based on finding curves or surfaces in delay parametric space which delimit regions based on the number of unstable poles. This is proven to be equivalent to finding points for which the characteristic function contains at least one zero on the imaginary axis [START_REF] Datko | A procedure for determination of the exponential stability of certain differential-difference equations[END_REF]; [START_REF] Cooke | Discrete delay, distributed delay and stability switches[END_REF]). Such approaches have been successfully demonstrated for retarded systems with two and three independent delays [START_REF] Hale | Global geometry of the stable regions for two delay differential equations[END_REF]; [START_REF] Gu | On stability crossing curves for general systems with two delays[END_REF]; [START_REF] Sipahi | Complete stability robustness of third-order LTI multiple time-delay systems[END_REF]; [START_REF] Gu | Stability crossing set for systems with three delays[END_REF]), providing interesting and insightful graphical representations of the stability regions. A similar methodology is utilized in [START_REF] Morȃrescu | On the geometry of stability regions of Smith predictors subject to delay uncertainty[END_REF] to obtain the stability crossing set in a control problem which includes uncertainties in the delay parameters. Additionally, [START_REF] Sipahi | Extraction of 3D stability switching hypersurfaces of a time delay system with multiple fixed delays[END_REF]; [START_REF] Delice | Advanced clustering with frequency sweeping (ACFS) methodology for the stability analysis of multiple time-delay systems[END_REF] compute projections of stabilitydelimiting surfaces from higher dimensional parametric spaces onto two or three dimensional parametric spaces. A simpler problem regarding only one delay has been similarly treated in [START_REF] Olgac | An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems[END_REF].

A popular time-domain set of approaches uses Lyapunov-Krasovskii functionals and Razumikhin theorem to analyze both delay-dependent and delay-independent stability of TDS. One benefit of these methods is their applicability to broad classes of TDS including nonlinear ones. The main disadvantages of such approaches are conservatism and computational complexity. Different chosen functionals and method extensions/modifications have been studied, yielding different levels of pessimism and computational efficacy (see for example [START_REF] Fridman | New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems[END_REF]; Kharitonov & Zhabko (2003); [START_REF] Parlakci | Stability of retarded time-delay systems: Extensively augmented Lyapunov functional approach[END_REF]; [START_REF] Han | A discrete delay decomposition approach to stability of linear retarded and neutral systems[END_REF]; [START_REF] Efimov | Converse Lyapunov-Krasovskii theorem for ISS of neutral systems in Sobolev spaces[END_REF]). Furthermore, interesting approaches targeting non-linear homogeneous TDS are discussed in Efimov, Polyakov, Perruquetti & Richard (2015), and a method that analyzes Lyapunov functions implicitly is proposed in [START_REF] Polyakov | Implicit Lyapunov-Krasovskii functionals for time delay systems[END_REF].

A numerical "frequency-sweeping" framework is proposed in [START_REF] Chen | Frequency sweeping tests for stability independent of delay[END_REF], providing necessary and sufficient conditions for delay-independent stability of commensurate and non-commensurate retarded TDS. The same framework is extended in [START_REF] Niculescu | Frequency sweeping tests for asymptotic stability: a model transformation for multiple delays[END_REF], providing necessary and sufficient conditions for the delay-dependent cases as well. More recently, an improved frequency-sweeping approach has been presented in [START_REF] Li | Complete stability of linear time-delay systems: A new frequency-sweeping frequency approach[END_REF], 2015), providing a framework for solving the complete stability of retarded systems with commensurate delays. Further improvements have been made in [START_REF] Li | An iterative frequency-sweeping approach for stability analysis of linear systems with multiple delays[END_REF], proposing an iterative approach which indirectly extends the framework to incommensurate TDS. The proposed methodology is effective for determining the number of unstable poles for an arbitrary parameter point.

Systems containing distributed delays pose different challenges due to their specific form. Interesting techniques for stability analysis of such systems can be found in [START_REF] Morȃrescu | Stability crossing curves of shifted gamma-distributed delay systems[END_REF]; [START_REF] Gu | Stability of Time-Delay Systems[END_REF]; [START_REF] Zeng | New results on stability analysis for systems with discrete distributed delay[END_REF].

Many stability analysis methods are built upon previously-obtained general behavioral analysis of TDS. Examples of such results can be found in [START_REF] Cooke | Discrete delay, distributed delay and stability switches[END_REF]; [START_REF] Bellman | Differentialdifference equations[END_REF]; [START_REF] Michiels | Characterization of delay-independent stability and delay interference phenomena[END_REF].

The high level of activity in the research field of TDS has also resulted in several monographs which provide good introductions to the subject and a plethora of stability analysis methods [START_REF] Dugard | Stability and Control of Time-delay Systems[END_REF]; [START_REF] Gu | Stability of Time-Delay Systems[END_REF]; [START_REF] Niculescu | Advances in Time-Delay Systems[END_REF]; [START_REF] Wu | Stability Analysis and Robust Control of Time-Delay Systems[END_REF]; [START_REF] Fridman | Introduction to Time-Delay Systems. Systems & Control: Foundations and Applications[END_REF]; [START_REF] Michiels | Stability, Control, and Computation for Time-Delay Systems, An Eigenvalue-Based Approach[END_REF]).

The method presented in this paper can be used to analyze stability with respect to both delay and non-delay parameters, provided that hypotheses defined in section 2 hold. The strength of the presented method, compared to various existing methods, can further be described by a combination of two facts. Firstly, the method presents necessary and sufficient conditions for stability equivalence, in the sense that it finds the maximum stability equivalence region around a given starting point. Secondly, it is applicable to a broad class of TDS, including retarded, incommensurate and distributed delays.

A simplified methodology, giving stability conditions along a parametric line in the case of a specific system involving two delays, was previously considered in [START_REF] Turkulov | Stabilnost linearnih dinamičkih sistema sa vremenskim kašnjenjem[END_REF].

Paper Outline

The paper is organized as follows: Section 2 defines problems considered in the remainder of the paper. The main results of the paper are presented in sections 3 and 4. Section 3 lays out the theory for extending the stability along a line, with additional special methods well-suited for retarded TDS. Section 4 extends the methodology to analyze stability within a region, again with an additional specific variant provided for retarded TDS. Both sections 3 and 4 include examples for retarded and nonretarded TDS. Finally, section 5 presents a short summary with several closing comments.

Notation

The paper utilizes standard mathematical notations. Symbol s denotes the Laplace variable. Angled brackets

•, • represent the dot product. The p-norm of a vector x is denoted as ||x|| p . The set of non-negative real numbers is denoted as R + 0 and the set of non-negative integers by N 0 . Boundary of set X is denoted ∂X and the interior of set X is denoted int X . The Bromwich-Wagner contour enveloping the entire right half of the complex plane is denoted as C and defined as

C = C a ∪ C c C a = {s = jω | ω ∈ R} C c = s = lim ρ→∞ ρe jϕ ϕ ∈ - π 2 , π 2 
(1)

The characteristic function of a linear TDS is denoted as

f : C × T → C, (2) 
where T ⊂ (R + 0 ) n denotes a parametric space. A parametric point is denoted as τ = [τ 1 , τ 2 , . . . , τ n ] ∈ T . The gradient vector field of f over the parametric space is denoted as ∇f . N U f (τ ) denotes the number of zeroes of characteristic function f (s, τ ) with non-negative real part, where each zero is counted as many times as its multiplicity.

The set of all parameter points of f (s, τ ) sharing the same number of zeroes with non-negative real part as a starting point τ 0 ∈ T is defined as

M # f (τ 0 ) = {τ ∈ T | N U f (τ ) = N U f (τ 0 )}. (3)
Define the maximum surrounding stability equivalence region of τ 0 , M f (τ 0 ), as a set of points τ satisfying the following conditions:

(1) τ ∈ M # f (τ 0 ) ⊂ T (2) There exists a path P which connects τ 0 with τ , such that P ⊂ int M # f (τ 0 ) .

Problem definition

Consider a linear TDS with a characteristic function

f = f (s, τ ). ( 4 
)
Assuming that for some τ 0 ∈ T the number of unstable poles N U f (τ 0 ) is known, two versions of the problem are defined:

(P1) Stability equivalence along a line. Find the maximum segment E ⊂ T along a predefined direction originating from τ 0 such that

N U f (τ 0 ) = N U f (τ ), ∀τ ∈ E. (P2) Stability equivalence inside a region. Find M f (τ 0
), representing the maximum surrounding stability equivalence region surrounding τ 0 .

Likewise, the paper presents two versions of the method (line-based and region-based) for solving both of the aforementioned problems.

For the method to be applicable, the following hypotheses must hold:

(H1) System characteristic function must be holomorphic in the closed right half complex-plane and continuous on the imaginary axis for all τ ∈ T . These conditions hold for a majority of TDS, but they fail for most systems with spatially distributed and/or fractional dynamics. (H2) The characteristic function must satisfy

lim ρ→∞ f (ρe jϕ , τ A ) τ B τ A ∇f (ρe jϕ , τ ), dτ = ∞, (5) ∀τ A , τ B ∈ T , ∀ϕ ∈ (-π 2 , π 2 ), where τ B
τ A denotes a line integral along a curve γ connecting points τ A and τ B such that γ ⊂ T .

Lemma 1 The hypotheses (H1) and (H2) hold true for all characteristic functions of the form

f (s, τ ) = s m + m-1 i=0 α i (τ )s i e -sβi(τ ) (6) where p ≥ 1, α i (τ ), β i (τ ) : T → R are differentiable functions ∀i = 0, 1, • • • , m -1 and β i (τ ) ≥ 0 for all τ ∈ T . PROOF. Observe that for all ϕ ∈ (-π 2 , π 2 ) and all τ A ∈ T f (ρe jϕ , τ A ) = ρ m e jmϕ + m-1 i=0 α i (τ A )e -βi(τ A )ρe jϕ ρ i e ijϕ ∼ ρ→∞ ρ m . (7) 
Further, observe that

∇f (s, τ ) = D 1 (s, τ ) + D 2 (s, τ ) (8) D 1 (s, τ ) = m-1 i=0 s i e -sβi(τ ) ∇α i (τ ) (9) D 2 (s, τ ) = m-1 i=0 -s i+1 e -sβi(τ ) α i (τ )∇β i (τ ) (10) 
Denominator of ( 5) is bounded by

τ B τ A ∇f (ρe jϕ , τ ), dτ ≤ I 1 + I 2 , (11) 
I i = τ B τ A D i (ρe jϕ , τ ), dτ , i = 1, 2 (12) 
It is not difficult to see that

I 1 ∼ ρ→∞ ρ m-1 . For I 2 , we have I 2 ≤ m-1 i=0 ρ i+1 τ B τ A g i (τ ) g i (τ ) = e -ρ cos ϕβi(τ ) α i (τ ) ∇β i (τ ), dτ . ( 13 
)
Applying Mean Value Theorem (MVT) to the integral of g i (τ ) yields

τ B τ A g i (τ ) = (τ A -τ B )g i (τ ) (14) for some τ ∈ (τ A , τ B ). If g i (τ ) is always zero, the proof is concluded. Otherwise, if g i (τ ) > 0 for some τ ∈ (τ A , τ B ), it holds that g i (τ ) > 0 and ∇β i (τ ) = 0. Since β i (τ ) is differentiable and non-negative, β i (τ ) > 0, leading to lim ρ→∞ I 2 = 0. (15)
Therefore,

τ B τ A ∇f (ρe jϕ , τ ), dτ ∼ ρ→∞ ρ m-1 , (16) 
leading to (5) and concluding the proof. 2

Throughout the paper, special attention will be given to TDS of retarded type, modeled by

ẋ(t) = A 0 x(t) + n i=1 A i x(t -τ i ) ( 17 
)
where

τ i ≥ 0, i = 1, • • • , n are the corresponding delays.
Although more specific than (4), such systems still model a broad class of problems, while their specific form eases the application of the proposed method and increases its computational feasibility. The characteristic function of such systems is given by

f (s, τ ) = det sI -A 0 - n i=1 A i e -sτ i . (18) 
By substituting the original delay parameters τ with a derived set of parameters τ , it can straightforwardly be shown that ( 18) can be expressed as

f (s, τ ) = f (s, τ ) = n i=1 P i (s)e -sτi , (19) 
where P i are polynomials and n ≥ n . Expression ( 19) is a special case of (6).

Finally, it is important to stress that the stability addressed in this paper is the exponential stability. A linear TDS is considered to be exponentially stable if and only if all zeroes of its characteristic function have strictly negative real parts. A similar method investigating BIBO stability of fractional non-commensurate systems subject to perturbations in differentiation orders is proposed in [START_REF] Malti | Sufficient stability conditions of fractional systems with perturbed differentiation orders[END_REF]; Rapaić & Malti (2019).

Stability equivalence along a line

In this section, a solution to (P1) is given. Let us characterize variations of τ along a line starting from τ 0 by a single scalar non-negative parameter θ as

τ (θ) = τ 0 + θτ d , (20) 
where τ d is an arbitrarily chosen unit direction vector. Define the starting value of θ as θ 0 = 0, corresponding to τ (0) = τ 0 . For simplicity, the characteristic function in this section is expressed as

f (s, τ (θ)) ≡ f (s, θ). (21) 
The problem (P1) reduces to finding the maximum value of θ for which the number of non-negative zeroes of f is preserved. Such stability-limiting value of θ is defined as

θ lim = sup θ N U f (τ 0 ) = N U f (τ (θ)), ∀θ ∈ [θ 0 , θ ) . ( 22 
)

Sufficient condition

As a first step towards finding θ lim , sufficient stability equivalence condition along a line is provided.

Theorem 2 Let f be defined as in (21) and satisfying (H1) and (H2). Let θ 0 ≥ 0 be an initial point for which

N U f (τ (θ 0 )) is known, such that f (jω, τ (θ 0 )) = 0, ∀ω ∈ R.
Let τ (θ) be defined as in (20), and ∆θ = θ -θ 0 . Then,

N U f (τ (θ 0 )) = N U f (τ (β)), ∀β ∈ [θ 0 , θ] (23) holds if ∆θ < min ω∈R + 0 |f (jω, θ 0 )| max θ0≤β≤θ ∂f ∂θ (jω, θ = β) . (24) 
PROOF. Due to (H1), Rouché's theorem can be applied to f as

|f (s, θ) -f (s, θ 0 )| < |f (s, θ 0 )|, ∀s ∈ C ⇒ N U f (τ (θ 0 )) = N U f (τ (θ)). (25)
Furthermore, the fundamental theorem of calculus can be applied to (25), resulting in

θ θ0 ∂f ∂θ (s, θ = β)dβ < |f (s, θ 0 )|, ∀s ∈ C ⇒ N U f (τ (θ 0 )) = N U f (τ (θ)). ( 26 
)
Due to (H2), inequality (26) holds ∀s ∈ C c . Taking the symmetry of f (s, θ) into account, further analysis needs to be performed only for s = jω, ω ∈ R + 0 . Notice that

θ θ0 ∂f ∂θ (jω, θ = β)dβ ≤ θ θ0 ∂f ∂θ (jω, θ = β) dβ ≤ (θ -θ 0 ) max θ0≤β≤θ ∂f ∂θ (jω, θ = β) . ( 27 
)
Introducing the conservative bound ( 27) to (26) results in

(θ-θ 0 ) max θ0≤β≤θ ∂f ∂θ (jω, θ = β) < |f (jω, θ 0 )|, ∀ω ∈ R + 0 ⇒ N U f (τ (θ 0 )) = N U f (τ (θ)). (28)
It can trivially be observed that

m(θ) = (θ -θ 0 ) max θ0≤β≤θ ∂f ∂θ (jω, θ = β) (29)
is a non-decreasing function with respect to θ. Consequently, if inequality (28) holds for some value of θ, it also holds for all values of β ∈ [θ 0 , θ]. Based on that fact and by introducing ∆θ = θ -θ 0 , we obtain

∆θ < |f (jω, θ 0 )| max θ0≤β≤θ ∂f ∂θ (jω, θ = β) , ∀ω ∈ R + 0 ⇒ N U f (τ (θ 0 )) = N U f (τ (β)), ∀β ∈ [θ 0 , θ]. ( 30 
)
Steps smaller than ∆θ retain stability if (30) holds ∀ω ∈ R + 0 . Thus, a valid step limit can be obtained by finding the minimum of (30) with respect to ω (the worst-case scenario), resulting in (24) and concluding the proof. 2

Necessary and sufficient conditions

Under assumptions of Theorem 2, by applying (24), one can obtain a stability equivalence interval defined by the endpoint

θ 1 = θ 0 + ∆θ. ( 31 
)
The method can now be applied again, taking previously obtained value θ 1 as the new starting point. Formally, the method can be iterated a certain number of times

θ k+1 = θ k + ∆θ k , ∀k ∈ N 0 . (32) 
It will be proven that the sequence θ k converges to θ lim when θ lim exists, and diverges when θ lim does not exist.

For the purpose of the following discussion, it is important to note that the denominator of ( 24) is always finite and positive ∀ω ∈ R. PROOF. Proof by contradiction. Assume that lim k→∞ θ k converges to some θ # < θ lim . As a consequence of Lemma 3, such θ # must be smaller than θ lim . The bare existence of a convergence limit implies that values ∆θ k get arbitrary small as k → ∞. This, combined with (24) implies that the value of

min ω |f (jω, θ k )| ( 33 
)
becomes arbitrary small as k → ∞ and θ → θ # . However, it is not possible that (33) becomes arbitrarily small near θ # because:

(1) Function |f (jω, θ)| is continuous with regards to θ.

(2) By definition ( 22), θ lim is the smallest value of θ ∈

[θ 0 , ∞) for which ∃ω ∈ R such that |f (jω, θ)| = 0. (34) Thus, ∃α ∈ R + and ∃ε ∈ R + such that min ω |f (jω, θ)| > α, ∀θ ∈ (θ # -ε, θ # + ε), (35) 
contradicting the assumption that θ k → θ # . In other words, values of ∆θ k cannot be arbitrarily small in the neighborhood of any θ # < θ lim . 2

Lemma 5 Let θ lim be defined in (22) and let a sequence θ k be obtained by (32), with increments ∆θ k fulfilling (24). If θ k is not strictly increasing, then θ lim exists and ∃k 0 such that θ k = θ lim , ∀k ≥ k 0 .

PROOF. From (24), ∆θ k ≥ 0, hence the sequence θ k is non-decreasing. Assume that for some k 0 , θ k0 = θ k0+1 . From (32) it can be seen that θ k0 = θ k0+1 if and only if ∆θ k0 = 0. This further implies from (24) that |f (jω, θ k0 )| = 0, proving the existence of θ lim as defined in (22). From ( 22) and Lemma 3, the only such possible value of θ k0 is θ lim . Furthermore, it can trivially be observed that ∆θ k = 0, ∀k ≥ k 0 , implying θ k = θ lim , ∀k ≥ k 0 , thus concluding the proof. 2

Combining Lemmas 3-5, the following theorem concerning convergence of (32) can be proven.

Theorem 6 Let θ lim be defined in (22) and let a sequence θ k be obtained by (32), with increments ∆θ k fulfilling (24). If θ lim exists, then θ k converges to θ lim . Otherwise, if θ lim does not exist, then θ k diverges.

PROOF. Assume that θ lim exists. From ( 24), the sequence θ k is non-decreasing. If θ k is not strictly increasing, then θ k trivially converges to θ lim as a consequence of Lemma 5. Otherwise, θ k is strictly increasing. From Lemma 3, the sequence θ k will never overshoot θ lim . Hence, the sequence θ k must converge to a value in the interval [θ 0 , θ lim ]. From Lemma 4, the only such a possible value of convergence is θ lim .

On the other hand, assume that θ lim does not exist.

Similarly as in Lemma 4, the convergence of nondecreasing sequence θ k would imply that the values of min ω |f (jω, θ k )| get arbitrary small as k → ∞. This is not possible because the non-existence of θ lim implies that ∃α > 0 such that

min ω |f (jω, θ k )| > α, ∀θ > θ 0 . (36) 
Thus, the steps ∆θ k cannot become arbitrarily small, concluding the proof. 2

Theorem 6 shows that the sequence θ k , defined by ( 32) and ( 24), presents necessary and sufficient conditions for finding the stability limit θ lim ≤ ∞.

Implementation issues While it is natural to implement iterative algorithms on a digital computer, such implementations introduce issues related to finite precision and representation of large numbers. If θ k is convergent, it is expected, as θ k iteratively increases, that the steps ∆θ k start converging towards zero. Since the algorithm cannot be run indefinitely and the computer precision is finite, a termination criterion needs to be introduced. The simplest one is to terminate the algorithm when the step ∆θ k becomes smaller than a prescribed value δ, although more sophisticated termination criteria can be established as well. A similar problem occurs if θ k is divergent, since it might lead to ∆θ k > δ, ∀k ∈ N 0 . Therefore, the algorithm is also terminated if θ k becomes larger than a prescribed value Θ. Finally, (24) depends on finding the global minimum of a function. A wrongly evaluated minimum might lead to an incorrect jump ∆θ k , invalidating the results. Thus, care must be taken when performing the necessary global optimizations in order to avoid invalid jumps. To that end, a scaling factor η ∈ (0, 1) could be introduced in in order to scale down the obtained jumps ∆θ k , reducing the likelihood of invalid results. Taking that into account, the final algorithm is presented as Algorithm 1.

Remark 7 In this section, the stability equivalence has been extended along a straight line defined by (20). However, the line can be replaced by any curve parametrized by a scalar θ, provided that τ (θ 0 = 0) = τ 0 . For example, one might analyze stability along an arc of an n-sphere.

Require: δ > 0, Θ > 0, θ 0 ∈ [0, Θ), η ∈ (0, 1)

θ k := θ 0 ∆θ k := ∞ while ∆θ k > δ and θ k < Θ do ∆θ k := η min ω |f (jω, θ k )| max θ k ≤β≤θ ∂f ∂θ (jω, θ = β) θ k := θ k + ∆θ k k := k + 1 end while θ lim = θ k Algorithm 1. Computation of θ lim
Example 8 Consider a distributed delay system modeled by

ẋ(t) = - 0 -τ e kα x(t + α)dα. ( 37 
)
Its stability is investigated with respect to τ and k.

System characteristic function is given by

f (s, τ, k) = s 2 + sk + 1 -e -τ (s+k) , (38) 
fulfilling ( H1) and (H2). Algorithm 1 is applied to manually chosen starting points (0.05, 1), (4.9, 0.1), (8, 0.04), (11.3, 0.08), (14.5, 0.04), (17.5, 0.08), for which the number of unstable poles, respectively 0, 2, 4, 2, 4, 2, has been determined using Cauchy's argument principle. The obtained lines for which the number of unstable poles is preserved are plotted in figure 1. The algorithm diverges in the positive (north and east) directions of both axes, indicating that the stability limit is ∞ (Theorem 6). Although applying the algorithm to a plethora of rays gives a good sketch of stability/instability regions, the result does not guarantee stability equivalence in a dense set of (τ, k). This shortcoming is overcome in section 4 by analyzing stability inside a region. 2

Application to retarded TDS

Although applicable to a wide class of linear systems, the proposed algorithm is particularly simple in case of nonneutral retarded TDS, which characteristic equation is given by ( 19). Based on (20), each element of τ can directly be expressed as

τ i = τ 0 i + θτ d i , (39) 
which can be plugged into (19), resulting in a characteristic function of the form where m is the system order, a i are real scalars and f i (s) are complex functions independent of θ. This result is important because of the convenient form of (40). Namely, in order to implement the general method ( 24), evaluation of |f (jω, θ 0 )| and max θ0≤β≤θ | ∂f ∂θ (jω, β)| is required. The former expression is directly evaluated from (40). For the latter one, observe that max

f (s, θ) = m i=0 f i (s)e -sθai , (40) 
k N U f = 0 N U f = 2 N U f = 4 N U f = 2 N U f = 4 N U f = 2
θ0≤β≤θ ∂f ∂θ (jω, θ = β) ≤ max θ0≤β≤θ n i=0 a i jωf i (jω)e -jωaiθ = n i=0 a i ω f i (jω)|, (41) 
which yields an elegant expression, albeit conservative. Similarly as before, the conservatism is not problematic; it only decreases the size of algorithm steps ∆θ, but does not change its end result. Hence, the following corollary to Theorem 2 can be formulated.

Corollary 9 Let f be defined as in (19). Let θ 0 ≥ 0 be an initial point for which

N U f (τ (θ 0 )) is known, such that f (jω, τ (θ 0 )) = 0, ∀ω ∈ R.
Let τ (θ) be defined as in (20), and ∆θ = θ -θ 0 . Then,

N U f (τ (θ 0 )) = N U f (τ (β)), ∀β ∈ [θ 0 , θ] (42) 
holds if

∆θ ≤ min ω∈R + 0 |f (jω, θ)| n i=0 a i ω|f i (jω)| , (43) 
where f i (s) and a i are parameters resulting from parametrization of f as in (40).

This corollary allows an easier implementation of Algorithm 1, because the denominator of ( 43) is already maximized, as compared to (24). Moreover, the expression on the right-hand side of ( 43) is independent of ∆θ, allowing direct evaluation of a permissible jump. Other aspects of Algorithm 1, such as the termination criterion, remain unchanged.

As a final note, this specialized version of the method is not limited to retarded TDS. In fact, it can be applied to any system that has a characteristic function as in (40).

Example 10 Consider a system with a characteristic function given by

f (s, τ ) = s 2 + 2se -sτ1 + e -sτ2 . ( 44 
)
Its stability is investigated with resepct to τ = [τ 1 , τ 2 ].

Since the system is retarded, the simplified version of the algorithm (using Corollary 9) is applied. The algorithm is initialized at five different points, namely (0, 0), (1.75, 1.2), (0.88, 2.73), (0.2, 3.1), (0.71, 3.22), for which the number of unstable poles, respectively 0, 2, 2, 2, 4, is determined using the methodology from [START_REF] Li | An iterative frequency-sweeping approach for stability analysis of linear systems with multiple delays[END_REF].

The results are displayed on figure 2 and compared to the stability crossing set (SCS) obtained by [START_REF] Gu | On stability crossing curves for general systems with two delays[END_REF] for verification purposes. 2 In this section, a solution to (P2) is given.

0 1 2 τ 1 0 1 2 3 τ 2 SCS N U f = 0 N U f = 2 N U f = 2 N U f = 2 N U f = 4

Sufficient condition

Theorem 11 Let f be defined as in (4) and satisfying (H1) and (H2). Let τ 0 ∈ T be any parameter point satisfying f (jω, τ 0 ) = 0, ∀ω ∈ R. Let p and q be real scalars satisfying

1 p + 1 q = 1, 1 ≤ p, q ≤ ∞. (45) 
Then, ∀ε q such that

0 < ε q < min ω∈R + 0 |f (jω, τ 0 )| max ||v||q<εq ||∇f (jω, τ 0 + v)|| p , (46) 
the following holds

N U f (τ 0 ) = N U f (τ ), ∀τ ∈ τ 0 +v ||v|| q ≤ ε q . (47) 
PROOF. To build towards the proof, it is beneficial to start by analyzing stability equivalence of two arbitrary parameter points. To that end, define a parameter point τ as

τ (v) = τ 0 + v, (48) 
where τ 0 ∈ T represents a chosen starting point and v represents a change vector. The objective is to discuss the stability equivalence of parameter points τ 0 = τ (0) and τ (v). From Rouché's theorem, it is known that stability equivalence of these points is guaranteed if

|f (s, τ (v)) -f (s, τ (0))| < |f (s, τ (0))|, ∀s ∈ C. ( 49 
)
For simplicity, f (s, τ (v)) is denoted f (v) in the remainder of this section. The LHS of (49) can further be elaborated to obtain

|f (v) -f (0)| = γ ∇f (r), dr = 1 0 ∇f (r(β)), r dβ ≤ 1 0 ∇f (r(β)), r dβ, (50) 
where r(β) represents parametrization of curve γ which connects the 0 vector with v for β ∈ [0, 1] and r represents the derivative of r(β) with respect to β. Introducing the conservative bound ( 50) in ( 49) and utilizing (H2) and the symmetry of f yields (53) The results presented so far guarantee stability equivalence for a specific change vector v. To guarantee stability equivalence within a region, choose some ε q > 0 and define W as

W(τ ) = (τ + v) ∈ T ||v|| q ≤ ε q .
(54)

A region of parameter points around τ 0 can thus be defined as W(τ 0 ). The shape of the region is defined by q, and the size of the region is defined by the value of ε q . Notice that for any v which satisfies ||v|| q < ε q , it is possible to substitute (53) with a more conservative (55) Finally, ( 51) and ( 55) imply that a permissible stability equivalence region defined by ε q can be obtained by

0 1 2 τ 1 0 1 2 3 τ 2 SCS Starting points (p, q) = (1, ∞) (p, q) = (1.5, 3) (p, q) = (2, 2) (p, q) = (4, 4/3) (p, q) = (9, 1.125)
ε q < min ω∈R + 0 |f (jω, 0)| max ||v||q<εq ||∇f (jω, v)|| p , (56) 
concluding the proof. 2

The application of ( 56) is analogous to performing a single step of the line version of the algorithm. Figure (3) shows the results of applying ( 56) to example 10, with different shapes corresponding to different combinations of (p, q) and different starting points. The number of unstable poles is equivalent for all the points inside each individual region.

It remains now to set up a framework for connecting all the shapes within the maximum surrounding stability equivalence region around any τ 0 ∈ T , namely M f (τ 0 ).

Necessary and sufficient conditions

Analogously to the line-based version of the method, necessary and sufficient conditions are established for characteristic functions to have the same number of nonnegative zeroes when their parameters vary in a region. First, choose p and q satisfying (45) and assume that applying (56) on a parameter point τ yields a stability equivalence region W(τ ). Choose a starting point τ 0 and define a set S 0 as S 0 = {τ 0 }.

Construct a monotonously growing sequence of sets

S k+1 = S k ∪ τ ∈∂S k W(τ ), ∀k ∈ N 0 . (58) 
It is now established that S k converges to M f (τ 0 ).

Theorem 12 Let f be defined as in (4) and satisfying (H1) and (H2). Let p and q be real scalars satisfying (45). Let τ 0 ∈ T be any parameter point satisfying f (jω, τ 0 ) = 0, ∀ω ∈ R. Define S 0 as in (57), S k as in (58), and W(τ ) as in (54), where steps ε q satisfy (46). Then, lim sup

k→∞ S k = M f (τ 0 ). (59) 
PROOF. Choose any point τ * ∈ M f (τ 0 ). By definition of M f (τ 0 ), there exists a path P defined by a continuous function g : [0, 1] → P ⊂ int M f (τ 0 ) such that g(0) = τ 0 and g(1) = τ * . Define the sequence

m k = max x ∈ [0, 1] g(x) ∈ S k . (60) 
For any fixed k, the set S k is closed and bounded, and therefore compact. Consequently, the maximum in ( 60) is well-defined. Define the sequence τ k = g(m k ), which represents the farthest point along the path P (referenced from τ 0 ) such that τ k ∈ S k at iteration k. There are two possible scenarios:

(1) τ k-1 < τ * , implying τ k ∈ ∂S k . In this scenario, τ k is one of the points on which ( 58) is evaluated at iteration k.

(2) τ k-1 = τ * , implying that the endpoint τ * has already been reached.

Let us further analyze scenario (1). Since τ k ∈ int M f (τ 0 ) , it holds that |f (jω, τ k )| > 0, ∀k ∈ N 0 , ∀ω ≥ 0, further implying that the resulting ε q from (56) is strictly positive ∀k ∈ N 0 . Consequently, either m k = 1, or m k < m k+1 , meaning that τ k gets strictly closer to τ * along P at each successive iteration unless τ k = τ * . Thus, ∃k 0 such that τ * ∈ S k , ∀k ≥ k 0 .

Since the same reasoning can be applied to any chosen point τ * ∈ M f (τ 0 ), the proof is concluded. 2

Remark 13 Of course, in any practical implementation it is impossible to construct the sequence S k in the described manner. Instead, the construction of S k+1 is based on a finite set of samples belonging to ∂S k , which can be achieved in several ways.

Figure 4 shows the results of applying ( 58 which does not depend on τ ! Corollary 14 Let f be defined as in (19) and let τ 0 ∈ T be any parameter point satisfying f (jω, τ 0 ) = 0, ∀ω ∈ R.

Let p and q be real scalars satisfying (45). Then, ∀ε q such that 0 < ε q ≤ min 

the following holds N U f (τ 0 ) = N U f (τ ), ∀τ ∈ τ 0 +v ||v|| q ≤ ε q .

(64)

Figure 5 shows the result of iterative applications of (63) to example 10.

Conclusions and discussions

This paper presents a new methodology for analyzing stability of linear TDS. Necessary and sufficient conditions for expanding the stability equivalence along a line and inside a region are provided. Special attention is given to the class of retarded TDS. The effectiveness of the method is displayed on two examples. Example 8 presents a distributed delay system, the stability of which is being analyzed with regards to one delay and one non-delay parameter. To the best of authors' knowledge, there are no effective methods for analyzing interactions of delay and non-delay parameters, particularly in the case of distributed TDS. Example 10 presents a simple retarded TDS with two delays, the results of which are compared to existing state-of-the-art methods.

The resulting methods can be used to build a complete framework for iteratively exploring stability regions. There are three general options for building such a framework:

(1) Utilize only the line-based algorithm. While this option may provide a good sketch of the stability region such as the ones shown in figures 1 and 2, it only guarantees stability on the lines themselves. This can especially be problematic due to the delayinterference phenomenon described in [START_REF] Michiels | Characterization of delay-independent stability and delay interference phenomena[END_REF], although running the algorithm from a plethora of starting points in various directions alleviates this issue to a certain extent. (2) Utilize only the region-based method. This approach overcomes issues that option (1) suffers from and is the one used by the authors for obtaining figures 4 and 5.

(3) Combine both line-based and region-based methods. Benefit of a combined approach is the generally better performance of the line-based algorithm for extending stability as much as possible in a certain direction, while obtaining the generally more favorable stability equivalence regions from the regionbased method. 
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  β)), r dβ < |f (0)|, s = jω, ∀ω ∈ R + 0 .(51) By defining the curve γ as r(β) = βv, ), v dβ. (52)The application of Hölder's inequality further yields1 0 ∇f (βv), v dβ ≤ 1 0 ||∇f (βv)|| p ||v|| q dβ.
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  Lemma 3 Let θ lim be defined in (22) and let a sequence θ k be obtained by (32), with increments ∆θ k fulfilling (24). If θ lim exists, then θ k ≤ θ lim , ∀k ∈ N 0 .Lemma 4 Let θ lim be defined in (22) and let a sequence θ k be obtained by (32), with increments ∆θ k fulfilling (24). If lim

	PROOF. The lemma is directly satisfied by Theorem 2,
	as (24) presents sufficient stability equivalence condition
	for each iteration k. 2

k→∞ θ k exists, then lim k→∞ θ k = θ lim .

  To evaluate ||∇f (jω, τ )|| p in (56), it is beneficial to first find the upper bounds for partial derivatives of f with regards to each parameter component τ i . Assuming ω ≥ 0, observe that ∂f ∂τ

			) to example
	8. The obtained stability regions are similar regardless
	which starting point is chosen in the interior of the rep-
	resented regions. 1		
	4.3 Application to retarded TDS		
	Analogously to the line version of the method, the con-
	venient form of non-neutral retarded TDS characteristic
	function given by (19) can be utilized to further simplify
	(56). n	p	1 p
	ω P i (jω)		(62)
	i=1		

i (jω, τ ) = -jωP i (jω)e -jωτi = ω P i (jω) (61)

which allows to set a conservative upper bound ||∇f (jω, τ )|| p =

If a starting point is on the boundary of two regions, then condition f (jω, τ 0 ) = 0 is not satisfied and theorems

2, 6, 11 and 12 cannot be applied.