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Single-molecule localization microscopy (SMLM) is a fluorescence microscopy technique that achieves super-resolution imaging by sequentially activating and localizing random sparse subsets of fluorophores. Each activated fluorophore emits light that then scatters through the sample, thus acting as a source of illumination from inside the sample. Hence, the sequence of SMLM frames carries information on the distribution of the refractive index of the sample. In this proof-of-concept work, we explore the possibility of exploiting this information to recover the refractive index of the imaged sample, given the localized molecules. Our results with simulated data suggest that it is possible to exploit the phase information that underlies the SMLM data.

INTRODUCTION

Single-molecule localization microscopy (SMLM) is a powerful tool to visualize biological structures below the diffraction limit. In SMLM, structures within the sample are labeled with fluorophores that emit fluorescence. The contribution of each activated fluorophore (point source) is a point-spread function (PSF)-like image. By randomly activating a subset of them, SMLM temporally separates these PSFs that would be otherwise overlapping. Then, dedicated algorithms [START_REF] Sage | Super-resolution fight club: Assessment of 2D and 3D single-molecule localization microscopy software[END_REF] are deployed to localize each activated fluorophore with a precision of the order of 10-20nm in the best-case scenario [START_REF] Samuel T Hess | Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[END_REF][START_REF] Michael | Stochastic optical reconstruction microscopy (STORM) provides subdiffraction-limit image resolution[END_REF][START_REF] Betzig | Imaging intracellular fluorescent proteins at nanometer resolution[END_REF]. The output of these algorithms is a list of positions of the fluorescent emitters; this list can be used to render a super resolved image. Three-dimensional imaging is also possible by engineering the PSF so that it encodes the axial position [START_REF] Huang | Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[END_REF] or by acquiring simultaneous focal planes [START_REF] Manuel F Juette | Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples[END_REF].

The present work is motivated by the following observations of Gilbert et al. [START_REF] Gilbert | Imaging from the inside out: Inverse scattering with photoactivated internal sources[END_REF]: an emitter produces a point-source illumination that scatters through the sample before being captured by the camera (Figure 1). In other words, SMLM acquisitions can be seen as the measurements of an optical-diffraction tomography system with point-source illuminations. This observation makes it possible to recover the distribution of the refractive index (RI) by solving an inverse-scattering problem. This interpretation of the acquisition setup would ideally complete the original purpose of SMLM. Indeed, it offers a unique combination of structural (RI) and functional (fluorescence) information about the sample from a single fluorescence SMLM acquisition sequence, similar to the recent computational hybrid imaging approach proposed in [START_REF] Xue | Computational hybrid imaging[END_REF]. Moreover, the reconstructed RI can be exploited to improve the localization of the fluorescent molecules in SMLM [START_REF] Xu | Three-dimensional nanoscopy of whole cells and tissues with in situ point spread function retrieval[END_REF]. However, Gilbert et al. [START_REF] Gilbert | Imaging from the inside out: Inverse scattering with photoactivated internal sources[END_REF] assumed access to complex-valued SMLM measurements (including the phase). In real life, however, SMLM measurements are phaseless and only contain the intensity information, which makes the inversescattering problem more difficult to solve. Furthermore, they modeled the wave propagation through the sample via a weak-scattering approximation [START_REF] Wolf | Three-dimensional structure determination of semi-transparent objects from holographic data[END_REF]. This potentially leads to underestimated refractive indices [START_REF] Soubies | Efficient inversion of multiple-scattering model for optical diffraction tomography[END_REF].

In this proof-of-concept work, we investigate the recovery of refractive indices from intensity-only measurements. To do so, we rely on a more accurate nonlinear model of the propagation of the light [START_REF] Thanh An Pham | Three-dimensional optical diffraction tomography with Lippmann-Schwinger model[END_REF].

PHYSICAL MODEL

In SMLM, the fluorophores are activated randomly. For the sake of clarity, we assume that there is only one activated fluorophore 

(x, x l , a l ) = a l exp (jk b x -x l 2) 4π x -x l 2 , ( 1 
)
where j is the imaginary unit and k b = 2πη b λ is the wavenumber determined by the wavelength λ and the RI η b > 1 of the medium. The spherical wave acts as an "incident" field that illuminates from within the sample. The wave then scatters through the sample, which produces a total field u l : R 3 → C. The scattering is governed by the Lippmann-Schwinger equation

u l (x) = uin(x, x l , a l ) + Ω g(x -z)f (z)u l (z) dz, (2) 
where

f (x) = k 2 b η(x) 2 η 2 b
-1 is the scattering potential and g : R 3 → C 3 is the Green function that corresponds to the centered spherical wave uin(x, 0, 1) [START_REF] Cornea | Fluorescence Microscopy: Super-Resolution and Other Novel Techniques[END_REF]. Then, the total field goes through an optical system which, in the Fourier domain, is modeled as the pointwise multiplication with a pupil function P : R 2 → C. (This also includes the effect of optical refocusing.) Finally, the intensity of the resulting wave is recorded by a camera on a plane Γ.

Let us discretize Ω into N = n 3 voxels. The discrete nonlinear forward model H l : R N → R M is then defined by [START_REF] Soubies | Efficient inversion of multiple-scattering model for optical diffraction tomography[END_REF][START_REF] Thanh An Pham | Three-dimensional optical diffraction tomography with Lippmann-Schwinger model[END_REF][START_REF] Liu | Seagle: Sparsity-driven image reconstruction under multiple scattering[END_REF]]

H l : f → P G diag(f )u l + u Γ in,l 2 with u l = (I -G diag(f )) -1 u in,l , (3) 
where f ∈ R N , u in,l ∈ C N , and u l ∈ C N are sampled version of f , uin( • , x l , a l ), and u l within Ω, respectively. The matrix I ∈ R N ×N is an identity, while diag(f ) ∈ R N ×N is a diagonal matrix formed out of the entries of f . The matrix G ∈ C N ×N encodes the convolution with the Green function in [START_REF] Samuel T Hess | Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[END_REF]. Similarly, G ∈ C M ×N is a matrix that, given diag(f )u l , gives the scattered field at the measurement plane(s) Γ. The vector u Γ in,l ∈ C M is the incident field at the measurement plane(s) Γ. Finally, P ∈ C M ×M models the effect of the pupil function P and | • | 2 denotes the pointwise-squared magnitude. The discretization of the Green function and the spherical wave is thoroughly described in [START_REF] Thanh An Pham | Three-dimensional optical diffraction tomography with Lippmann-Schwinger model[END_REF].

In this proof-of-concept work, we assume that the positions {x l ∈ R 3 } L l=1 of the L fluorophores are known exactly, as well as the numbers {a l > 0} L l=1 of emitted photons. In addition, we consider a biplane configuration [START_REF] Manuel F Juette | Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples[END_REF] that requires the simulation of two pupil functions with separate focal planes. To keep the notation simple, we shall use a single matrix P ∈ C M ×M to represent the effect of the two pupil functions (i.e., two focal planes).

To compare with the best-case scenario, we also consider complex measurements. The corresponding forward model H c l : R N → R M is the same as (3) but without the pointwise-squared magnitude. The initial guess was derived from the widefield images (Figure 3 left).

Finally, our noise model is

y c l = H c l (f ) + n r l + jn i l y l = |y c l | 2 for all l = 1, . . . , L, (4) 
where {y c l ∈ C M } L l=1 , {y l ∈ R M } L l=1 are the complex and intensity measurements, respectively. The vectors n r,i ∈ R M represent Gaussian noise in the real and imaginary parts, respectively. In this work, we simulated a 1dB noise with respect to H c l (f ). We added the noise in the complex domain in the interest of fairness when comparing the complex and intensity-only settings.

PROBLEM FORMULATION

To reconstruct the scattering potential from {y l ∈ R M } L l=1 , we adopt the variational formulation where TV is the total variation seminorm (TV) [START_REF] Leonid I Rudin | Nonlinear total variation based noise removal algorithms[END_REF] and τ > 0 is a trade-off parameter. We solve [START_REF] Huang | Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[END_REF] with a stochastic version of the accelerated forward-backward splitting algorithm [START_REF] Beck | A fast iterative shrinkagethresholding algorithm for linear inverse problems[END_REF]. The gradient of the data-fidelity term is computed as described in [START_REF] Soubies | Efficient inversion of multiple-scattering model for optical diffraction tomography[END_REF]. To compute the proximity operator of TV, we adopt the fast gradient projection [START_REF] Beck | Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[END_REF]. The whole algorithm is implemented within the framework of the GlobalBioIm library [START_REF] Soubies | Pocket guide to solve inverse problems with GlobalBioIm[END_REF]. The parameter τ was tuned optimally by performing a grid search for each reconstruction.

f ∈ arg min f ∈R N ≥0 L l=1 H l (f ) -y l 2 2 + τ TV(f ) , (5) 

NUMERICAL EXPERIMENTS

We simulated the acquisition of one-thousand SMLM frames. The sample is a virtual cell immersed in oil (η b = 1.51), fully included in a volume of size (7.2 × 7.2 × 3.6)µm 3 . The fluorophores were randomly placed on a computer-generated endoplasmic reticulum and cell wall (see gray lines in Figure 2). The emission wavelength is set at λ = 647nm. The two focal planes are placed at ±300nm from the center of the sample. The field of view covers (18.4 × 18.4)µm 2 with a pixel size of 72nm. The volume is discretized with a voxel size of 72nm as well. In Figure 2, we provide the sample along with a few synthesized SMLM frames. We reconstruct the volume with high fidelity from the complex measurements as shown in Figure 3. Although less accurate, the reconstruction from intensity-only measurements still captures most of the structures. Only the smallest features are washed out. The objective measures of error are consistent with the visual comparison between both reconstructions (Figure 3). For both setups, we I n i t i a l g u e s s c o m p l e x i n t e n s i t y 1 0 0 0 i n t e n s i t y 5 0 0 i n t e n s i t y 2 5 0 i n t e n s i t y 1 0 0 can observe that a part of the sample (negative axial position) is reconstructed with lower fidelity (right part of the YZ view). This is because the emitted light is acquired from one side only (the positive axial position). Hence, the frames recorded during the activation of a fluorophore mainly contain information about the structures lying between the fluorophore and the camera, with structures away from the camera being probed less often. In a second experiment, we assess how the quality of reconstruction varies with respect to the number of frames. We only reconstructed from the intensity measurements and computed the relative error for each case. As shown in Figure 4, the quality of reconstruction remains fairly robust, even when only 100 frames are used.

CONCLUSION

In this work, we evaluated the possibility to recover the distribution of refractive index (RI) from measurements of single-molecule localization microscopy (SMLM) in a biplane setting. The imaging modality only captures the intensity of the total field, which makes the inverse-scattering problem particularly challenging. To compare with the best-case scenario, we also performed the RI reconstruction from simulated complex measurements. Both methods yield reconstructions of high fidelity. In addition, we assessed the robustness of the intensity-based method to the number of available measurements. Future work will address multiple molecules per frame and explore the possibility to use a simpler forward model to accelerate the reconstruction. Although the physical model does not account for polarization, this work is a first step towards an interesting and non-conventional extension of SMLM.
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Fig. 1 :

 1 Fig. 1: Single-molecule localization microscopy. A fluorophore emits fluorescent light which scatters through the sample. The intensity of the total field is focused by a lens on a camera sensor.

Fig. 2 :

 2 Fig. 2: Simulation setup. The RI volume immersed in oil (n b = 1.51) is populated with fluorophores which sequentially emit a spherical wave. The wave is propagated through the sample using the Lippmann-Schwinger model. Two focal planes (with pupil functions) are acquired. The widefield images are generated by summing up all SMLM frames.

Fig. 3 :

 3 Fig. 3: Reconstructions of the RI volume. LiSc complex: Lippmann-Schwinger model from complex measurements. LiSc intensity: Lippmann-Schwinger model from intensity measurements.

Fig. 4 :

 4 Fig. 4: Top: relative error for different settings. From left to right: initial guess, Lippmann-Schwinger model from complex measurements and 1000 frames, Lippmann-Schwinger model from intensity measurements and 1000, 500, 250, and 100 frames, respectively. Bottom: reconstructions of the RI volume with Lippmann-Schwinger model from intensity measurements and 500, 250, and 100 frames. The axial positions are provided in Figure 3.