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Lattice point of view for argumentation
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The main purpose of this article is to develop a lattice point of view for the study of argumentation framework exten-
sions. We first characterize self-defending sets of an argumentation framework by the closed sets of an implicational
system that can be computed in polynomial time from the argumentation framework. On the other hand, for any
implicational system Σ over the set of arguments, we associate an argumentation framework whose admissible sets
are in bijection with closed sets of Σ. Second, we propose conflict-closed sets reduction rules, based on implicational
system, to find out minimal subsets of vertex cover closed, while maintaining all potential admissible extensions as
well as preferred extensions. Finally, based on a partition of the implicational system of an argumentation frame-
works, we propose polynomial delay and space algorithm to enumerate admissible sets for a bipartite argumentation
framework. This improves the exponential space complexity of previous algorithms.

Keywords: argumentation framework, admissible extensions, lattice, implicational system.

1 Introduction
The argumentation framework proposed by Dung (1995) consists of a set of arguments and an attack
relationship between them, i.e. directed graph. Argumentation is a major subject of research within
Artificial Intelligence and widely used in many fields, such as Logic, Philosophy, and Communication
theory Bench-Capon and Dunne (2007); Rahwan and Simari (2009). In particular, the argumentation
framework introduced by Dung (1995) is a powerful formalism for modeling and deciding argumentation
problems, see Caminada and Amgoud (2007).

The concept of extension plays a key role in Dung’s argumentation frameworks, where an extension
is a set of arguments, which can “survive the conflict together”. The main computational problems in
argumentation framework are related to extensions and it is proved as intractable problems in literature,
see Dunne and Bench-Capon (2001); Dvořák and Dunne (2017); Gaggl et al. (2020); Kröll et al. (2017).

To study abstract solution concept in cooperative game theory, Von Neumann and Morgenstern (2007)
introduced the notion of kernel in directed graphs. The notion of semi-kernel was introduced by Neumann-
Lara (1971). These two notions are in some way equivalent to stable or admissible extensions in argu-
mentation frameworks work Coste-Marquis et al. (2005).

Dung (1995) shows that the families of self-defending sets are closed under union and thus the set of
admissible extensions has a semi-lattice structure. However, the representation of admissible extensions
by a lattice has not been developed in its own.
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The main purpose of this article is to develop a lattice point of view for the study argumentation frame-
work extensions. We first characterize self-defending sets of an argumentation framework by the closed
sets of an implicational system that can be computed in polynomial time. On the other hand, for any impli-
cational system Σ over the set of arguments we construct an argumentation framework whose admissible
sets are in bijection with closed sets of Σ. Second, we propose polynomial delay and space algorithms for
argumentation framework having a nice partition such as bipartite argumentation frameworks. We also
revisit existing algorithms for particular classes of argumentation frameworks (such as even-cycle-free
or bipartite) and explain them in terms of lattices. We hope that this work will bring another view of
argumentation frameworks and vice versa.

2 Preliminaries
All objects considered in this paper are finite.

Argumentation framework. A finite argumentation framework proposed in Dung (1995) as a pair
AF = 〈A,R〉, where A is a set of arguments, andR (attacks) is a binary relation on A, i.e. R ⊆ A×A.
For two arguments x and y, the meaning of (x, y) ∈ R is that x represents an attack against y. An
argumentation framework is conveniently represented by a directed graph AF = (A,R), called an at-
tack graph, in which the vertices represent the arguments and the edges represent the attacks between
arguments.

Given a set of arguments S ofA, we denote by S+, the set of arguments attacked by S, i.e. S+ = {x ∈
A | exists y ∈ S such that (y, x) ∈ R}. Likewise, the set of arguments that attack at least one argument
of S is denoted by S− = {x ∈ A | exists y ∈ S such that (x, y) ∈ R}. We say x ∈ A is an unattacked
argument in AF if and only if x− = ∅. We denote by U = {x ∈ A|x− = ∅} the set of all unattacked
arguments in AF .

An argument x ∈ A is said to be acceptable with respect to a set of arguments S ⊆ A if and only if for
all y ∈ A if (y, x) ∈ R then exists z ∈ S such that (z, y) ∈ R. A set S ⊆ A of arguments is said to be
conflict-free (independent set in the terminology of the graph theory) if and only if S ∩ S+ = ∅. The set
of all conflict-free sets of AF is denoted by CF . A subset S ⊆ A is a vertex cover of AF if and only if
the complement S̄ is a conflict-free set of AF .

The conflict-free subsets of A which are maximal with respect to the set inclusion are called naive
extensions in Bondarenko et al. (1997). A set S ⊆ A is said to be self-defending if and only if S− ⊆ S+.
The set of all self-defending sets of AF is denoted by SD. Using the concepts of conflict-free and
acceptability, Dung (1995) defines several extensions. A conflict-free set S ⊆ A is said to be admissible if
and only if it is self-defending, i.e. S− ⊆ S+. The set of all admissible sets of AF is denoted by ADM .
The admissible subsets of A which are maximal with respect to the set inclusion are called preferred
extensions. The set of all preferred extensions is denoted by PREF . We refer the reader to Baroni et al.
(2011); Dunne et al. (2015) for more discussion on other semantics.
Partial order. A partial order over a set X (or poset), denoted by P = (X,≤), is a binary relation ≤ on
X which is reflexive (for all x ∈ X , x ≤ x), anti-symmetric ( for all x, y ∈ X, if x ≤ y and y ≤ x, then
x = y) and transitive (for all x, y, z ∈ X , if x ≤ y and y ≤ z, then x ≤ z). Two elements x and y of P
are said to be comparable if x ≤ y or y ≤ x, otherwise they are said to be incomparable. An element u
of P is called an upper bound of x and y if x ≤ u and y ≤ u; it is called least upper bound of x and y if
for every upper bound v of x and y, u ≤ v. It is worth noticing that two elements of a poset may or may
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not have a least upper bound. The least upper bound is also known as supremum or join of x and y. The
greatest lower bound is also known as infimum or meet of x and y, is defined dually.
Lattice. A finite lattice is a poset in which every two elements have a least upper bound and a greatest
lower bound. A meet-semilattice (respectively, a join-semilattice) is a poset in which every two elements
have a greatest lower bound (respectively, have a least upper bound). For more detail on lattices, see
Davey and Priestley (2002); Grätzer (2011).
Closure systems and implicational system. A closure system F over a setA is a collection of subsets of
A closed under intersection and containing A. An implicational system (A,Σ) is a set Σ of implications
of form X → Y where X ⊆ A and Y ⊆ A. X is called the premise of X → Y , and Y its conclusion.
The size of Σ is the number of implications in Σ. It is denoted by |Σ|. Without loss of generality, we only
consider implicational system where |Y | = 1. Let Σ = {X1 → x1, ..., Xn → xn} be an implicational
system over a setA and A ⊆ A. The Σ-closure of A, denoted by AΣ, is the smallest set containing A and
satisfying:

for all 1 ≤ j ≤ n, Xj ⊆ AΣ implies xj ∈ AΣ.

The family of sets FΣ = {AΣ, A ⊆ A} is called a closure system (closed under intersection and con-
taining A). The elements of FΣ are called closed sets of Σ. When ordered by inclusion, FΣ is a lattice,
denoted by LΣ = (FΣ,⊆). For more details on implicational system, see Bertet et al. (2018); Wild
(2017).
Enumeration algorithms. An enumeration algorithm for extensions is an algorithm that takes an argu-
mentation framework and lists all its extensions. We distinguish several kind of enumeration algorithms:

An enumeration algorithm is said to be output-polynomial if its running time is in polynomial time in
the sizes of both the input and the output. It is said to be running in incremental-polynomial time if it
moreover outputs the ith solution in a time which is bounded by a polynomial in the size of the input plus
i, for all i. If the running times before the first output, between any two consecutive outputs, and after the
last output, are bounded by a polynomial in the size of the input, then the algorithm is said to be running
with polynomial delay.
Notations. Let AF = 〈A,R〉 be an argumentation framework. The complement of a set F ⊆ A is
denoted by F̄ = A \ F . We denote by Fc the set of complement of elements in F . So SDc is the set of
complement of self-defending sets.

The following example illustrates the notion of extensions and their lattice structure.

Example 1. Let AF = 〈A,R〉 be the argumentation framework corresponding to the attack graph
depicted in Figure 1.

31

2

4

Fig. 1: Attack graph of AF .

The set of all conflict-free sets of AF is CF = {∅, {1}, {2}, {3}, {4}, {1, 4}, {2, 3}, {2, 4}}. The
sets {1, 4}, {2, 3}, and {2, 4} are a naive extensions of AF .



4 Mohammed Elaroussi, Lhouari Nourine, Mohammed Said Radjef

The set of all self-defending sets of AF is SD = {∅, {1}, {2}, {1, 2}, {1, 4}, {2, 3}, {1, 2, 3},
{1, 2, 4}, {1, 2, 3, 4}}.

The set of all admissible sets of AF is ADM = SD ∩ CF = {∅, {1}, {2}, {1, 4}, {2, 3}}. The
two admissible sets {1, 4}, {2, 3} are preferred extensions of AF .

Figure 2 depict the lattice structure of the extensions of AF .
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Fig. 2: From left to right: the lattice of SD, meet-semilattice of CF and meet-semilattice of ADM .

3 Argumentation framework vs implicational system
In this section, we are interested in representing an argumentation framework using implicational systems.
First, we show that an implicational system Σ can be associated to any argumentation framework for which
its self-defending sets are exactly the complement of closed sets of Σ. Then, we give an example of an
implicational system for which there is no argumentation framework having the previous property. We
also show that for any implicational system Σ there always exists an argumentation framework whose
admissible sets are exactly the complement of closed sets of Σ. We are not able to characterize the class
of attack graphs for which its set of admissible sets is a lattice.

3.1 How to associate an implicational system to an argumentation framework
Let AF = 〈A,R〉 be an argumentation framework. We describe a method to associate an implicational
system Σ to the argumentation framework AF . Dung (1995) shows the family SD is closed under union
(i.e. ∀X,Y ∈ SD, X ∪ Y ∈ SD) and contains the empty set, or equivalently SDc is closed under
intersection (i.e. ∀X,Y ∈ SDc, X ∩ Y ∈ SDc) and contains the set A. Thus, SDc is a closure
system for which exists an implicational system Σ(A,R) (Σ for short) whose closed sets are exactly
SDc. Moreover (SDc,⊆) is a lattice.

Consider the implicational system Σ as follows:

Σ = {y− → z | (y, z) ∈ R and (z, y) /∈ R}. (1)
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The meaning of an implication y− → z is that: a self-defending set not containing y− it cannot contain
z. Notice that for any x ∈ U+ we have ∅ → x, i.e. an argument attacked by an unattacked argument
cannot belong to a self-defending set.

The following example illustrates the construction of Σ.

Example 2. Let AF = 〈A,R〉 be the argumentation framework corresponding to the attack graph
depicted in Figure 3(a). The resulting implicational system when applying the Formula 1 is Σ = {∅ −→ 3,

31
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Fig. 3: On the left the attack graph of AF . On the right the corresponding lattice to Σ = {∅ −→ 3, 12 −→ 4}.

12 −→ 4}. The closed sets of Σ is FΣ = SDc = {{3}, {3, 4}, {2, 3}, {1, 3}, {1, 3, 4}, {2, 3, 4},
{1, 2, 3, 4}} and the set of all self-defending sets of AF is SD = Fc

Σ = {∅, {1}, {2}, {2, 4}, {1, 4},
{1, 2}, {1, 2, 4}}. Figure 3(b) shows the lattice LΣ corresponding to Σ = {12 −→ 4, ∅ −→ 3}.

The following theorem shows that the set of all closed sets of Σ is equal to SDc.

Theorem 3.1. Let AF = 〈A,R〉 be an argumentation framework and Σ the implicational system con-
structed from AF using Formula 1. Then FΣ = SDc.

Proof: First, we prove that FΣ ⊆ SDc. Let F ∈ FΣ and suppose that F /∈ SDc. It implies that F̄ /∈ SD.
By definition of SD, we have F̄− * F̄+. Then exist z ∈ F̄ and y ∈ A such that y− ⊆ F and (y, z) ∈ R,
i.e. y attack z. Moreover, z does not attack y. So, by construction of Σ, we have y− → z ∈ Σ. This
contradicts that F ∈ FΣ, since F contains y− and not z.

Second, we prove that SDc ⊆ FΣ. Let F ∈ SDc and assume that F /∈ FΣ. By the construct of Σ there
exist y, z ∈ A such that (y, z) ∈ R, (z, y) /∈ R, y− ⊆ F and z /∈ F . Thus z ∈ F̄ and z is not defended
against y. Hence F̄ /∈ SD.

Now, we give an example of implicational system Σ for which there is no argumentation framework
whose set of all self-defending sets is equal to Fc

Σ. We also show how to associate an argumentation
framework to a given implicational system Σ while its admissible sets are exactly the complement of
closed sets of Σ.

3.2 How to associate an argumentation framework to an implicational system
Consider an implicational system Σ = {Xj → xj , j = 1, ..., n} over a finite set B. First, we provide an
example of implicational system Σ for which there is no argumentation framework satisfying Fc

Σ = SD.
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Proposition 1. Let Σ = {1→ 2, 2→ 1} be an implicational system over the set B = {1, 2}. There is no
argumentation framework AF = 〈A,R〉 satisfying Fc

Σ = SD.

Proof: We have Fc
Σ = {∅, {1, 2}}. Suppose that exists an argumentation framework AF = 〈A,R〉,

satisfying Fc
Σ = SD. Since {1} and {2} are not self-defending, there must exist arguments α1, α2 ∈ A

such that (α1, 1) ∈ R and (α2, 2) ∈ R. Moreover, {1, 2} ∈ SD implies that (1, α2) ∈ R and (2, α1) ∈
R. So α1 and α2 are not in B and thus A \ B 6= ∅. Moreover any non empty subset S ⊆ A \ B is not
self-defending, i.e. (A \ B)− 6⊆ (A \ B)+. Since {1, 2} ⊆ (A \ B)+ then, by definition of SD exist
arguments α, α′ ∈ A \ B such that (α, α′) ∈ R and α− = ∅. This cannot be hold since {α} /∈ SD. We
obtain a contradiction with the fact that SD = Fc

Σ.

On the other hand, for any implicational system Σ, we can always associate an argumentation frame-
work satisfying Fc

Σ = ADM . The idea is that for any implication Xj → xj ∈ Σ we add an extra
argument αj that attacks xj and each argument z ∈ Xj attacks αj . We also add an arc (αj , αj) to avoid
that αj is conflict-free.

The argumentation frameworkAF (Σ) = 〈A,R〉, associated to Σ, is obtained by the following formula.

A = B ∪ {α1, ..., αn},

R =
⋃

Xj→xj∈Σ

(
{(z, αj) | z ∈ Xj} ∪ {(αj , xj), (αj , αj)}

)
. (2)

The following example illustrates the previous construction.

Example 3. Let Σ = {15 −→ 3, 3 −→ 1, 2 −→ 4, 4 −→ 2, ∅ −→ 2} be an implicational system over the
set B = {1, 2, 3, 4, 5}. The attack graph of the argumentation framework AF (Σ) = 〈A,R〉 constructed
from Σ using Formula 2 is given in Figure 4.

2α11

5

3α2

α3

4α4

α5

Fig. 4: The attack graph of AF (Σ).

It is worth noticing that the argumentation framework constructed in Figure 4 does not satisfy Fc
Σ =

SD.
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Theorem 3.2. Let Σ = {Xj → xj , j = 1, ..., n} be an implicational system over a finite set B and
AF (Σ) = 〈A,R〉 the argumentation framework constructed from Σ using Formula 2. ThenADM = Fc

Σ.

Proof: By construction of AF we have B ∈ CF , and an argument xj ∈ B is attacked by αj whenever
exists Xj → xj ∈ Σ. Let F ⊆ B. Then
F̄ ∈ ADM iff F̄ ∈ SD

iff for all Xj → xj ∈ Σ, xj /∈ F̄ or Xj ∩ F̄ 6= ∅
iff for all Xj → xj ∈ Σ, xj ∈ F or Xj 6⊆ F
iff F ∈ FΣ.

4 On the enumeration of extensions
In this section, we focus on the enumeration of all admissible extensions in an argumentation framework
AF = 〈A,R〉. The following proposition gives the lattice point of view of admissible sets:

Proposition 2. Let AF = 〈A,R〉 be an argumentation framework, Σ its associated implication system
and S ⊆ A. Then the following assertions are equivalent:

1. S is an admissible extension of AF ;

2. S is self-defending and conflict-free in AF ;

3. S̄ is a closed set of Σ and S conflict-free in AF ;

4. S̄ is a closed set of Σ and a vertex cover of AF .

Remark 1. Notice that admissible sets ofAF are also known as semi-kernel in a directed graph Neumann-
Lara (1971).

Theorem 4.1. Dimopoulos and Torres (1996) The enumeration of admissible sets cannot be solved in
polynomial time in the size of the input and the output unless P = NP .

The problems of enumerating all admissible and preferred extensions and other extensions in argumen-
tation frameworks have been considered in the literature (see, e.g. Bistarelli et al. (2015); Cerutti et al.
(2018, 2014); Charwat et al. (2015); Nofal et al. (2014)).

However, there are few known tractable classes where both problems can be solved efficiently. When
the argumentation framework AF is symmetric Coste-Marquis et al. (2005), the associated implicational
system is empty and the enumeration of admissible extensions is equivalent to the enumeration of conflict-
free sets of AF . In this case, admissible and preferred extensions can be listed in polynomial delay and
space Johnson et al. (1988).

In the case where the argumentation framework does not contain even-length cycles (even-cycle-free
argumentation framework), the preferred extension is unique Dunne and Bench-Capon (2001), and the
enumeration of admissible sets is equivalent to the enumeration of closed sets of an implicational system
which can be achieved in polynomial delay and space using the Next closure algorithm Ganter (2010).
For bipartite argumentation frameworks, the enumeration of admissible sets can be solved in polynomial
delay and exponential space, whereas the enumeration of preferred extensions is intractable, see Dunne
(2007); Kröll et al. (2017).
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For the enumeration of closed sets of an implicational system, a polynomial delay and space algorithm
(known as Next-closure) is given in Ganter (2010). Thus, according to Theorem 3.1, the set SDc can be
listed in polynomial delay and space algorithm. Hence, the difficulty of enumerating admissible exten-
sions (i.e. SD ∩ CF ) comes from the fact that some self-defending sets of SD (may be exponential) are
not conflict-free. Equivalently, there are closed sets in SDc that are not set covers of the argumentation
frameworkAF . The following section describes some properties that may reduce such closed sets in SDc

that are not vertex covers.

4.1 Conflict-closed sets reduction
We propose conflict-closed sets reduction rules, based on implicational system, to find out minimal sub-
sets of vertex cover closed, while maintaining all potential admissible extensions as well as preferred
extensions. Let AF = 〈A,R〉 be an argumentation framework and Σ its associated implicational system.
We will build an implicational system, denoted by Σr, from Σ such that the size of FΣr is smaller than
the size of FΣ and all admissible sets are preserved, i.e. Fc

Σr
∩CF = ADM . The idea is to delete closed

sets of Σ that are not vertex covers of AF , i.e. those closed sets that its complement contains an edge of
R. The set Σr is obtained from Σ by applying successively the following algorithm:

Conflict reduction algorithm:

(a) Self-Conflict: If (x, x) ∈ R, then add the implication ∅ → x to Σr;

(b) Conflict Type 1: If X → x ∈ Σ, then in Σr replace X → x by the set of implications
{X \ T → z | z ∈ XΣ \ (X ∪ ∅Σ), T = {t ∈ X | {t, z} /∈ CF}};

(c) Conflict Type 2: If X → x ∈ Σ, then in Σr replace the implication X → x by X \ T → x,
where T = {t ∈ X | x ∈ Γ(t)Σ} and Γ(t) = {y ∈ A | {y, t} /∈ CF}.

The following example illustrates the construction of Σr from Σ.

Example 4. Let AF = 〈A,R〉 be the argumentation framework corresponding to the attack graph
depicted in Figure 5. Its associated implicational system is Σ = {4 → 2, 1 → 3, 45 → 3, 18 → 5,
45 → 6, 5 → 7, 6 → 8}. The set of all admissible set of AF is ADM = {∅, {1}, {4}, {2, 4}, {4, 6},
{2, 4, 6}}.

4

1 2 3

5 6 7 8

Fig. 5: Attack graph of AF .

We illustrate the application of the rules of the conflict reduction algorithm.

• Self-Conflict: (5, 5) ∈ R, then the implication ∅ → 5 is added to Σr.
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• Conflict Type 1: 45 → 6 ∈ Σ, {4, 5}Σ \ {4, 5} = {2, 3, 6, 7, 8} and {2, 5} /∈ CF , {3, 5} /∈ CF ,
{6, 5} /∈ CF , {7, 5} /∈ CF , {8, 5} /∈ CF and {8, 4} /∈ CF . Then in Σr the implication 45→ 6 is
replaced by the implications 4→ 2, 4→ 3, 4→ 6, 4→ 7 and ∅ → 8.

• Conflict Type 2: 45→ 3 ∈ Σ and 3 ∈ Γ(4)Σ = {1, 3, 5, 7, 8} and 3 ∈ Γ(5)Σ = {2, 3, 4, 5, 6, 7, 8}.
Then in Σr the implication 45→ 3 is replaced by the implication ∅ → 3.

The constructed implicational system, using our algorithm, is Σr = {4 → 2, 4 → 6, ∅ → 3, ∅ → 5, ∅ →
7, ∅ → 8}. The complement of the closure system FΣr

is Fc
Σr

= {∅, {1}, {4}, {1, 4}, {2, 4}, {4, 6},
{1, 2, 4}, {1, 4, 6}, {2, 4, 6}, {1, 2, 4, 6}}.

Theorem 4.2. Let AF = 〈A,R〉 be an argumentation framework, Σ its associated implication system
and Σr its reduced implicational system. Then ADM ⊆ Fc

Σr
⊆ Fc

Σ.

Proof: To show that Fc
Σr
⊆ Fc

Σ, it suffices to show that FΣr ⊆ FΣ. We proceed by contradiction.
Assume that exists F ∈ FΣr such that F /∈ FΣ. Then exists at least an implication X → x ∈ Σ not
satisfied by F , i.e., X ⊆ F and x /∈ F . By construction of Σr, the implication X → x is replaced by
X \ T → x in Σr (Conflict Type 2). As X ⊆ F , then X \ T ⊆ F . We have X \ T ⊆ F and x /∈ F .
Hence, the implication X \ T → x is not satisfied by F , which is a contradiction.

Now we show that ADM ⊆ Fc
Σr

. As ADM ⊆ Fc
Σ (see, Theorem 3.1) it suffices to show that for all

F ∈ FΣ \ FΣr , F̄ /∈ CF . Let F ∈ FΣ \ FΣr , then there exists at least an implication X → x in Σr such
that X ⊆ F and x /∈ F . By construction of Σr, the implication X → x is added by one of three reduction
rules:

1. Self-Conflict: then X = ∅ and (x, x) ∈ R. As x /∈ F , then x ∈ F̄ . Hence, F̄ /∈ CF ;

2. Conflict Type 1: then there exists T ⊆ A such F satisfied the implication X ∪ T → z ∈ Σ with
x ∈ (X ∪T )Σ \ ((X ∪∅Σ)∪T ) and for all t ∈ T, {t, x} /∈ CF . Since X ⊆ F and x /∈ F , we have
(X ∪ T ) * F and thus T * F . Then exists y ∈ T with y ∈ F̄ . We deduce that F̄ /∈ CF since
{y, x} ⊆ F̄ and {y, x} /∈ CF ;

3. Conflict Type 2: then there exists T ⊆ A such F satisfied the implication X ∪ T → x ∈ Σ with for
all t ∈ T, x ∈ Γ(t)Σ and Γ(t) = {y ∈ A | {y, t} /∈ CF}. As X ⊆ F and x /∈ F then T * F and
for all t ∈ T,Γ(t) * F . Thus exist x′, y′ ∈ F̄ such that x′ ∈ T and y′ ∈ Γ(x′). We deduce that
F̄ /∈ CF since {x′, y′} /∈ CF .

Consequently, if F ∈ FΣ \ FΣr
, then F̄ /∈ CF and thus ADM ⊆ Fc

Σr
.

It is worth noticing that the closure system of the implicational system constructed by the previous
algorithm is not minimal as shown in Example 5.

Example 5. Let AF = 〈A,R〉 be the argumentation framework corresponding to the attack graph
depicted in Figure 6, and Σ = {1 → 3, 347 → 6} its associated implicational system. The constructed
implicational system by the conflict reduction algorithm is equal to Σ. Let Σ′ = {1 → 3, 47 → 6} be
another implicational system associated to AF . By construction it is clear that FΣ′ ⊆ FΣ. Therefore, the
size of FΣ′ is less than the size of FΣ. Now, let us show that Fc

Σ′ ∩ CF = ADM . It suffices to show that
if F ∈ FΣ and F /∈ FΣ′ then F̄ /∈ CF . Let F ∈ FΣ and suppose that F /∈ FΣ′ . Then, F does not satisfy
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321

4

5 6

7

Fig. 6: Attack graph of AF .

the implication 47 → 6, i.e. {4, 7} ⊆ F and 6 /∈ F . We have F ∈ FΣ, 347 → 6 ∈ Σ, {4, 7} ⊆ F and
6 /∈ F then 3 /∈ F . Since F ∈ FΣ, 1 → 3 ∈ Σ and 3 /∈ F , then 1 /∈ F . As a result {1, 3, 6} ∩ F = ∅.
Thus, {1, 3, 6} ⊆ F̄ and as {1, 6} /∈ CF , then F̄ /∈ CF . We deduce that Fc

Σ′ ∩ CF = ADM and
hence the closure system of the implicational system constructed by the conflict reduction algorithm is not
minimal.

The conflict reduction algorithm reduces the number of closed sets of Σ that are not vertex covers by
adding implications. One would ask the following question: is there a Σr such that Fc

Σr
= ADM?

The answer to this question is not always positive. Since ADM is not closed under union in general,
as shown in Example 6 or equivalently ADM c is not closed under intersection. Therefore, the set of all
admissible sets cannot be encoded by an implicational system.

Example 6. The set of all admissible sets of the argumentation framework depicted in Figure 6 is
ADM = {∅, {1}, {2}, {4}, {5}, {7}, {1, 4}, {1, 5}, {1, 7}, {1, 3}, {2, 4}, {2, 5}, {2, 7}, {4, 6}, {6, 7},
{2, 4, 6}, {2, 6, 7}, {1, 3, 7}, {1, 3, 4}}. Observe that {1}, {2} ∈ ADM but {1}∪{2} = {1, 2} /∈ ADM
which prove that ADM is not closed under union in general.

Now, we give a characterization of argumentation frameworks for which Fc
Σr

= ADM , or all self-
defending sets are admissible.

Theorem 4.3. An argumentation framework satisfies Fc
Σr

= ADM if and only if A \ ∅Σr ∈ CF .

Proof: Let us prove the necessary condition. Suppose thatFc
Σr

= ADM . We have by definitionADM ⊆
CF , then Fc

Σr
⊆ CF . And as A \ ∅Σr ∈ Fc

Σr
, then it is conflict-free.

Now we prove the sufficient condition. It is clear that ∅Σr is the unique minimal closed set in FΣr
thus

its complementA\∅Σr is the unique maximal closed set inFc
Σr

. Therefore, for all F ∈ Fc
Σr
, F ⊆ A\∅Σr .

Suppose that A \ ∅Σr ∈ CF , then for all F ∈ Fc
Σr
, F ∈ CF . Thus, Fc

Σr
⊆ CF . By Theorem 4.2,

Fc
Σr

= ADM .

Notice that if Fc
Σr

= ADM then the set ADM ordered under inclusion is a lattice. But to check if
ADM ordered under inclusion is a lattice is equivalent to check if there is a unique preferred extension
which has been shown coNP-complete Dvořák and Dunne (2017).

Theorem 4.4. Dvořák and Dunne (2017) It is coNP-complete to check if the set of all admissible sets of
an argumentation framework ordered under inclusion is lattice.

The even-cycle-free argumentation frameworks satisfies the property Fc
Σr

= ADM .

Definition 1. An argumentation framework AF = 〈A,R〉 is said to be an even-cycle-free argumentation
framework if it does not contain even-length cycles.
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Theorem 4.5. If AF = 〈A,R〉 is an even-cycle-free argumentation framework, then the reduced Σr

satisfies Fc
Σr

= ADM .

Proof: Let F ∈ Fc
Σr

by Theorem 4.2 and Theorem 3.1 F ∈ SD. Suppose that F /∈ CF . By definition
of CF , there exist x1, y1 ∈ F such that (x1, y1) ∈ R. Since AF is an argumentation framework without
even-length cycles, then the case (y1, x1) ∈ R does not hold, and so, F being a self-defending set must
be some y2 ∈ F such that (y2, x1) ∈ R. By reasoning similarly for x1, there exists some x2 ∈ F such
that (x2, y2) ∈ R. Repeating this process, we identify a path P = xkyk...x1y1. As AF is finite, then
the path P must be finite with an unattacked argument or xk = y1, i.e. P is an odd-cycle. If P be
finite with an unattacked argument, then there exists in F an argument attacked by unattacked argument,
a contradiction with the fact that F is a self-defending set. Thus, P is an odd-cycle. It is thus clear that for
all i ∈ {1, ..., k}, F \ xi /∈ SD and F \ yi /∈ SD. As Fc

Σ = SD (see, Theorem 3.1) this implies that for
all i ∈ {1, ..., k}, F \xi /∈ Fc

Σ and F \ yi /∈ Fc
Σ. Then, for all i ∈ {1, ..., k}, {xi}Σ = P . By construction

of Σr, the implications ∅ → yi, with i = 1, ..., k, belong to Σr. This contradicts the fact that F ∈ Fc
Σr

.
We deduce the proof.

Remark 2. The idea of the proof of Theorem 4.5 comes from the proof in Dunne and Bench-Capon (2001).

It is worth noticing that whenever Fc
Σr

= ADM , the set of all admissible sets ordered under inclusion
is a lattice containing a unique maximal element which corresponds to a unique preferred extension.

In fact, there are argumentation frameworks satisfying Fc
Σr

= ADM , but are not even-cycle-free as
shown in Example 7.

Example 7. Let AF = 〈A,R〉 be the argumentation framework corresponding to the attack graph
depicted in Figure 7. The set of all admissible sets of AF is ADM = {∅, {1}, {1, 3, 5, 7}} and its
associated implicational system is Σ = {12→ 3, 67→ 3, 28→ 4, 3→ 5, 4→ 6, 58→ 7, 6→ 8}. The

321 4 5

678

Fig. 7: Attack graph of AF .

constructed implicational system by the conflict reduction algorithm is Σr = { ∅ → 2, ∅ → 4, ∅ → 6,
∅ → 8, 1 → 3, 1 → 5, 1 → 7, 3 → 5, 3 → 7, 5 → 3, 5 → 7, 7 → 3, 7 → 5, 67 → 3}. The complement
of FΣr

is Fc
Σr

= {∅, {1}, {1, 3, 5, 7}} = ADM . Observe that Fc
Σr

= ADM despite the fact that AF is
not even-cycle-free argumentation framework.

As a consequence, there is polynomial delay and space algorithm to enumerate the set of all admissible
extensions for argumentation frameworks satisfying Fc

Σr
= ADM . This can be achieved using the

algorithm for enumerating closed sets of Σ in Ganter (2010).
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Theorem 4.6. The problem of enumerating all admissible extensions can be solved in polynomial delay
and space for AF = 〈A,R〉 with Fc

Σr
= ADM .

4.2 Decomposition of argumentation framework

In this section, we are interested in decomposing an argumentation framework into smaller ones, and
show how to enumerate admissible sets from the smaller ones. Consider an argumentation framework
AF = 〈A,R〉 and its associated implicational system Σ.

Definition 2. A Σ-partition is a partition of the set of arguments A into sets A1 and A2 (i.e. A1 ∪ A2 =
A and A1 ∩ A2 = ∅) such that ΣA1

∪ ΣA2
= Σ, where ΣAi

= {X → x ∈ Σ | X ∪ {x} ⊆ Ai} for
i ∈ {1, 2} are disjoint.

We use ADM [A1] and ADM [A2] to denote the set of admissible sets included in A1 and A2 respec-
tively.

The following example illustrates a Σ-partition of an argumentation framework and its set of admissible
sets.

Example 8. Consider the argumentation framework depicted in Figure 8(a) and its associated implica-
tional system Σ = {156→ 3, 25→ 3, 25→ 4, 156→ 4, ∅ → 6, 7 10→ 9}.

1

2

5

63

4 7

8 9

10

(a)

123 124 279

12
79

28
27

1 2 8 7

∅
(b)

Fig. 8: (a) A partition of the argumentation framework into {A1 = {1, 2, 3, 4, 5, 6}, A2 = {7, 8, 9, 10}}; (b): black
dots stand for the admissible sets ADM [A1]; gray dots stand for the admissible sets ADM [A2]; and the uncoloured
ones stand for the admissible sets F1 ∪ F2 such that F1 ∈ ADM [A1] and F2 ∈ ADM [A2].
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Consider the partition A1 = {1, 2, 3, 4, 5, 6} and A2 = {7, 8, 9, 10} and their associated implicational
systems ΣA1

= {156→ 3, 25→ 3, 25→ 4, 156→ 4, ∅ → 6} and ΣA2
= {7 10→ 9}.

We have ADM [A1] = {∅, {1}, {2}, {1, 2}, {1, 2, 3}, {1, 2, 4} } and ADM [A2] = {∅, {7}, {8}, {7, 9}}.
Figure 8(b) depicts the meet-semilattice of the set of all admissible sets.

Given a Σ-partition of an argumentation framework AF , we give a characterization of the set of all
admissible sets of AF .

Theorem 4.7. Let AF = 〈A,R〉 be an argumentation framework and {A1, A2} a Σ-partition of A.
Then a subset F ∈ ADM if and only if there exist F1 ∈ ADM [A1] and F2 ∈ ADM [A2], such that
F1 ∪ F2 = F ∈ CF .

Proof: Suppose that F ∈ ADM and F1 = F ∩A1 and F2 = F ∩A2. Then, by definition, F ∈ CF , and
by Theorem 3.1, F ∈ Fc

Σ. Without loss of generality, we show that F1 ∈ ADM [A1]. Clearly, F1 ∈ CF
since F ∈ CF . We prove that F̄1 ∈ FΣA1

by contradiction. Suppose that F̄1 /∈ FΣA1
. So there is an

implication X → x ∈ ΣA1 such that X ⊆ F̄1 ⊆ A1, x ∈ A1 and x /∈ F̄1. Since F̄ ∩ A1 = F̄1 and
F̄ ∈ FΣA1

, we haveX ⊆ F̄ and x ∈ F̄ . Therefore, x /∈ F and x /∈ F1 and thus x ∈ F̄1 which contradicts
the hypothesis.

Now suppose that F ∈ CF,F1 ∈ ADM [A1] and F2 ∈ ADM [A2]. It suffices to prove that F ∈ Fc
Σ

since F ∈ CF . Let X → x ∈ Σ and X ⊆ F̄ , and since ΣA1
and ΣA2

is a partition of Σ, we suppose that
X → x ∈ ΣA1 . Since F1 ∈ ADM [A1] and X ⊆ F̄1, then F̄1 ∈ FΣ, and thus x ∈ F̄1. Therefore, x ∈ F1

and x /∈ F . We conclude that x ∈ F̄ which shows that F̄ ∈ FΣ and thus F ∈ ADM .

Now, we describe an algorithm to enumerate the admissible sets of an argumentation having a Σ-
partition {A1, A2} as follows: first we enumerate the admissible sets of ADM [A2] (According to Theo-
rem 4.7, ADM [A2] corresponds to F1 = ∅). Then, for each non-empty admissible sets F1 ∈ ADM [A1]
and F2 ∈ ADM [A2] output F1 ∪ F2 only if F1 ∪ F2 ∈ CF .

Theorem 4.8. Let AF = 〈A,R〉 be an argumentation framework and {A1, A2} a Σ-partition of A. If
there are polynomial delay and polynomial space algorithms to enumerate ADM [A1] and ADM [A2],
then there is an incremental polynomial time and polynomial space algorithm to enumerate all admissible
sets of AF .

Proof: We first enumerate the admissible sets of ΣA2
corresponding to F1 = ∅ in polynomial delay.

Now, we enumerate ADM [A1] in polynomial delay, and for each F1 ∈ ADM [A1] such that F1 6= ∅, we
re-executed the algorithm to enumerate all admissible sets in ADM [A2]. For each F2 ∈ ADM [A2] we
check if F1 ∪ F2 ∈ CF . So the total time spent for each F1 ∈ ADM [A1] is bounded by a polynomial
in the size of ADM [A2] which is less than the number of admissible sets already outputted. It is worth
noticing that F1 will be outputted since ∅ ∈ ADM [A2], i.e. the output is increasing.

Since the algorithms to enumerate ADM [A1] and ADM [A2] use polynomial space, the proposed
algorithm do not use extra space.

The strategy described before does not lead to a polynomial delay and space algorithm to enumerate all
admissible sets of such argumentation framework. Indeed, for each admissible set of ΣA1

, we enumerate
all admissible sets of ΣA2

, while many of them fail to be conflict-free. Note that a subset of arguments
S ⊆ A is said to be an admissible set of Σ if and only if S is conflict-free in AF and S̄ is a closed set
of Σ. In the following, we describe a strategy similar to the one given by Kröll et al. (2017) to enumerate
admissible sets of bipartite argumentation frameworks.
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Let F1 ∈ ADM [A1]. We denote by M(F1) = {x ∈ A2 | for all y ∈ F1, {x, y} ∈ CF} the subset of
A2 containing all arguments that have no conflict with F1. It is easy to observe that M is a conflict-free
set whenever A2 is. But, in general the set is not conflict-free as illustrated by the following example.

Example 9. Continuing with Example 8. Consider F1 = ∅ ∈ ADM [A1]. Then M(∅) = A2 which is not
conflict-free as (7, 8) ∈ R.

We denote by Σ(F1) = {M(F1) ∩ X → x | X → x ∈ ΣA2 and x ∈ M(F1)} the projection of the
implicational system ΣA2

over the set M(F1).

Proposition 3. Let F1 ∈ ADM [A1] and F2 ⊆ M(F1). Then, F1 ∪ F2 ∈ ADM if and only if F2 is an
admissible set of Σ(F1).

Proof: Let F1 ∈ ADM [A1] and F2 ⊆ M(F1). Suppose that F1 ∪ F2 ∈ ADM . Since F2 ∈ CF , it
suffices to show that M(F1) \ F2 is closed by Σ(F1). Let X → x ∈ Σ(F1) such that X ⊆ M(F1) \ F2.
By construction of Σ(F1) there exists an implication Y → x ∈ ΣA2

such that X = Y ∩M(F1). Since
Y ⊆ A2, we have Y ⊆ A2 \ F2 and thus x ∈ A2 \ F2. Moreover by construction of Σ(F1), x ∈ M(F1)
and thus x ∈M(F1) \ F2. Hence, F2 is closed by Σ(F1).

Conversely, suppose that F2 is an admissible set of Σ(F1). Then F2 ∈ CF , and by construction of
M(F1), we have F1∪F2 ∈ CF . According to Theorem 4.7, it suffices to show that F2 ∈ ADM [A2]. We
prove that A2 \ F2 is closed by ΣA2

. Let Y → x ∈ ΣA2
such that Y ⊆ A2 \ F2. As F2 ⊆M(F1) ⊆ A2,

then X = Y ∩M(F1) ⊆ M(F1) \ F2 and by construction of Σ(F1), X ∩M(F1)→ x ∈ Σ(F1). Since
M(F1) \ F2 is closed by Σ(F1), we have x ∈ M(F1) \ F2. Therefore, x ∈ A2 \ F2 which shows that
A2 \ F2 is closed by ΣA2

. We conclude that F2 ∈ ADM [A2] since F2 ∈ CF .

According to Proposition 3, if the admissible sets of Σ(F1) can be enumerated in polynomial delay and
space for every admissible set F1 ∈ ADM [A1], then there is a polynomial delay and space algorithm
to enumerate all admissible sets of Σ. In the following, we consider cases for which the enumeration of
admissible sets can be done in polynomial delay and space.

In the rest of this section, we consider the case, where A2 is a conflict-free set. We show that ADM
can be obtained by copy of intervals of ADM [A2].

Proposition 4. Dunne et al. (2013) Let F1 ∈ ADM [A1] such that M(F1) is conflict-free. Then, there
exists a unique maximal admissible set F ∗2 of Σ(F1), and for any F2 such that M(F1) \ F2 is closed by
Σ(F1), we have F1 ∪ F2 ∈ ADM .

Proof: Let F1 ∈ ADM [A1] such thatM(F1) is conflict-free. We first show thatM(F1) contains a unique
maximal admissible set F ∗2 of Σ(F1). Since M(F1) is conflict-free, we only show that M(F1) \ F ∗2
is the minimal closed set of Σ(F1). Clearly, the smallest closed set corresponds to ∅Σ(F1) and, thus,
F ∗2 = M(F1) \ ∅Σ(F1) is the maximal admissible set.

Now let F2 such that M(F1) \ F2 is closed by Σ(F1). Since F2 ⊆M(F1), then F2 is conflict-free and
hence F2 is an admissible set of Σ(F1). Using Proposition 3, we deduce that F1 ∪ F2 ∈ ADM .

Let F1 ∈ ADM [A1] and F ∗2 be the maximal admissible set of Σ(F1) such that F1 ∪ F ∗2 ∈ ADM (see
Proposition 4). We denote by [F1, F1 ∪F ∗2 ] the set of all admissible sets of Σ(F1) augmented by F1. The
following theorem shows that the set ADM can be obtained from ADM [A2] by duplication of intervals.
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Theorem 4.9. Let AF = 〈A,R〉 be an argumentation framework and {A1, A2} a Σ-partition of A such
that A2 is conflict-free. Then ADM =

⋃
F1∈ADM [A1][F1, F1 ∪ F ∗2 ] where F ∗2 is the maximal admissible

set of Σ(F1).

Proof: Clearly for any F1 ∈ ADM [A1] we have [F1, F1 ∪ F ∗2 ] ⊆ ADM . So it suffices to show that any
F ∈ ADM that contains exactly F1 (i.e. F∩A1 = F1) belongs to [F1, F1∪F ∗2 ]. Let F ∈ ADM such that
F ∩A1 = F1 and F ∩A2 = F2. Then, by Theorem 4.7, we have F1 ∈ ADM [A1] and F2 ∈ ADM [A2].
Since F is conflict-free, then F2 ⊆M(F1) ⊆ A2. By the hypothesis, A2 is conflict-free and thus M(F1)
is conflict-free. Using Proposition 4, there is a unique maximal admissible set F ∗2 ⊆ M(F1) such that
F1 ∪ F ∗2 ∈ ADM . So F2 ⊆ F ∗2 and, hence, F ∈ [F1, F1 ∪ F ∗2 ].

Following Theorem 4.9, the enumeration of admissible sets for an argumentation having a Σ-partition
{A1, A2} with A2 a conflict-free set, works as follows: for each F1 ∈ ADM [A1], compute its corre-
sponding maximal admissible set F ∗2 ∈ ADM [A2]. Then, output all F1 ∪ F2, where F2 ∈ [∅, F ∗2 ].

Theorem 4.10. Let AF = 〈A,R〉 be an argumentation framework and {A1, A2} a partition of A. If A2

is a conflict-free set and there is a polynomial delay and space algorithm to enumerate admissible sets in
ADM [A1], then there is one to enumerate ADM in polynomial delay and space.

Proof: Suppose we have a polynomial delay and space algorithm to enumerate the set of admissible
sets ADM [A1]. So, for each outputted F1 ∈ ADM [A1], we use the algorithm in Ganter (2010) to
enumerate in polynomial delay all closed sets of Σ(F1). And for any closed set F of Σ(F1), we output
F1 ∪ (M(F1) \ F ). So, the time spent between two admissible sets is bounded by a polynomial without
extra space.

The correction of the proposed algorithm follows from Proposition 4 and Theorem 4.9. Indeed, since
A2 is conflict-free, any F1 ∪ (M(F1) \ F ) outputted by the algorithm is conflict-free and, by Proposition
4, is an admissible set. Moreover any admissible set is outputted, since by Theorem 4.9 any admissible
set F containing exactly F1, we have F ∩A2 an admissible set of Σ(F1).

As a consequence, we obtain a polynomial delay and space algorithm to enumerate admissible sets of
a bipartite argumentation framework, which improve the space complexity of Kröll et al. (2017).

Corollary 1. There is a polynomial delay and space algorithm to enumerate admissible extensions of a
bipartite argumentation framework.

5 Conclusion
In this paper, we have characterized the set of self-defending sets of an argumentation framework by
closed sets of an implicational system. Furthermore, we have shown how to associate to any implicational
system Σ an argumentation framework while its admissible sets are exactly the complement of closed sets
of Σ. We have also shown that the enumeration of admissible sets is equivalent to the enumeration of
closed sets that are also vertex covers of the attack graph. Then we have proposed a conflict-closed sets
reduction rules to reduces the number of closed sets where their complements have a conflict that leads us
to enumerate the set of admissible sets in polynomial delay whenever Fc

Σ = ADM . Inspired by the work
in Kröll et al. (2017) for bipartite attack graphs, we have developed a general decomposition approach for
the enumeration of admissible sets.
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For future work, we are interested in characterizing argumentation framework for which the set of
admissible sets can be enumerated in polynomial delay. For example, if the indegree of the attack graph
is bounded by 1, then the implicational system is unit and thus the lattice is distributive.
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