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In this paper, we propose to solve Pareto eigenvalue complementarity problems by using interior-point methods. Precisely, we focus the study on an adaptation of the Mehrotra Predictor Corrector Method (MPCM) and a Non-Parametric Interior Point Method (NPIPM). We compare these two methods with two alternative methods, namely the Lattice Projection Method (LPM) and the SoftMax Method (SM). On a set of data generated from the MatrixMarket, the performance profiles highlight the efficiency of MPCM and NPIPM for solving eigenvalue complementarity problems. We also consider an application to a concrete and large size situation corresponding to a geomechanical fracture problem. Finally, we discuss the extension of MPCM and NPIPM methods to solve quadratic pencil eigenvalue problems under conic constraints.

Introduction

The area of complementarity problems (CP) has received great attention over the last few decades due to their various applications in engineering, economics, and sciences. Since the pioneering work by Lemke and Howson, who showed that computing a Nash equilibrium point of a bimatrix game can be modeled as a linear complementarity problem [START_REF] Lemke | Equilibrium points of bimatrix games[END_REF], the theory of CP has become a useful and effective tool for studying a wide class of problems in numerical optimization. As a result, a variety of algorithms have been proposed and analyzed in order to deal efficiently with these problems, see the thorough survey [START_REF] Ferris | Engineering and economic applications of complementarity problems[END_REF] and references therein. On the other hand, Eigenvalue Complementarity Problems (EiCP) (also known as cone-constrained eigenvalue problems) form a particular subclass of complementarity problems that extend the classical (linear algebra) eigenvalue problems. Solving classical eigenvalue problems is also a topic of great interest and finds its various applications in physics and engineering, see [START_REF] Golub | Eigenvalue computation in the 20th century[END_REF][START_REF] Van Der | 150 years old and still alive: Eigenproblems[END_REF]. EiCP appeared for the first time in the study of static equilibrium states of finite dimensional mechanical systems with unilateral frictional contact [START_REF] Pinto Da Costa | A complementarity eigenproblem in the stability analysis of nite dimensional elastic systems with frictional contact[END_REF], and since then it has been widely studied both theoretically and numerically. On this subject, we refer to [1-3, 8, 11-14, 18, 19, 26, 33] and references therein. Applications of EiCP were found in many fields such as the dynamic analysis of structural mechanical systems, vibro-acoustic systems, electrical circuit simulation, signal processing, fluid dynamics, contact problems in mechanics (see for instance [START_REF] Martins | Dynamic stability of finite dimensional linearly elastic systems with unilateral contact and Coulomb friction[END_REF][START_REF] Martins | Stability of finite-dimensional nonlinear elastic systems with unilateral contact and friction[END_REF][START_REF] Martins | Bifurcations and instabilities in frictional contact problems: theoretical relations, computational methods and numerical results[END_REF][START_REF] Martins | Computation of bifurcations and instabilities in some frictional contact problems[END_REF][START_REF] Pinto Da Costa | The directional instability problem in systems with frictional contacts[END_REF]). Mathematically speaking, solving EiCP consists in finding a real number λ ∈ R and a corresponding nonzero vector x ∈ R n \ {0} such that the following condition holds K x ⊥ (λx -Ax) ∈ K * , (

where K is a closed convex cone in R n , ⊥ indicates the orthogonality, and K * stands for its positive dual cone, which is defined by

K * = {y ∈ R n : y, x ≥ 0 ∀x ∈ K} .
In (1.1) A ∈ M n (R) is a given n × n matrix (not necessarily symmetric). Such scalar λ and vector x are respectively called eigenvalue and eigenvector of (1.1). It is clear that, when K coincides with the whole space, (1.1) recovers the classical eigenvalue problem in linear algebra.

One important situation corresponds to the nonnegative orthant K = R n + . In this case, (1.1) is called Pareto eigenvalue complementarity problem (or just the Pareto eigenvalue problem for short). It is shown in [START_REF] Pinto Da Costa | Cone-constrained eigenvalue problems: theory and algorithms[END_REF][START_REF] Seeger | On cardinality of Pareto spectra[END_REF] that

3(2 n-1 -1) ≤ max A∈Mn(R) card[σ(A)] ≤ n2 n-1 -(n -1),
where σ(A) denotes the Pareto spectrum of A containing all eigenvalues of the Pareto eigenvalue problem corresponding to A, and card[σ(A)] denotes the cardinality of σ(A). This means that the number of Pareto eigenvalues grows exponentially with the dimension n of the matrix A. Therefore, finding all Pareto eigenvalues of a large or even medium size problem is not an easy task, especially in the context of iterative methods. For instance, a matrix of order 25 may have more than 3 million Pareto eigenvalues, which is notably huge.

While the theoretical spectral analysis for EiCP has been well-developed (see [START_REF] Pinto Da Costa | Cone-constrained eigenvalue problems: theory and algorithms[END_REF]), investigation towards designing efficient algorithms for solving EiCP is of absolute necessity. There are several interesting approaches for solving EiCP in the literature. Let us briefly summarize some of the existing methods.

• The Semismooth Newton Method (SNM), studied in [START_REF] Adly | A nonsmooth algorithm for cone-constrained eigenvalue problems[END_REF], is specially tailored for dealing with the Pareto eigenvalue problem

x ≥ 0 n , λx -Ax ≥ 0 n , x, λx -Ax = 0, (

which is one of the most interesting example of cone-constrained eigenvalue problems. The symbol 0 n refers to the n-dimensional zero vector and x ≥ 0 n indicates that each component of x is nonnegative. The idea proposed in [START_REF] Adly | A nonsmooth algorithm for cone-constrained eigenvalue problems[END_REF] is to convert (1.2) into a system of equations

U ϕ (x, y) = 0 n , (1.3) Ax -λx + y = 0 n , (1.4) 1 n , x -1 = 0, (1.5) 
and then apply a nonsmooth Newton type algorithm to the (semismooth) resulting system. Here U ϕ is the vector function corresponding to some complementarity function ϕ

U ϕ (x, y) =      ϕ(x 1 , y 1 ) ϕ(x 2 , y 2 ) . . . ϕ(x n , y n )     
, where ϕ : R 2 → R stands for any function that satisfies ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. We refer to [START_REF] Adly | A nonsmooth algorithm for cone-constrained eigenvalue problems[END_REF] for more details.

• The Lattice Projection Method (LPM) proposed in [START_REF] Adly | A new method for solving Pareto eigenvalue complementarity problems[END_REF] is another semismooth approach for solving Pareto eigenvalue problems. It is different from SNM in the sense that LPM does not use any complementarity function. Its principle is based on the observation that for every λ > 0

0 ≤ x ⊥ λx -Ax ≥ 0 ⇐⇒ (P R n + • A)(x) = λx,
where P R n + stands for the projection operator onto R n + . Therefore, the system to solve in this case can be rewritten as

max(ỹ, 0 n ) -λx = 0 n , Ax -ỹ = 0, 1 n , x -1 = 0, (1.6)
where the max function is carried out componentwisely. Finally, a nonsmooth Newton type algorithm is used to solve (1.6). In [START_REF] Adly | A new method for solving Pareto eigenvalue complementarity problems[END_REF], the authors have shown that LPM is a more efficient and robust method for solving Pareto eigenvalue problems than SNM. There are several other approaches to tackle EiCP problems. Indeed, one can see EiCP as a global optimization problem and then use Branch-and-Bound techniques [START_REF] Údice | The eigenvalue complementarity problem[END_REF] or some other global optimization methods. One can also use smoothing techniques by interpreting EiCP as a system of nonlinear complementarity equations, see, for instance, [START_REF] Haddou | Smoothing Methods for Nonlinear Complementarity Problems[END_REF][START_REF] Liu | A new smoothing-type algorithm for nonlinear weighted complementarity problem[END_REF][START_REF] Song | A smoothing Levenberg-Marquardt method for nonlinear complementarity problems[END_REF][START_REF] Zhou | The locally ChenHarkerKanzowSmale smoothing functions for mixed complementarity problems[END_REF][START_REF] Zhu | A new smoothing method for solving nonlinear complementarity problems[END_REF].

In this paper, we consider the approach of formulating the Pareto eigenvalue problem as a nonlinear system of equations, and then our purpose is to use interior point methods to solve such systems. Interior point methods are known to be one of the most efficient and ubiquitous methods in numerical optimization since the founding work of Karmarkar [START_REF] Karmarkar | A new polynomial-time algorithm for linear programming[END_REF] for linear programming. Moreover, interior point methods in general and primal dual methods in particular can be extended to tackle nonlinear optimization problems, and in particular nonlinear complementarity problems, see e.g. [START_REF] Potra | Interior-point methods for nonlinear complementarity problems[END_REF]. The basis for most implementations of the primal-dual methods is provided by the Mehrotra predictor corrector algorithm, which is considered in this paper in the context of EiCP. The Non Parametric Interior Point Method (NPIPM) which was introduced in [START_REF] Vu | A new approach for solving nonlinear algebraic systems with complementarity conditions[END_REF] will also be discussed. The basic idea of the NPIPM is to make the relaxation parameter, which is often updated in an ad hoc manner in interior point methods, becomes a variable by introducing a proper equation. We compare these two methods with two other ones namely the Soft Max method (SM) and the Lattice Projection Method (LPM).

The paper is organized as follows: In Section 2, we introduce two considered interior point methods including NPIPM and the Mehrotra Predictor Corrector Method (MPCM), and the smoothing method SM. In this section, along with the methods' formulation, we also provide conditions under which the nonsingularity of the Jacobian at a solution is ensured. Section 3 is devoted to some numerical tests for solving three Pareto eigenvalue problems corresponding to three given matrices of order 3, 4, and 5, which are known to have the maximum number of Pareto eigenvalues (9, 23, and 56 Pareto eigenvalues respectively). This test game constitutes a first comparison of the four methods, namely MPCM, NPIPM, LPM, and SM. After that, we compare the four methods by using the performance profiles [START_REF] Dolan | Benchmarking optimization software with performance profiles[END_REF] on a set of data taken from random generators and the MatrixMarket. The average computing time, the average number of iterations, the percentage of failure and the maximum number of eigenvalues found by each solver are used as performance measures to compare these algorithms. Section 4 provides an application of NPIPM, MPCM and LPM to a geomechanical fracture problem with data provided by IFP Energies Nouvelles. In this application, we consider the closed convex cone K = R m + × R n-m in the EiCP. In this latter case, the problem is known as the partially cone-constrained eigenvalue problem. Finally, we show in Section 5 that MPCM and NPIPM can be extended to deal with more general cone-constrained eigenvalue problems, including the quadratic pencil eigenvalue complementarity problem.

Interior point methods for eigenvalue complementarity problems 2.1 Non Parametric Interior Point Method (NPIPM)

The problem (1.1) can be represented by the following system of equations Ax -λx + y = 0 n , (2.1)

1 n , x -1 = 0, (2.2) x • y = 0, (2.3) x ∈ K, y ∈ K * , (2.4) 
where • denotes the Hadarmard product meaning that x • y = (x 1 y 1 , ..., x n y n ) T . Now, unambiguously, we will use the notation xy instead of x • y.

The Non Parametric Interior Point Method (NPIPM) was first introduced in the thesis [START_REF] Vu | A new approach for solving nonlinear algebraic systems with complementarity conditions[END_REF]. Inspired by the classical IPM for optimization, the first step towards NPIPM is to introduce the relaxation parameter µ > 0 and then to replace the equation (2.3) by xy = µ1 n . We now add the following equation which distinguishes NPIPM from the classical IPM

1 2 P K * (-x) 2 + P K (-y) 2 + µ 2 + µ = 0, (2.5) 
where > 0 is a fixed positive real number. One of the reasons behind considering equation (2.5) is that with µ ≥ 0, this equation is equivalent to condition (2.4). Indeed, since K is a closed convex cone, it holds that K = K * * . It is straightforward to check that

P K * (-x) = 0, P K (-y) = 0. ⇐⇒ x ∈ K, y ∈ K * .
Notice that when we introduce equation (2.5), µ becomes a variable, so the situation is quite different from classical IPMs where µ is a parameter. This additional equation in the NPIPMs algorithm will make µ be driven to zero automatically using the Newton method. At this point, NPIPM is somehow more advantageous than classical IPMs in the sense that there is no need to find a good strategy to drive µ to zero, which can vary from one problem to another. Set X = (x, y, λ), we denote by L the following system of equations

L(X, µ) =   Ax -λx + y 1 n , x -1 xy -µ1 n   , and 
G K (X, µ) = L(X, µ) 1 2 P K * (-x) 2 + P K (-y) 2 + µ 2 + µ .
In the particular case where K is the nonnegative orthant R n + , which is a self dual closed convex cone, we can easily rewrite G K (and for the ease of notation G R n + = G) as follows

G := G R n + (X, µ) =    L(x, y, λ, µ) 1 2 n i=1 (min {x i , 0} 2 + min {y i , 0} 2 ) + µ 2 + µ    .
Accordingly, its Jacobian matrix has the form One can notice that the presence of the term µ in the equation (2.5) prevents J G (X, µ) from being illconditioned near a solution, in which case µ may get too small.

J G (X, µ) =   ∂L ∂X ∂L ∂µ M 2µ +   . ( 2 

NPIPM Algorithm

1. Initialization: Select X 0 = (x 0 , y 0 , λ 0 ) such that x 0 ∈ int(K), y 0 ∈ int(K * ), λ 0 ∈ R and µ 0 > 0; Set k = 0.

2. Unless the stopping criterion is satisfied, do the following 3. Compute the Newton direction by solving the following linear system

J G (X k , µ k )d k = -G(X k , µ k ) with d k = d k X d k µ and d k X =   d k x d k y d k λ   . (2.8) 
4. Find a stepsize α k ∈ (0, 1] as large as possible such that

x k + α k d k x ∈ int(K), (2.9) 
y k + α k d k y ∈ int(K * ). (2.10) 5. Update X k+1 = X k + α k d k and set k = k + 1.
Basically, the NPIPM algorithm employs a (damped) Newton method to solve the system G(X, µ) = 0 where stepsizes are chosen such that during the iteration, x k and y k respectively lie in the interior of K and K * .

In what follows, we consider the nonnegative orthant case K = R n + for our theoretical results .

Proposition 2.1 Assume that the µ k generated by the the NPIPM algorithm is well-defined and that the sequence of stepsizes satisfies lim inf α k > 0. Then (µ k ) k is a positive decreasing sequence and converges to 0 as k goes to +∞.

Proof. . With (x, y, µ) ∈ R n + ×R n + ×R + , the linear system, for which the Newton direction is satisfied, gives

  ∂L ∂X ∂L ∂µ 0 1×(2n+1) 2µ +   d X d µ = - L(x, y, λ, µ) µ 2 + µ .
This implies that (2µ + )d µ = -(µ 2 + µ). In other words, we have d µ = -µ 2 + µ 2µ + . Therefore, with α ∈ (0, 1] being the stepsize, we have

µ + := µ + αd µ = µ -α µ 2 + µ 2µ + = (2 -α)µ 2 + (1 -α) µ 2µ + > 0 (since µ > 0 and α ∈ (0, 1]).
Moreover, it is clear that µ + < µ. Thus, µ k is a positive and decreasing sequence and therefore has a limit which is denoted by µ * . We have also shown that

µ k+1 = µ k -α k (µ k ) 2 + µ k 2µ k + . Letting k → ∞ yields α k (µ k ) 2 + µ k 2µ k + → 0. Since lim inf α k > 0 and µ k > 0, it follows that (µ * ) 2 + µ * 2µ * + = 0 and consequently, µ * = 0. Remark 2.1
The assumption on lim inf α k might seem too restrictive at first glance. However, when the algorithm converges to a nondegenerate solution, we observe practically superlinear or quadratic convergence and at the few last iterations we can choose stepsizes α k to be near 1 (for more details, see e.g. [5, Theorem 6.9]).

Remark 2.2 Note that in the algorithm NPIPM, it is possible to use a line search such as the Armijo line search after Step 4. In order to not distort the comparison with the other methods like LPM, we have opted not to use any line search technique in this context. Furthermore, extensive preliminary numerical experiments show that NPIPM with or without line search has equivalent performances.

The following lemmas will be useful. The first one is inspired by the Schur complement result. 

A B C D = I n B 0 D A -BD -1 C 0 D -1 C I m ,
and therefore we have det

A B C D = det(D) det(A -BD -1 C).
The proof of Lemma 2.1 is straightforward and will be omitted.

Lemma 2.2 Given an n × n matrix A and x ∈ R n \ {0}. Set S = A T A + 1 n 1 T n - 1 x 2 A T xx T A.
Then, one has the following equivalent statements

(a) M = A -x 1 T n 0 is nonsingular. (b) S is nonsingular. (c) S is (symmetric) positive definite. (d) For all y ∈ R n \ {0}, if Ay ∈ span(x), then n i=1 y i = 0.
Proof. A direct calculation gives

M T M = E F F T g , where E = A T A + 1 n 1 T n , F = -A T x and g = x 2 > 0.
We have

M is nonsingular ⇐⇒ M T M is nonsingular ⇐⇒ E -F g -1 F T is nonsingular (due to Lemma 2.1)
⇐⇒ S is nonsingular.

The equivalence between (b) and (c) is due to the fact that S is positive semidefinite. Indeed, let y ∈ R n \ {0}, we have

y T Sy = Ay 2 - |x T Ay| 2 x 2 my≥0 + n i=1 y i 2 ny≥0
, where m y ≥ 0 due to the Cauchy-Schwarz inequality.

For the last equivalence,

S is positive definite ⇐⇒ ∀y ∈ R n \ {0} , m y + n y > 0 ⇐⇒ ∀y ∈ R n \ {0} , m y = 0 or n y = 0 ⇐⇒ ∀y ∈ R n \ {0} , if m y = 0, then n y = 0.
Note that m y = 0 if and only if Ay and x are linearly dependent, which can be translated into Ay ∈ span(x). The proof is thereby completed.

The next proposition provides a characterization of the nonsingularity of the Jacobian matrix J G at a solution (X, 0) of the system G(X, µ) = 0, where X = (x, y, λ). Before giving the statement of this proposition, we would like to introduce some notations. For a given matrix D of size n × n, I and J being subsets of {1, 2, . . . , n}, D IJ denotes the submatrix created by rows and columns of D with indices in I and J respectively. Similarly, if x ∈ R n , x I represents the vector containing components of x with indices in I.

Proposition 2.2 Denote X = (x, y, λ). Assume (X, 0) is a solution of G(X, µ) = 0. Then, J G (X, 0) is nonsingular if and only if (x, y) satisfies the strict complementarity conditions, i.e., x i + y i > 0 for every i = 1, 2, ..., n, and the principle submatrices Ãαα of à = A -λI n , where α = {1 ≤ l ≤ n :

x l = 0}, satisfy for all y ∈ R n \ {0} , if Ãαα y ∈ span(x α ), then n i=1 y i = 0. (2.11)
Proof. Since at the solution we have x ≥ 0 and y ≥ 0, the Jacobian matrix J G (X) has the form

J G (X, 0) =   ∂L ∂X ∂L ∂µ 0 1×(2n+1)   .
It is necessary and sufficient to show the nonsingularity of the first block ∂L ∂X of J G (X, 0). A simple computation yields

∂L ∂X =   à I n -x 1 T n 0 1×n 0 diag(y) diag(x) 0 n×1   , where à = A -λI n .
We can see that if the strict complementarity does not hold, then there exists i ∈ {1, 2, . . . , n} such that x i = y i = 0. This, according to the form of ∂L ∂X shown above, leads to ∂L ∂X being singular. Through this observation, it is seen that the strict complementarity assumption is not discardable. To complete the proof, we show that J G (X, 0) is nonsingular if and only if the condition (2.11) holds. If y = 0, then the strict complementarity condition implies x i > 0 for every i = 1, .., n. Using the Laplace expansion along the last n rows of ∂L ∂X gives

det ∂L ∂X = n l=1 x l det à -x 1 T n 0 = 0 (due to Lemma 2.2).
If y = 0, we assume it has k nonzero components y j 1 , .., y j k , where 1 ≤ j l ≤ n for all 1 ≤ l ≤ k. Due to the strict complementarity assumption, the vector x has n -k nonzero components which we will denote by x i 1 , .., x i n-k , where

1 ≤ i l ≤ n for all 1 ≤ l ≤ n -k. Set α = {i 1 , i 2 , .., i n-k } and β = {j 1 , j 2 , .., j k } .
Since exchanging rows (resp. columns) of a matrix does not change its rank, with the strict complementarity assumption we can do so for the matrix ∂L ∂X in a proper way so that we obtain the following matrix with the same rank as

∂L ∂X H =                    Ãββ Ãβα Ãαβ Ãαα I k×k 0 k×(n-k) 0 (n-k)×k I (n-k)×(n-k) 0 k×1 -x α 1 T n 0 1×n 0             y j 1 y j 2 . . . y j k 0 . . . 0                         0 0 . . . 0 x i 1 . . . x i n-k             0 n×1                   
,

where x α = [x i 1 , .., x i n-k ] T .
Applying the Laplace expansion along the last n -k rows of the H and Lemma 2.2, we get successively

|det (H)| = n-k l=1 x i l det         Ãββ Ãβα I k×k 0 k×1 Ãαβ Ãαα 0 (n-k)×k -x α 1 T k 1 T n-k 0 1×k 0 diag(y j 1 , .., y j k ) 0 k×(n-k) 0 k×k 0 k×1         (2.12) = n-k l=1 x i l k l=1 y j l det     Ãβα I k×k 0 k×1 Ãαα 0 (n-k)×k -x α 1 T n-k 0 1×k 0     (2.13) = n-k l=1 x i l k l=1 y j l det Ãαα -x α 1 T n-k 0 (2.14) = 0. (2.15)
This completes the proof of Proposition 2.2.

Remark 2.3

We can see that the condition for the Jacobian's nonsingularity shown in Proposition 2.2 is not restrictive to the eigenvalue complementarity problems. The fact that the strict complementarity assumption cannot be eliminated has made our proof become simple since only basic linear algebra is used. We note that for problems where the Jacobian matrix can be nonsingular without the strict complemetarity conditions, we may need further assumptions such as the P-matrix property. For more details, we refer to Theorem 2.8 in [START_REF] Kanzow | A New Class of Semismooth Newton-Type Methods for Nonlinear Complementarity Problems[END_REF]. Now we give an example in dimension 2 to illustrate Proposition 2.2.

Example 2.1 Consider the following matrix

A = 3 -4/3 3 -1 .
It can be checked that λ 1 = 1 is a Pareto eigenvalue of A, which is also a double standard eigenvalue of A. This follows from ker(A -λ 1 I 2 ) 2 = R 2 . So the assumptions of Proposition 2.2 cannot be satisfied and therefore the Jacoibian J G (X 1 , 0) is singular.

On the other hand, another solution of this problem is λ 2 = -1 with the corresponding eigenvector x 2 = [0 1] T and dual vector y 2 = [4/3 0] T . This solution satisfies the strict complementarity, and moreover with α = {2} and à = 4 -4/3 3 0 , we have

S α = ÃT αα Ãαα + 1 |α| 1 T |α| - 1 x α 2 ÃT αα x α x T α Ãαα = 1 = 0,
We can see that this solution satisfies all the assumptions of Proposition 2.2. Therefore, the Jacobian J G (X 2 , 0) is nonsingular, where X 2 = (x 2 , y 2 , λ 2 ).

Mehrotra Predictor Corrector Method (MPCM)

MPCM was first proposed in 1989 by Sanjay Mehrotra [START_REF] Mehrotra | On the implementation of a primal-dual interior point method[END_REF], as a variant of the primal-dual interior point method for optimization problems. Most of todays interior-point general-purpose softwares for linear and nonlinear programming are based on predictor-corrector algorithms like the one of Mehrotra. We give now a description of the method when applied to eigenvalue complementarity problems. For this purpose, let us set

F (X) =   Ax -λx + y 1 n , x -1 xy   , where X = (x, y, λ). (2.16) 
The Jacobian matrix of F has the form

J F (X) =   A -λI n I n -x 1 T n 0 1×n 0 diag(y) diag(x) 0 n×1   .

MPCM Algorithm

1. Choose an initial point such that x 0 ∈ int(K), y 0 ∈ int(K * ), λ 0 ∈ R and let k = 0.

2. Compute the affine scaling (predictor) direction d k a , which is given by solving the linear system J F (X k )d k a = -F (X k ), and then compute a stepsize α k a ∈ (0, 1] that ensures

x k + α k a dx k a ∈ int(K), (2.17) 
y k + α k a dy k a ∈ int(K * ), (2.18) 
where

d k a =   dx k a dy k a dλ k a   .
3. Use the information from the predictor step to compute the corrector direction by solving the following linear system

J F (X k )d k c = -F (X k ) + B k with B k = 0 (n+1)×1 µ k 1 n -dx k a dy k a , (2.19) 
where

µ k = γ k σ k with γ k = 1 n x k , y k and σ k = r k a r k 3
is the adaptively chosen centering parameter, where

r k = 1 n x k , y k , (2.20) 
r k a = 1 n x k + α k a dx k a , y k + α k a dy k a .
(2.21)

4. Find a step size α k c ∈ (0, 1] such that

x k + α k c dx k c ∈ int(K), (2.22) 
y k + α k c dy k c ∈ int(K * ), (2.23) 
then compute the next iterate

X k+1 = X k + α k c d k c and update k = k + 1.
Remark 2.4 The Jacobian matrix J F associated with MPCM is just the matrix ∂L ∂X in the previous section. Hence, the nonsingularity condition for MCPM in the case K = R n + is the same as that of NPIPM.

Remark 2.5 Despite its efficiency in practice, there is no convergence result available yet for the Mehrotra predictor corrector method even in a general context of nonlinear programming. Here, we do not give any result on the convergence of MPCM when applied to solve Pareto eigenvalue problems.

Smoothing Method

For comparison purposes, we propose in this section a smoothing method, called the Soft Max method (SM) for solving Pareto eigenvalue problems. It is known that several smoothing techniques can be used to address nonlinear complementarity problems where we would substitute nonsmooth equations with differentiable approximations. The first step to be done towards SM is to observe that the condition K x ⊥ (λx -Ax) ∈ K * can be presented as follows: For all ρ > 0, we have

K x ⊥ (λx -Ax) ∈ K * ⇐⇒ x = P K (x -ρy) with y = λx -Ax. (2.24)
Indeed, since K is a closed convex cone, one has for y = λx -Ax:

K x ⊥ (λx -Ax) ∈ K * ⇐⇒ -y ∈ N K (x), where N K (x) stands for the nornal cone to K at x ⇐⇒ -ρy ∈ N K (x) ⇐⇒ x -ρy ∈ x + N K (x) ⇐⇒ x = P K (x -ρy).
Consider K = R n + , in this case (2.24) becomes

(x ≥ 0, λx -Ax ≥ 0, x, λx -Ax = 0) ⇐⇒ y = λx -Ax, x = max(0, x -ρy).
Unfortunately the max function is not differentiable, it, however, can be smoothed in the following way max(t, s) ∼ f µ (s, t) = µ ln(e s/µ + e t/µ ) when µ → 0.

More precisely, we have the following proposition:

Proposition 2.3 |f µ (s, t) -max(s, t)| ≤ µ ln(2) ∀µ > 0, s ∈ R, t ∈ R.
Proof. Without loss of generality, we assume that s ≥ t. Since R x → e x and int(R + ) x → ln(x) are increasing, we have |f µ (s, t) -max(s, t)| = µ ln(e s/µ + e t/µ ) -s = µ ln(e s/µ + e t/µ ) -ln(e s/µ ) = µ ln(e s/µ + e t/µ ) -ln(e s/µ ) ≤ µ ln(2e s/µ ) -ln(e s/µ ) = µ ln(2).

The proof is thereby completed.

With this observation, we are led to consider the following (uniform) approximation of the equation x = max(0, x -ρy) x = µ ln(1 + e (x-ρy)/µ ), or x -µ ln(1 + e (x-ρy)/µ ) = 0, where ρ > 0 is given. Set

P (X, µ) =   Ax -λx + y 1 n , x -1 x -µ ln(1 + e (x-ρy)/µ )   .
As the spirit of a smoothing method, we apply the Newton method to this system so that µ will ultimately be driven to 0. One common option is to consider µ as parameter while applying the Newton method to P (X, µ). However, one may face issues with finding good strategies to update µ after each iteration. In our context, we choose the same strategy as NPIPM, which consists in keeping µ as a variable controlled by the following equation

1 2 n i=1 (min {x i , 0} 2 + min {y i , 0} 2 ) + µ 2 + µ = 0,
where > 0 is fixed. Now, the (damped) Newton method can be applied to solve the following system:

Q(X, µ) =    P (X, µ) 1 2 n i=1 (min {x i , 0} 2 + min {y i , 0} 2 ) + µ 2 + µ    = 0,
where stepsizes will be chosen such that µ will be driven to 0, which means that the sequence µ k will converge to 0. To this end, the same way of selecting stepsizes as in NPIPM is chosen . As a result, we have a similar result for SM as Proposition 2.1. That is, assume that (X k , µ k ) is the sequence generated by SM and that lim inf α k > 0, where α k is the sequence of stepsizes. Then, µ k is a positive deceasing sequence convergent to 0. A simple computation yields the Jacobian matrix of Q(X k , µ k ), where

X k = (x k , y k , λ k ) J Q (X k , µ k ) =     A -λ k I n I n -x k 0 n×1 1 T n 0 1×n 0 0 U k V k 0 n×1 W k 0 1×n 0 1×n 0 2µ k +     ,
where

U = diag 1 1 + e c k 1 , .., 1 1 + e c k n , V = ρ.diag e c k 1 1 + e c k 1 , .., e c k n 1 + e c k n
, and

W k ∈ R n×1 satisfy- ing W k i = -ln 1 + e c k i + c k i e c k i 1 + e c k i ∀1 ≤ i ≤ n.
Here

c k i = x k i -ρy k i µ k for all i = 1, 2, . . . , n.
Assume that (X k , µ k ) is the sequence generated by SM and that it converges to a solution (X * , 0) of Q(X, µ) = 0. We will now provide a condition to ensure the nonsingularity for SM, that is a condition under which lim

k→∞ J Q (X k , µ k ) is nonsingular.
Proposition 2.4 Assume that (X k , µ k ) is the sequence generated by SM and that it converges to a solution Proof. Denote by

(X * , 0) of Q(X, µ) = 0, where X * = (x * , y * , λ * ). Then, lim k→∞ J Q (X k , µ k ) is nonsingular if (x * ,
α = {1 ≤ l ≤ n : x * l = 0} and β = {1 ≤ l ≤ n : y * l = 0} .
Due to the strict complementarity assumption and the fact that µ k → 0, we have

lim k→∞ c k i = +∞ if i ∈ α, -∞ if i ∈ β,
and therefore

lim k→∞ e c k i = +∞ if i ∈ α, 0 if i ∈ β.
This leads to

U * = lim k→∞ U k ∈ R n , V * = lim k→∞ V k ∈ R n
and that U * and V * are the diagonal matrices satisfying

U * ii = 0 , if i ∈ α, 1 , if i ∈ β and V * ii = ρ , if i ∈ α, 0 , if i ∈ β.
It is clear that the nonsingularity of lim

k→∞ J Q (X k , µ k ) is equivalent to that of lim k→∞   A -λI n I n -x k 1 T n 0 1×n 0 U k V k 0 n×1   =   A -λI n I n -x * 1 T n 0 1×n 0 U * V * 0 n×1   ,
which can be proved by the same arguments given in the proof of Proposition 2.2.

Numerical tests

Our first comment concerns the choice of initial points. First we present how initial points for the three methods including MPCM, NPIPM and SM are chosen. A random vector ξ ∈ R n is first chosen with the uniform distribution on (0, 1] n . After that, we set

x 0 = ξ 1 n , ξ , λ 0 =
x 0 , Ax 0 x 0 , x 0 , µ 0 = 10 -2 fixed (only for NPIPM and SM).

For y 0 , we initially assign y 0 = λ 0 x 0 -Ax 0 and then replace any nonpositive component of y 0 by 0.01.

Regarding LPM, after getting a random vector ξ ∈ R n with the uniform distribution on [0, 1] n , we set

x 0 = ξ 1 n , ξ , ỹ0 = Ax 0 , λ 0 = x 0 , Ax 0 x 0 , x 0 ,
Our second comment is that we use the built-in backslash function of Matlab for solving the linear system of equations at each iterations. Finally, for all the considered algorithms, a solution (λ, x) ∈ R × R n is claimed to be found when the following conditions are satisfied

min(x, λx -Ax) 2 ≤ 10 -8 , x 2 > 10 -6 ,
where the min function is carried out componentwisely.

Remark 3.1 In the way of choosing initial points presented above, we first take x 0 so that the condition 1 n , x 0 = 1 is satisfied, and then select λ 0 as if it is a Pareto eigenvalue corresponding to x 0 and, as we can see, a necessary condition for that is λ 0 = x 0 , Ax 0 x 0 , x 0 .

Remark 3.2 Hereafter, whenever numerical experiments are conducted, this pattern of choosing initial points will be applied.

Testing on special matrices

The first numerical experiment are given by taking matrices of order 3, 4 and 5 that are known to have 9, 23 and 57 Pareto eigenvalues, respectively. 

A 1 =   5 -8 2 -4 9 1 -6 -1 13   , A 2 =     132 -
      .
We compare MPCM, NPIPM, LPM, and SM by computing the average number of iterations, computing time and percentage of failures.

Remark 3.3 In our case, a failure is declared if the number of iterations exceeded 100 or the Jacobian matrix is ill-conditioned according the Matlab's criterion.

The comparison results are summarized in Table 1 where "Iter" denotes the average number of iterations and "Failure (%)" represents the percentage of of failures to find a solution of the corresponding EiCP. We note that 7 × 10 3 initial points have been used to find all the Pareto eigenvalues of A 3 simultaneously by MPCM, NPIPM and LPM. SM shows its inefficiency in finding many solutions when it only finds around 50 eigenvalues of A 3 despite being run with 10 5 initial points. A quick look at the table clearly reveals that LPM performs best among all the considered solvers and that NPIPM and LPM are the most robust with respect to initial points. 

Methods

Remark 3.4

We compare the number of iterations because the computational effort in each iteration of all solvers are almost the same.

Performance Profiles

In this section, we compare the 4 solvers that have been defined in Section 1 and Section 2. In order to complete this experiment, we choose the performance profiles developed by E. D. Dolan and J. J. Moré [START_REF] Dolan | Benchmarking optimization software with performance profiles[END_REF] as a tool for comparing the solvers. The performance profiles give for each t ∈ R, the proportion ρ s (t) of test problems on which each solver under comparison has a performance within the factor t of the best possible ratio. Average computing time, average number of iterations, percentage of failure and maximum number of eigenvalues found by each solver are used as performance measures to compare these algorithms. Due to the absence of library dedicated to EiCP, we have chosen a set P of 40 random matrices for this test. Let S be the set of the four solvers that will be compared. The performance ratio is defined by The performance of the solver s ∈ S is defined by

ρ s (t) = 1 n p card {p ∈ P : r p,s ≤ t},
where, n p is the number of problems, and t is a real factor. The numerical experiments are conducted in an ordinary computer. All the program codes are written and executed in Matlab 9.6.

Figure 1a presents the performance profiles of the four solvers with the criterion: the average number of iterations that each solver takes to find a solution. We observe that SM and LPM have the most number of wins, dominating MPCM and NPIPM. Also, on the considered interval, SM outperforms other solvers, followed by LPM, MPCM and NPIPM respectively.

Figure 1b presents the performance profiles of the four solvers corresponding to the average computing time. We can see that relative to this criterion, SM is the best solver, closely followed by LPM, while NPIPM and MPCM have no wins. Another interesting point is that on the interval [0.5, 1.5] the performances of NPIPM and MPCM are quite competitive compared to the others.

Figure 1c displays the the performance profiles of the four solvers when considering the maximum number of solutions found by each one. MPCM can solve 100 % of the problems with greatest efficiency and has the most number of wins, followed respectively by NPIPM, LPM and SM. As in the previous test on the three given matrices, SM shows that its ability to find many solutions is the worst among all the methods.

In Figure 1d, we depicted the performance profiles of the four solvers for the percentage of failure. LPM encounters the least number of failures among all the methods while the performances of the MPCM and NPIPM are quite the same in this regard. With respect to this criterion, SM is not the winner on any problem and performs the worst.

In conclusion, SM proved to be the best solver when it comes to the average number of iterations and computing time while the situation with it is completely reversed with respect to other criteria. Concerning the percentage of failure, LPM ranks first. The performances of MPCM and NPIPM are roughly equivalent regarding all criterion except the average number of iterations where MPCM performs better. MPCM can find the most number of solutions among all the methods.

We have made various numerical experiments and realized that SM could only solve problems of small size. Accordingly, we now conduct another comparison only between MPCM, NPIPM and LPM on a set of problems of larger sizes. We have chosen a set of 30 square matrices with the average size of 131, all of them taken from the Matrix Market1 . Looking at Figure 2 where we present the performance profiles of the three solvers MPCM, NPIPM and LPM on a set of problems of larger size, we can conclude that LPM is the best one with the most number of wins regardless of the criterion considered. In terms of the average number of iterations, MPCM wins over NPIPM on the given interval. Regarding the maximum number of solutions and the average computing time, we can see that MPCM performs slightly better than NPIPM. We note that LPM is a robust solver, respectively followed by NPIPM and MPCM.

Partially constrained eigenvalue problems

In this section, we consider a class of problems called partially constrained eigenvalue problems. As its name suggests, in this class of problems, only a portion of the unknown x is cone-constrained while the remaining components of x are free. Assume the first m components of x to be nonnegative, and the other ones are not restricted. In this case, x can be written with two splitting parts as following

x = x c x f ,
where x c is the m-dimensional block vector containing the first m components of x and x f is the remaining part which, of course, belongs to R n-m . As a result, it turns out that we are dealing with a cone-constrained eigenvalue problem constrained by the following convex cone

K m,n-m = R m + × R n-m .
More precisely, the problem now is to find a non zero x ∈ R n and λ ∈ R such that

K m,n-m x ⊥ (λx -Ax) ∈ K * m,n-m . (4.1) 
Because K * m,n-m = R n + × {0}, we can express the cone-constrained eigenvalue problem corresponding to the convex cone K m,n-m as follows

x c ≥ 0, x f is free, x = 0, (4.2) λx c -Ax c ≥ 0, λx f -Ax f = 0, (4.3) x c , λx c -Aλx c = 0. (4.4)
In reality, some applications related to solving boundary value problems by boundary integral equation methods can lead to this kind of problems. We will now present a partially cone-constrained eigenvalue problem arising from a geomechanical fractures problem.

Let N ≥ 1 be an integer and A be a 3N × 3N matrix with real entries. We are interested in finding λ ∈ R such that there exists a 3N -vector u satisfying

(λu -Au) 1 = 0, (λu -Au) 2 = 0, 0 ≤ u 3 ⊥ (λu -Au) 3 ≥ 0, (λu -Au) 4 = 0, (λu -Au) 5 = 0, 0 ≤ u 6 ⊥ (λu -Au) 6 ≥ 0, • • • • • • • • • (λu -Au) 3N -2 = 0, (λu -Au) 3N -1 = 0, 0 ≤ u 3N ⊥ (λu -Au) 3N ≥ 0, u ∈ R N \ {0} , (4.5) 
where (Au -λu) i denotes the i-th component of Au -λu.

We can see that this system of equations is not exactly the problem of the form (4.1) . However, by some simple reformulation, it can be transformed into a cone-constrained eigenvalue problem corresponding to the convex cone K N,2N = R N + × R 2N . Indeed, there always exists a permutation σ, which is a bijective from {1, 2, .., 3N } into itself, such that σ({1, 2, .., N }) = {3i : i = 1, 2, .., N } .

Denote I = {σ(1), σ(2), .., σ(N )} and J = {σ(N + 1), σ(2), .., σ(3N )}. Set ũi = u σ(i) and

à = A II A IJ A JI A JJ .
It can be seen that solving system (4.5) is equivalent to solving the following system of equations

0 ≤ ũ1 ⊥ (λũ -Ãũ) 1 ≥ 0, • • • 0 ≤ ũN ⊥ (λũ -Ãũ) N ≥ 0, (λũ -Ãũ) N +1 = 0, (λũ -Ãũ) N +2 = 0, • • • (λũ -Ãũ) 3N = 0, ũ ∈ R N \ {0} , (4.6) 
which is a cone-constrained eigenvalue problem corresponding the convex cone K N,2N . Now we give some numerical results for problem (4.5) by using the three methods including MPCM, NPIPM and LPM. Data for this numerical result are from IFP Energies Nouvelles (IFPEN). We consider 6 problems with N ranging from 2, 3, 15, 61, 500 to 1500, which means that the maximum size of the matrix A we have to deal with is 4500. First of all, in order to use NPIPM, we reformulate (4.5) using slack and relaxation variables like it was done previously: Find (u, w, λ, µ

) ∈ R 3N × R N × R × R + such that
Au -λu + g(w) = 0,

u 3 w 1 -µ = 0, • • • u 3N w N -µ = 0, 3N i=1 u 2 i -1 = 0, 1 2 N i=1 (min {u 3i , 0} 2 + min {w i , 0} 2 ) + µ 2 + µ = 0, (4.7) 
where g(w) = [0, 0, w 1 , 0, 0, w 2 , ..., 0, 0, w N ] T , and > 0 is fixed. The normalization made for u in the above system is to prevent it from being identical to zero. We apply NPIPM to the system (4.7). On the other hand, we can also use MPCM to solve this kind of problems by doing exactly what has been described for MPCM in Section 2 with a difference that in this case the function F in (2.16) would be substituted by Table 2 compares the 3 methods, namely MPCM, NPIPM and LPM on Problem (4.5) with 6 matrices from IFPEN, where "N max " denotes the number of solutions found, "Iter"and "T" denote the average number of iterations and computing time respectively while "F" denotes the percentage of failure. We observe that all the methods converge for the 6 matrices in the sense that they can all manage to find at least a solution, especially in the cases N = 500 and N = 1500. Another point that can be observed from Table 2 is that NPIPM is the most robust solver among the three with respect to initial points. In terms of the computing time, LPM outperforms the others, while MPCM and NPIPM have roughly the same computing time except the last case where NPIPM is quite faster. With respect to the average number of iterations, we can say in general that MPCM performs best, followed respectively by LPM and NPIPM. We point out that LPM experienced many failures and found the fewest number of solutions. Finally, it is clear that MPCM found the most solutions compared to the others.

F (u, w) =     Au -b + g(w) u 3 w 1 • • • u 3N w N     . N MPCM
Remark 4.1 The number of failures of LPM is rather high and tend to increase with the problem's size. This event could be explained by the fact that bad conditioning. during the computation of the projection could occur in concrete situations. On the other hand, interior point methods, particularly NPIPM does not suffer from this drawback because we are in the interior.

5 Extension of MPCM and NPIPM for solving quadratic pencils under conic constraints

MPCM and NPIPM can be adjusted so as to deal with more general cone-constrained eigenvalue problems.

For simplicity, we consider the quadratic pencil eigenvalue comlementarity problem presented as follows.

Given a triplet (A 0 , A 1 , A 2 ) of three matrices of size n × n, we define the corresponding quadratic pencil as follows

M (λ) = A 0 + λA 1 + λ 2 A 2 .
Then, the quadratic pencil eigenvalue complementarity problem corresponding the quadratic pencil M (λ) is the problem of finding λ ∈ R and x ∈ R n \ {0} such that 0 ≤ x ⊥ M (λ)x ≥ 0.

(5.1) Problem (5.1) can be reformulated into

M (λ)x -y = 0, 1 T n , x -1 = 0, x ≥ 0, y ≥ 0. (5.2)
Now we can see that MPCM and NPIPM can be applied in an attempt to solve the system (5.2).

Remark 5.1 Let us observe that MPCM and NPIPM not only can be applied to solve the quadratic pencil eigenvalue complementarity problem but might be applicable for solving similar problems in which the quadratic pencil in (5.1) is substituted by a matrix pencil of order m, with m > 2.

Consider the following quadratic pencil It can be seen that while the number of solutions found and the average number of iterations of MPCM and NPIPM are roughly the same, the percentage of failure of NPIPM is less than MPCM, which means that NPIPM is a more robust method with respect to initial points. This has been seen when we carried out the numerical experiments in Section 4.

M (λ) = λ 2
For a given quadratic pencil (5.1) under conic constraints, a standard approach consists in using a reduction technique. More precisely, problem (5.1) can be reduced into an affine pencil as follows: Find

λ ∈ R and x u ∈ R 2n \ {0} such that R n + × R n x u ⊥ A 0 A 1 0 n×n I n x u + λ 0 n×n A 2 -I n 0 n×n x u ∈ R n + × {0} n .
(5.4)

This equivalence can be seen by first rewriting (5.1) as follows u = λx, 0 ≤ x ⊥ A 0 x + A 1 u + λA 2 u ≥ 0.

(5.5)

It is clear that expressing (5.5) Looking at Table 5, we see that with the reformulated problem (5.4), MPCM and NPIPM take more iterations to reach a solution and experience much more failures than they do with the initial problem (5.1). Furthermore, in this case both methods can find only 6 solutions given the same number of initial points. Regarding the number of failures, NPIPM is seen to be more robust.

Conclusions

In this paper, we have considered two interior-point methods for solving eigenvalue complementarity problems. We have also presented an application of the methods to a geomechanical problem. Numerical experiments have been made to compare the performances of MPCM and NPIPM relative to two other common methods, namely LPM and SM. NPIPM has proved to be an efficient and robust method for solving eigenvalue complementarity problems, especially through its display on the geomechanical fracture problem. More precisely, we can observe that its percentage of failure remains very low in all the six problems. Particularly in the case where the problem's size is 4500, its percentage of failure is around 3%, which is a very appealing property. The performance of MPCM is generally equivalent to that of NPIPM except in terms of robustness. There are some open questions regarding the use of MPCM and NPIPM or interior point methods in general for solving eigenvalue complementarity problems. The first issue could be the way to select efficiently initial points. It would be also interesting to consider other interior point methods and compare their performances to MPCM and NPIPM in the context of eigenvalue complementarity problems. As well, inexact Newton methods could be of great interest to use in our context. This would allow to solve large scale problems. These points are out of the scope of the current manuscript and will be the subject of a future research project.

Lemma 2 . 1

 21 Suppose A, B, C, and D are matrices of dimension n × n, n × m, m × n, and m × m, respectively. If D is nonsingular, we can easily check the following decomposition

  y * ) satisfies the strict complementarity, i.e., x * i +y * i > 0 for every i = 1, 2, ..., n, and the principle submatrices Ãαα of à = A -λ * I n , where α = {1 ≤ l ≤ n : x * l = 0}, satisfy for all y ∈ R n \ {0} , if Ãαα y ∈ span(x * α ), then n i=1 y i = 0.

  r p,s = t p,s min {t p,s : s ∈ S} , where p ∈ P , s ∈ S, and t p,s is either • the average number of iterations required to solve problem p by solver s corresponding to Figure (a), or • the maximum number of solutions corresponding to Figure (b), or • the percentage of failure (in the sense of Remark 3.3) corresponding to Figure (c), or • the average computing time corresponding to Figure (d).
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 1 Figure 1: The performance profiles of MPCM, NPIPM, LPM and SM.

  (a) tp,s = the average number of iterations (b) tp,s = the average computing time (c) tp,s = the maximum number of solutions found (d) tp,s = the percentage of failure
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 2 Figure 2: The performance profiles of MPCM, NPIPM and LPM.
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 33 Solving the corresponding problem associated with this quadratic pencil by MPCM and NPIPM with a sample of 104 random initial points gives 12 solutions as shown in Table3. Solutions of the problem corresponding to the pencil (5.3) solved by MPCM and NPIPM.

Table 1 :

 1 Comparison of the 4 solvers on the matrices A 1 , A 2 and A 3 .

			A 1		A 2		A 3
		Iter	Failure (%)	Iter	Failure (%) Iter	Failure (%)
	MPCM	6	8	8	5	7	0.6
	NPIPM	9	0	10	0.6	8	0.2
	LPM	6	0	7	0	7	0
	SM	8	33	8	44	9	46

Table 2 :

 2 Comparison of MPCM, NPIPM and LPM on the 6 problems .

	NPIPM	LPM

Table 4

 4 summarizes the results of MPCM and NPIPM on the problem corresponding to the pencil.(5.3).

	Methods Nmax	Iter	Failure (%)
	MPCM	12	8	9.7
	NPIPM	12	9	0.2

Table 4 :

 4 Comparison between MPCM and NPIPM on the pencil (5.3).

  in the matrix form gives(5.4). Using MPCM and NPIPM for solving the equivalent problem(5.4) with the data in (5.3), we get the following table

	Methods Nmax	Iter	Failure (%)
	MPCM	6	15	63
	NPIPM	6	13	37

Table 5 :

 5 Comparison between MPCM and NPIPM with the data (5.3).

https://math.nist.gov/MatrixMarket/