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An incidence of a graph G is a pair (v, e) where v is a vertex of G and e is an edge of G incident with v. Two incidences (v, e) and (w, f ) of G are adjacent whenever (i) v = w, or (ii) e = f , or (iii) vw = e or f . An incidence p-colouring of G is a mapping from the set of incidences of G to the set of colours {1, . . . , p} such that every two adjacent incidences receive distinct colours. Incidence colouring has been introduced by Brualdi and Quinn Massey in 1993 and, since then, studied by several authors.

In this paper, we introduce and study the strong version of incidence colouring, where incidences adjacent to a same incidence must also get distinct colours. We determine the exact value of -or upper bounds on -the strong incidence chromatic number of several classes of graphs, namely cycles, wheel graphs, trees, ladder graphs and subclasses of Halin graphs.

Introduction

All graphs considered in this paper are simple and loopless undirected graphs. We denote by V (G) and E(G) the set of vertices and the set of edges of a graph G, respectively, by ∆(G) the maximum degree of G, by N (v) the set of vertices adjacent to the vertex v and by dist G (u, v) the distance between vertices u and v in G.

An incidence of a graph G is a pair (v, e) where v is a vertex of G and e is an edge of G incident with v. Two incidences (v, e) and (w, f ) of G are adjacent whenever (i) v = w, or (ii) e = f , or (iii) vw = e or f . An incidence p-colouring of G is a mapping from the set of incidences of G to the set of colours {1, . . . , p} such that every two adjacent incidences receive distinct colours. The smallest p for which G admits an incidence p-colouring is the incidence chromatic number of G, denoted by χ i (G). Incidence colourings were first introduced and studied by Brualdi and Quinn Massey [START_REF] Brualdi | Incidence and strong edge colorings of graphs[END_REF]. Incidence colourings of various graph families have attracted much interest in recent years, see for instance [START_REF] Gregor | Note on incidence chromatic number of subquartic graphs[END_REF][START_REF] Gregor | On incidence coloring conjecture in Cartesian products of graphs[END_REF][START_REF] Hosseini Dolama | Incidence coloring of k-denegerated graphs[END_REF][START_REF] Maydanskyi | The incidence coloring conjecture for graphs of maximum degree 3[END_REF][START_REF] Sopena | The incidence chromatic number of toroidal grids[END_REF][START_REF] Wang | The incidence coloring number of Halin graphs and outerplanar graphs[END_REF][START_REF] Wu | Some results on the incidence coloring number of graphs[END_REF].

A strong edge p-colouring of G is a mapping from the set of edges of G to the set of colours {1, . . . , p} such that any two edges meeting at a common vertex, or being adjacent to a same edge of G, are assigned different colours. The smallest p for which G admits a strong edge p-colouring is the strong chromatic index of G, denoted by χ s (G).

The strong version of incidence colouring is defined in a similar way. A strong incidence pcolouring of a graph G is a mapping from the set of incidences of G to a finite set of colours {1, . . . , p} such that any two incidences that are adjacent or adjacent to the same incidence receive distinct colours. The smallest p for which G admits a strong incidence p-colouring is the strong incidence chromatic number, denoted by χ s i (G). Our paper is organised as follows. We first give some preliminary results in Section 2. We then study the strong incidence chromatic number of simple graph classes (stars, complete graphs, cycles, wheel graphs and trees) in Section 3, of ladder graphs in Section 4 and of subclasses of Halin graphs in Section 5. We finally propose some directions for future research in Section 6.

Preliminary results

We list in this section some basic results on the strong incidence chromatic number of various graph classes.

The square G 2 of a graph G is the graph defined by V (G 2 ) = V (G) and uv ∈ E(G 2 ) if and only if dist G (u, v) ≤ 2. A colouring of G 2 is called a 2-distance colouring of G and the 2-distance chromatic number of G is denoted by χ 2 (G).

For any graph G, the incidence graph of G, denoted by I G , introduced in [START_REF] Benmedjdoub | Incidence Choosability of Graphs[END_REF], is the graph whose vertices are the incidences of G, two incidences being joined by an edge whenever they are adjacent. Clearly, every incidence colouring of G is nothing but a proper vertex colouring of I G , and every strong incidence colouring of G is nothing but a 2-distance colouring of G, so that, χ i (G) = χ(I G ) and χ s i (G) = χ 2 (I G ). Moreover, since every strong incidence colouring is an incidence colouring, we have χ i (G) ≤ χ s i (G) for every graph G. For every vertex v in a graph G, we denote by A -(v) the set of incidences of the form (v, vu), and by A + (v) the set of incidences of the form (u, uv) (see Figure 1). We thus have

|A -(v)| = |A + (v)| = deg(v)
for every vertex v. Every edge uv of G has two incidences (u, uv) and (v, vu). We will say that two incidences are strongly adjacent if they are either adjacent or adjacent to a same incidence. The following observation will be useful.

Observation 1 For every incidence (v, vu) in a graph G with maximum degree ∆, the set of incidences that are strongly adjacent to (v, vu) is

w∈N (v)\u A + (w) ∪ w∈N (v) A -(w) ∪ w∈N (u)\v A -(w), whose cardinality is at most 3∆ 2 -2∆.
Indeed, the cardinality of the set of incidences that are strongly adjacent to (v, vu) (see Figure 2) is

w∈N (v)\u deg(w) + w∈N (v) deg(w) + w∈N (u)\v deg(w) ≤ 2∆(∆ -1) + ∆ 2 .
Therefore, if we colour G with 3∆ 2 -2∆ + 1 colours, then there exists at least one free colour that can be assigned to each incidence (v, vu) of G. We thus have the following upper bound on the strong incidence chromatic number of every graph.

Proposition 2 For every graph G with maximum degree ∆, For a given graph G with maximum degree ∆, we let

χ s i (G) ≤ 3∆ 2 -2∆ + 1. v u • • × × Incidences in A -(u) : , × Incidences in A + (v) : •, Incidences in A -(v) : Figure 1: Adjacent incidences. u v • • • • • • • • • Incidences in A + (w), w ∈ N (v) \ u : Incidences in A -(w), w ∈ N (v) : • Incidences in A -(w), w ∈ N (u) \ v :
σ(G) = max uv∈E(G) {2 deg G (v) + deg G (u) -1}.
For every edge uv in E(G), the incidences of the set

A -(v) ∪ A + (v) ∪ A -(u), of cardinality 2 deg G (v) + deg G (u) -1,
are pairwise strongly adjacent, which means that they must be assigned distinct colours. Therefore, using Proposition 2, we have the following inequalities.

Proposition 3 For every graph G with maximum degree ∆, σ(G) ≤ χ s i (G) ≤ 3∆ 2 -2∆ + 1. In the following proposition we give an upper bound on the strong incidence chromatic number of a graph G as a function of its strong chromatic index.

Proposition 4 For every graph G, χ s i (G) ≤ 2χ s (G). Proof. Let λ be a strong edge p-colouring of G. From this colouring, a strong incidence 2p-colouring λ is obtained using the set of 2p colours {1, 1 . . . , p, p } as follows: for every edge

uv ∈ E(G), if λ(uv) = k, k ∈ {1, . . . , p}, then λ (u, uv) = k and λ (v, vu) = k . Indeed, if λ (u, uv) = λ (w, wx)
for two incidences (u, uv) and (w, wx) of G, then λ(uv) = λ(wx), which implies dist G (uv, wx) ≥ 3, and thus dist I G ((u, uv), (w, wx)) ≥ 3.

Simple graph classes

In this section, we determine the strong incidence chromatic number of stars, complete graphs, cycles, trees and wheel graphs.

We denote by S n , n ≥ 1, the star of order n + 1, by K n , n ≥ 1, the complete graph of order n and by K m,n , m ≥ n ≥ 2, the complete bipartite graph with parts of size m and n. In [START_REF] Brualdi | Incidence and strong edge colorings of graphs[END_REF], Brualdi and Massey showed that

χ i (S n ) = n + 1, χ i (K n ) = n and χ i (K m,n ) = m + 2, for all m ≥ n ≥ 2.
Since all incidences of any graph in these classes of graphs are pairwise strongly adjacent, we have the following proposition.

Proposition 5 1. For every n ≥ 1, χ s i (S n ) = 2n, 2. for every n ≥ 2, χ s i (K n ) = 2|E(G)|, 3. for every m ≥ n ≥ 2, χ s i (K m,n ) = 2nm.
Let C n , n ≥ 3, denote the cycle of order n. Observe that I Cn = C2 2n . Therefore, a strong incidence colouring of the cycle C n is a 2-distance colouring of C 2 2n , that is nothing but a proper colouring of (C 2 2n ) 2 = C 4 2n . We thus have the following result.

Proposition 6 For every integer n ≥ 3,

χ s i (C n ) = χ(C 4 2n ).
By setting a = 4, the following theorem gives the value of χ(C 4 2n ).

Theorem 7 (Prowse and Woodall [START_REF] Prowse | Choosability of Powers of Circuits[END_REF]) Let n and a be positive integers such that n ≥ 2a and n = q(a + 1) + r, with q > 0 and 0 ≤ r ≤ a. Then χ(C a n ) = a + 1 + r/q .

Using Proposition 6 and Theorem 7, we can infer the value of the strong incidence chromatic number of any cycle.

Theorem 8 Let n be a positive integer such that n ≥ 4 and 2n = 5q + r, with q > 0 and 0 ≤ r ≤ 4. Then χ s i (C n ) = 5 + r/q .

We now determine the value of χ s i (W n ), where W n , n ≥ 3, is the wheel graph of order n + 1, obtained from C n by adding a universal vertex. It is easy to observe that χ i (W n ) = n + 1 for every n ≥ 3. Indeed, since the square of W n is the complete graph K k+1 , we get

n + 1 = ∆(W n ) + 1 ≤ χ i (W n ) ≤ χ(W 2 n ) = χ(K n+1 ) = n + 1.
Using Proposition 5 and Theorem 8, we can determine the strong incidence chromatic number of wheel graphs.

Theorem 9 Let n be a positive integer such that n ≥ 3 and 2n = 5q + r, with q > 0 and 0 ≤ r ≤ 4.

Then χ s i (W n ) = 5 + 2n + r/q .

Proof. Since W 3 = K 4 , the result holds by Proposition 5 for n = 3. Suppose now n ≥ 4 and let T denote the spanning subgraph of W n isomorphic to S n . Since every incidence in T is strongly adjacent to every incidence not in T , we get

χ s i (W n ) = χ s i (C Wn ) + χ s i (S n
) and the result follows from Proposition 5 and Theorem 8.

We finally determine the strong incidence chromatic number of trees.

Theorem 10 If G is a tree then χ s i (G) = max uv∈E(G) {2 deg G (v) + deg G (u) -1} = σ(G).
Proof. By Proposition 3, we have χ s i (G) ≥ σ(G). The other direction is proved by induction on |V (G)|. If G is a star, then σ(G) = 2n and the result follows from Proposition 5. We can thus assume that G is not a star, so that |V (G)| ≥ 4. Let u be a vertex of G of degree p + 1 ≥ 3 having only one neighbour, denoted by u , which is not a leaf, and let A = {v 1 , . . . , v p } be the set of p leaves that are neighbours of u. Let λ be a strong incidence colouring of G \ A. Now, observe that each incidence of the form (u, uv i ), 1 ≤ i ≤ p, has at most strongly adjacent incidences in G \ A, and each incidence of the form

(v i , v i u), 1 ≤ i ≤ p, has at most deg G\A (u ) + 1 = deg G (u ) + 1 ≤ σ(G) -2 deg G (u) + 1
strongly adjacent incidences in G \ A, so that λ can be extended to a strong incidence colouring of G, starting by colouring the incidences of the form (u, uv i ), 1 ≤ i ≤ p, and then, the incidences of the form (v i , v i u), 1 ≤ i ≤ p. This concludes the proof.

Ladder graphs

The ladder graph, denoted by L h , is obtained from two paths of order h, h ≥ 1, P h = v 1 . . . v h and P h = v 1 . . . v h by adding the edges v i v i , 1 ≤ i ≤ h. In the following theorem, we give the value of χ s i (L h ). Theorem 11 For every integer h ≥ 3, χ s i (L h ) = 10. Proof. Note that when h ≥ 3, L h contains a subgraph isomorphic to the graph L (see Figure 3) which contains 10 pairwise strongly adjacent incidences (marked with a star), implying χ s i (L h ) ≥ 10 for every h ≥ 3. To complete the proof, it suffices to give a strong incidence 10-colouring λ of L h . Such a colouring can be obtained as follows (see Figure 4 for the case h = 5).

1. We sequentially colour the incidences of the path P h using the pattern 123456.

2. We sequentially colour the incidences of the path P h using the pattern 456123.

For every

i, 1 ≤ i ≤ h, we set • λ(v i , v i v i ) = 7 and λ(v i , v i v i ) = 8, if i is odd, • λ(v i , v i v i ) = 9 and λ(v i , v i v i ) = 10) if i is even.
The so-obtained colouring is clearly a strong incidence colouring of L h . This concludes the proof.

Subclasses of Halin graphs

Recall first that a Halin graph H is a planar graph obtained from a tree of order at least 4 with no vertex of degree 2, by adding a cycle connecting all its leaves [START_REF] Halin | Studies on minimally n-connected graphs[END_REF]. We call this cycle the outer cycle of H. The subgraph T obtained by deleting all the edges of the outer cycle of H is thus a tree, called the internal tree of H.

1 v 1 v 2 v 3 v h-2 v h-1 v h h 1 2 3 h-2 h-1 h
In this section, we determine the exact value of -or upper bounds on -the strong incidence chromatic number of every Halin graph whose internal tree is either a comb or a double star.

Halin graphs whose internal tree is a comb

A tree is called a (3, 1)-tree if the degree of each non-leaf vertex is 3. A caterpillar is a tree T such that, after deleting all its leaves, the remaining graph is a simple path called the spine of T . A comb is a caterpillar which is also a (3,1)-tree. It is easy to see that every Halin graph whose internal tree is a comb is a cubic Halin graph. In particular, if the spine has one vertex then this is the complete graph K 4 .

For every integer h ≥ 1, we construct a Halin graph H h of order 2h + 2 whose internal tree T h is a comb, using the construction given in [START_REF] Shiu | On Strong Chromatic Index of Halin Graph[END_REF]. Let P h = v 1 v 2 . . . v h be the spine of H h . We denote by 1 and 1 (resp. h and h ) the two leaves of v 1 (resp. v h ), by i the unique leaf of v i , 2 ≤ i ≤ h -1, and by C h the outer cycle of H h .

Let H c h be the set of all Halin graphs whose internal tree is a comb of order 2h + 2. A Halin graph H h such that C h = 1 2 . . . h 1 is called a necklace. We denote by N h the (unique) necklace of order 2h + 2. Observe that H c h = {N h } for every h, 1 ≤ h ≤ 3. It is easy to see that all incidences of N 1 are pairwise strongly adjacent. Therefore, χ s i (N 1 ) = 12. If G = N 2 , then the incidences of the set

A -(v 1 ) ∪ A + (v 1 ) ∪ A -(v 2 ) ∪ {( 1 , 1 2 ), ( 2 , 2 1 ), ( 1 , 1 2 ), ( 2 , 2 1 )},
of cardinality 12, are pairwise strongly adjacent. Hence, we have χ s i (N 2 ) ≥ 12. Also, the cardinality of the set of the incidences of N 3 is 24. Therefore, if we colour the graph with 11 colours, then at least two colours must be repeated at least three times or at least one colour must be repeated at least four times. It is tedious but not difficult to check that this is not possible. Hence, χ s i (N 3 ) ≥ 12. Strong incidence 12-colourings of N h , 1 ≤ h ≤ 3, are given in Figure 6.

1 v 1 v 2 v 3 v h-2 v h-1 v h h 1 2 h-1 h m r (a) 1 v 1 v 2 v 3 v h-2 v h-1 v h h 1 2 m h-1 h r (b)
Suppose now h ≥ 4. In [START_REF] Shiu | On Strong Chromatic Index of Halin Graph[END_REF], Shiu, Lam and Tam proved the following theorem.

Theorem 12 (Shiu, Lam and Tam [START_REF] Shiu | On Strong Chromatic Index of Halin Graph[END_REF])

If H ∈ H c h , h ≥ 4, then 6 ≤ χ s (H) ≤ 8.
By Proposition 4 and Theorem 12, we get χ s i (H) ≤ 16, for every graph H ∈ H c h , h ≥ 4. We prove that if H is not a necklace then this bound can be decreased to 14.

Theorem 13 If H ∈ H c h \ {N h }, h ≥ 4, then 11 ≤ χ s i (H) ≤ 14. Proof. Let H ∈ H c h \ {N h }.
By exchanging if necessary the leaves 1 and 1 , or h and h , we can assume that H has either the form depicted in Figure 7(a) or the form depicted in Figure 7(b), where the edges v i i , 3 ≤ i ≤ h -2, may be either upward or downward. In both cases, H contains a subgraph isomorphic to the graph F (see Figure 8) which contains 11 pairwise strongly adjacent incidences (marked with a star), implying χ s i (H) ≥ 11. We now construct a strong incidence 14-colouring λ of H assuming that H has either the form depicted in Figure 7(a) or the form depicted in Figure 7a

(b), which means that the inci- dence (v 2 , v 2 2 ) (resp. (v h-1 , v h-1 v h ))
is not strongly adjacent with the incidence ( 1 , 1 1 ) (resp. ( h , h h )). Such a colouring can be obtained as follows (see Figure 9). • We colour the incidences of the path 1 , h sequentially, from ( 1 , 1 v 1 ) to ( h , h v h ) using the pattern 12345.

• For every integer i,

1 ≤ i ≤ h, we set λ(v i , v i i ) = 6 if i is odd and λ(v i , v i i ) = 7 otherwise.
• We colour circularly the incidences of the form ( i , i v i ), 1 ≤ i ≤ h according to their order in the outer cycle C 2h+2 by alternating the colours 8 and 9.

• We exchange the colours of the two incidences (v 2 , v 2 2 ) and (v 2 , v 2 v 1 ), and the colours of the two incidences

(v h-1 , v h-1 v h ) and (v h-1 , v h-1 h-1
).

• We now colour the incidences of the outer cycle C 2h+2 according to the value of h mod 5:

h = 5k, k ≥ 1 (see Figure 9(a) for the case h = 5). We first set λ( 1 ,

1 1 ) = λ(v 2 , v 2 2 ), λ( 1 , 1 1 ) = λ(v 2 , v 2 v 3 ), λ( h , h h ) = λ(v h-1 , v h-1 h-1 ) and λ( h , h h ) = λ(v h-1 , v h-1 v h-2
). We then sequentially colour the uncoloured incidences of C 2h+2 , starting from ( 1 , 1 2 ), using the pattern 10.11.12.13.14. h = 5k + 1, k ≥ 1 (see Figure 9(b) for the case h = 6).

We first set λ( 1 ,

1 1 ) = λ(v 2 , v 2 2 
). We then sequentially colour the uncoloured incidences of C 2h+2 , starting from ( 1 , 1 1 ), using the pattern 10.11.12.13.14. h = 5k + 2, k ≥ 1 (see Figure 9(c) for the case h = 7).

We first set λ( 1 ,

1 1 ) = λ(v 2 , v 2 2 ), λ( 1 , 1 1 ) = λ(v 2 , v 2 v 3 ) and λ( h , h h ) = λ(v h-1 , v h-1 h-1 ).
We then sequentially colour the uncoloured incidences of C 2h+2 , starting from ( 1 , 1 2 ), using the pattern 10.11.12.13.14. h = 5k + 3, k ≥ 1 (see Figure 9(d) for the case h = 8).

We sequentially colour the incidences of C 2h+2 , starting from ( 1 , 1 1 ), using the pattern 10.11.12.13.14. h = 5k + 4, k ≥ 0 (see Figure 9(e) for the case h = 4).

We first set λ( 1 , 1 1 ) = λ(v 2 , v 2 2 ) and λ( 1 , 1 1 ) = λ(v 2 , v 2 v 3 ). We then sequentially colour the uncoloured incidences of C 2h+2 , starting from ( 1 , 1 2 ), using the pattern 10.11.12.13.14.

In each case, the so-obtained colouring is clearly a strong incidence colouring of G ∈ H c h . This completes the proof.

We Now determine the value of the strong incidence chromatic number of necklaces.

Theorem 14 For every necklaces N h , h ≥ 1, we have

χ s i (N h ) = 12 if h = 1, 2, 3, 5, 11 otherwise. 
Proof. As we showed in the proof of Theorem 13, N h contains a subgraph isomorphic to the graph F (see Figure 8), which implies χ s i (N h ) ≥ 11 for every h ≥ 1. The values of χ s i (N h ), 1 ≤ h ≤ 3, were given in the beginning of the subsection.

If h = 5, the cardinality of the set of the incidences of N 5 is 36. Therefore, if we colour the graph with 11 colours, then at least three colours must be repeated at least four times, or one colour must be repeated at least five times and one colour must be repeated at least four times, or at least one colour must be repeated at least six times. We will prove that at most two colours can be repeated four times, which will imply χ s i (N 5 ) ≥ 12. The set of incidences of N 5 can be partitioned into four sets, the set of incidences marked with a star, the set of incidences marked with a diamond, the set of incidences marked with a circle

• • • × × × • • • × × × • • • • × × × × 1 v 1 v 2 v 3 v 4 v 5 5 5 4 3 2 1
(a) and the set of incidences marked with a cross (See Figure 10(a)). Since, in each of these sets, all incidences are pairwise strongly adjacent, the colour of any incidence of N 5 can be repeated at most four times. Moreover, any colour repeated four times must be used exactly once in each of these sets. We now prove that among the colours of the incidences marked with a star in Figure 10(a), only two colours can be repeated four times.

• The incidence ( 1 , 1 5 ).

The set of the incidences that are not strongly adjacent with this incidence can be partitioned into the two sets

{(v 2 , v 2 2 ), (v 2 , v 2 v 3 ), ( 2 , 2 v 2 ), ( 2 , 2 3 ), (v 3 , v 3 v 2 ), ( 2 , 2 3 )} and {(v 3 , v 3 3 ), (v 3 , v 3 v 4 ), ( 3 , 3 v 3 ), ( 3 , 3 4 ), (v 4 , v 4 v 3 ), (v 4 , v 4 4 ), (v 4 , v 4 v 5 ), ( 4 , 4 3 ) 
, ( 4 , 4 v 4 ), ( 4 , 4 5 )}. Since, in each of these sets, all incidences are pairwise strongly adjacent, the colour of the incidence ( 1 , 1 5 ) can be repeated only two more times.

• The incidence ( 1 , 1 v 1 ). The set of the incidences that are not strongly adjacent with this incidence can be partitioned into the two sets {( 2 , 2 v 2 ), ( 2 , 2 3 ), (v 3 , v 3 v 2 ), (v 3 , v 3 3 ), (v 3 , v 3 v 4 ), ( 3 , 3 2 ), ( 3 , 3 v 3 ), ( 3 , 3 4 )} and {(v 4 , v 4 v 3 ), (v 4 , v 4 4 ), (v 4 , v 4 v 5 ), ( 4 , 4 3 ), ( 4 , 4 v 4 ), ( 4 , 4 5 ), (v 5 , v 5 v 4 ), (v 5 , v 5 5 ), ( 5 , 5 4 ), ( 5 , 5 v 5 ), }. Since, in each of these sets, all incidences are pairwise strongly adjacent, the colour of the incidence ( 1 , 1 v 1 ) can be repeated only two more times.

• By symmetry, the case of the incidence ( 1 , 1 1 ) is similar to the case of the incidence ( 1 , 1 v 1 ).

Based on the above, only the colours of the two incidences ( 1 , 1 1 ) and (v 1 , v 1 1 ) can be repeated four times. Hence, χ s i (N 5 ) ≥ 12. A strong incidence 12-colouring of N 5 is given in Figure 10(b), so that χ s i (N 5 ) = 12. Finally, if h = 4 or h ≥ 6 then it suffices to construct a strong incidence 11-colouring of N h . Such a colouring can be obtained as follows (see Figure 11). We consider two cases, depending on the parity of h.

• h is even.

-We first colour the subgraph S h induced by the set of vertices {v 1 , . . . , v h , 1 , . . . , h } (which is isomorphic to the ladder graph L h ), as in the proof of Theorem 11. -We then modify the colouring of the subgraph S h and we complete the colouring of N h according to the value of h mod 6: * h = 6k, k ≥ 1 (see Figure 11(a) for the case h = 6). We set λ( 1 , 11(c) for the case h = 10).

1 1 ) = 6, λ( 1 , 1 1 ) = 10, λ( 1 , 1 v 1 ) = 9, λ(v 1 , v 1 1 ) = 11, λ( 1 , 1 h ) = 3, λ( h , h 1 ) = 2, λ( h , h v h ) = 7, λ( h , h h ) = 8, λ(v h , v h h ) = 11, λ( h , h h ) = 5. * h = 6k + 2, k ≥ 1 (see Figure 11(b) for the case h = 8). We set λ( 1 , 1 2 ) = 11, λ( 1 , 1 1 ) = 6, λ( 1 , 1 1 ) = 10, λ( 1 , 1 v 1 ) = 9, λ(v 1 , v 1 
3, λ( 1 , 1 h ) = 1, λ( h , h 1 ) = 2, λ( h , h v h ) = 7, λ( h , h h ) = 8, λ(v h , v h h ) = 6, λ( h , h h ) = 3. * h = 6k + 4, k ≥ 0 (see Figure
We set

λ( 2 , 2 1 ) = 11, λ( 1 , 1 1 ) = 6, λ( 1 , 1 1 ) = 10, λ( 1 , 1 v 1 ) = 9, λ(v 1 , v 1 1 ) = 3, λ( 1 , 1 h ) = 2, λ( h , h 1 ) = 11, λ( h , h v h ) = 7, λ( h , h h ) = 8, λ(v h , v h h ) = 4, λ( h , h h ) = 1.
• h is odd.

-We first colour the subgraph S h induced by the vertices {v 1 , . . . , v h , 1 , . . . , h } (which is isomorphic to the ladder graph L h ), as in the proof of Theorem 11, and we make the following modifications. We set

λ(v h-4 , v h-4 h-4 ) = 11, λ(v h-3 , v h-3 h-3 ) = 8, λ(v h-2 , v h-2 h-2 ) = 11, λ( h-2 , h-2 v h-2 ) = 10, λ(v h-1 , v h-1 h-1 ) = 8, λ( h-1 , h-1 v h-1 ) = 7, λ(v h , v h h ) = 10, λ( h , h v h ) = 9.
-We modify the colouring of the subgraph S h and we complete the colouring of N h according to the value of h mod 6:

* h = 6k + 1, k ≥ 1 (see Figure 11(d) for the case h = 7). We set λ( 2 , 2 1 ) = 11, λ( 1 , 1 1 ) = 6, λ( 1 , 1 1 ) = 10, λ( 1 , 1 v 1 ) = 9, λ(v 1 , v 1 1 ) = 3, λ( 1 , 1 h ) = 2, λ( h , h 1 ) = 11, λ( h , h v h ) = 7, λ( h , h h ) = 8, λ(v h , v h h ) = 4, λ( h , h h ) = 1. if h = 7
the we exchange the colours of the incidences (v 3 , v 3 v 4 ) and (v 3 , v 3 3 ). * h = 6k + 3, k ≥ 1 (see Figure 11(e) for the case h = 9).

We set λ( 1 ,

1 1 ) = 6, λ( 1 , 1 1 ) = 10, λ( 1 , 1 v 1 ) = 9, λ(v 1 , v 1 1 ) = 11, λ( 1 , 1 h ) = 3, λ( h , h 1 ) = 2, λ( h , h v h ) = 7, λ( h , h h ) = 8, λ(v h , v h h ) = 11, λ( h , h h ) = 5. * h = 6k + 5, k ≥ 1 (see Figure 11(f) for the case h = 11). We set λ( 1 , 1 2 ) = 11, λ( 1 , 1 1 ) = 6, λ( 1 , 1 1 ) = 10, λ( 1 , 1 v 1 ) = 9, λ(v 1 , v 1 1 ) = 3, λ( 1 , 1 h ) = 1, λ( h , h 1 ) = 2, λ( h , h v h ) = 7, λ( h , h h ) = 8, λ(v h , v h h ) = 6, λ( h , h h ) = 3.
In each case, the so-obtained colouring is clearly a strong incidence colouring of N h . This completes the proof.

Halin graphs whose internal tree is a double star

The double star, denoted by S m,n , m ≥ n ≥ 2, is the graph obtained from the stars S m and S n by adding an edge joining the central vertex of S m to the central vertex of S n . The Halin graph HD m,n (see Figure 12) is the Halin graph whose internal tree is the double star S m,n and whose outer cycle is u 1 . . . u n v m . . . v 1 u 1 . We denote by P the path v 1 . . . v m and by P the path u 1 . . . u n . It is easy to see that for every graph HD m,n , m ≥ n ≥ 2, the incidences of the set

A -(v) ∪ A + (v) ∪ A -(u) ∪ {(v 1 , v 1 u 1 )}, of cardinality 2 deg(v) + deg(u) = σ(HD m,n ) + 1
, are pairwise strongly adjacent. Therefore, we have the following inequality.

Proposition 15 For every two integers m and n, m

≥ n ≥ 2, χ s i (HD m,n ) ≥ 2m + n + 3 = σ(HD m,n ) + 1.
We first define a partial colouring λ of HD m,n , for every m ≥ n ≥ 3, as follows.

• The incidences (v, vu), (v, vv 1 ), (v, vv 2 ), . . . , (v, vv m ) are coloured with the colours 1, 2, 3, . . . , m + 1, respectively.

• The incidences (u, uv), (u, uu 1 ), (u, uu 2 ), . . . , (u, uu n ) are coloured with the colours m + 2, m + 3, m + 4, . . . , m + n + 2, respectively.

• The incidences (v 1 , v 1 v), (v 2 , v 2 v), . . . , (v m , v m v)
are coloured with the colours m+n+3, m+ n + 4, . . . , 2m + n + 2, respectively.

• The incidence (v 1 , v 1 u 1 ) is coloured with the colour 2m + n + 3.

In the next lemmas, we will extend λ to a colouring of HD m,n , according to the values of m and n.

Lemma 16 For every integer m ≥ 2,

χ s i (HD m,2 ) = σ(HD m,2 ) + 4 if m = 2, σ(HD m,2 ) + 3 otherwise.
Proof. Strong incidence colourings of HD 2,2 and HD 3,2 are given in Figure 13. Suppose now m ≥ 4. Observe that each colour of the set {1, . . . , m + 1 , m + 2, m + 5, . . . , 2m + 4} of cardinality 2m + 2 is forbidden on the incidences of P , due to the partial colouring λ. Therefore, χ s i (HD m,2 ) ≥ 2m+7 = σ(HD m,2 )+3. To colour the incidences of the path P , we use the three colours m+3, m+4 and 2m + 5, and two additional colours 2m + 6 and 2m + 7.

• We will sequentially colour the path P , according to the value of m mod 5, as follows. m = 5k, k ≥ 1 (see Figure 14(a) for the case m = 5). We use the pattern (2m + 7)(m + 4)(m + 3)(2m + 6)(2m + 5). m = 5k + 1, k ≥ 1 (see Figure 14(b) for the case m = 6).

We use the pattern (2m + 6)(m + 4)(m + 3)(2m + 7)(2m + 5). m = 5k + 2, k ≥ 1 (see Figure 14(c) for the case m = 7).

We use the pattern (m + 4)(m + 3)(2m + 6)(2m + 7)(2m + 5). m = 5k + 3, k ≥ 1 (see Figure 14(d) for the case m = 8).

We use the pattern (2m + 7)(m + 4)(m + 3)(2m + 6)(2m + 5). m = 5k + 4, k ≥ 1 (see Figure 14(e) for the case m = 9).

We use the pattern (2m + 7)(2m + 6)(m + 3)(m + 4)(2m + 5).

• We then set λ(v m , v m u n ) = 2m + 5 if m = 5k + 3, and λ(v m , v m u n ) = 2m + 6 otherwise.

• We finally complete the colouring of HD m,2 by assigning the colours 3, 4, 2m + 4, m + 5, 2m + 3 and m + 6 to the incidences (u 1 , u 1 u 2 ), (u 2 , u 2 u 1 ), (u 1 , u 1 u), (u 2 , u 2 u), (u 1 , u 1 v 1 ) and (u 2 , u 2 v m ), respectively.

This concludes the proof.

Lemma 17 For every integer m ≥ 3,

χ s i (HD m,3 ) = σ(HD m,3 ) + 3 if m = 3 or m = 4, σ(HD m,3 ) + 2 otherwise.
Proof. Strong incidence colourings of HD 3,3 and HD 4,3 are given in Figure 15. Suppose now m ≥ 5. Observe that each colour of the set {1, . . . , m+1 , m+2, m+6, . . . , 2m+5} of cardinality 2m+2 is forbidden on the incidences of P , due to the partial colouring λ. Therefore, χ s i (HD m,3 ) ≥ 2m + 7 = σ(HD m,3 ) + 2. To colour the incidences of the path P , we use the four colours m + 3, m + 4, m + 5 and 2m + 6, and an additional colour 2m + 7.

• We will sequentially colour the incidences of path P , starting from the incidence (v 1 , v 1 v 2 ), according to the value of m mod 5, as follows.

m = 5k, k ≥ 1 (see Figure 16(a) for the case m = 5). We use the pattern (m + 4)(m + 5)(m + 3)(2m + 7)(2m + 6). m = 5k + 1, k ≥ 1 (see Figure 16(b) for the case m = 6). We use the pattern (2m + 7)(m + 3)(m + 4)(m + 5)(2m + 6). m = 5k + 2, k ≥ 1 (see Figure 16(c) for the case m = 7).

We use the pattern (m + 4)(m + 3)(2m + 7)(m + 5)(2m + 6). m = 5k + 3, k ≥ 1 (see Figure 16(d) for the case m = 8).

We use the pattern (2m + 7)(m + 5)(m + 3)(m + 4)(2m + 6). m = 5k + 4, k ≥ 1 (see Figure 16(e) for the case m = 9).

We use the pattern (m + 4)(2m + 7)(m + 3)(m + 5)(2m + 6).

• We then set λ(v m , v m u n ) = 2m + 6 if m = 5k + 3, and λ(v m , v m u n ) = 2m + 7 otherwise.

• We finally complete the colouring of HD m,3 by assigning the colours 5, 4, 3, 2, 2m + 5, 2m + 4, m + 6, m + 8 and m + 7 to the incidences (u 1 , u 1 u 2 ), (u 2 , u 2 u 1 ), (u 2 , u 2 u 3 ), (u 3 , u 3 u 2 ), (u 1 , u 1 u), (u 2 , u 2 u), (u 3 , u 3 u), (u 1 , u 1 v 1 ) and (u 3 , u 3 v m ), respectively.

This concludes the proof.

Lemma 18 For every integer m ≥ 4,

χ s i (HD m,4 ) =    σ(HD m,4 ) + 3 if m = 4, σ(HD m,4 ) + 1 if m ≡ 3 (mod 5), σ(HD m,4 ) + 2 otherwise.
Proof. Strong incidence colourings of HD 4,4 and HD 5,4 are given in Figure 17. Suppose now m ≥ 5. Observe that each colour of the set {1, . . . , m+1 , m+2, m+7, . . . , 2m+6} of cardinality 2m+2 is forbidden on the incidences of P and the incidence (v m , v m u n ), due to the partial colouring λ. Therefore, χ s i (HD m,4 ) ≥ 2m + 7 = σ(HD m,4 ) + 1. It should be noted that if λ(v m , v m u n ) = 2m + 7, then we can colour the path P with the colours m + 3, m + 4, m + 5, m + 6 and 2m + 7 if and only if m ≡ 3 (mod 5). We will sequentially colour the incidences of the path P , starting from the incidence (v 1 , v 1 v 2 ), as well as the incidence (v m , v m u n ), according to the value of m mod 5, as follows.

• m = 5k + 3 (see Figure 18(a) for the case m = 7).

We use the pattern (m+4)(m+3)(m+5)(m+6)(2m+7) for P and we set λ(v m , v m u n ) = 2m+8. • m = 5k + 3, k ≥ 1 (see Figure 18(b) for the case m = 8). We use the pattern (m+6)(m+5)(m+4)(m+3)(2m+7) for P and we set λ(v m , v m u n ) = 2m+7.

We finally colour the remaining incidences of HD m,4 by assigning the colours 5, 2, 3, 4, 6, 5, 2m+ 6, 2m + 5, m + 8, m + 7, 2m + 4 and m + 9 to the incidences (u 1 , u 1 u 2 ), (u 2 , u 2 u 1 ), (u 2 , u 2 u 3 ), (u 3 , u 3 u 2 ), (u 3 , u 3 u 4 ), (u 4 , u 4 u 3 ), (u 1 , u 1 u), (u 2 , u 2 u), (u 3 , u 3 u), (u 4 , u 4 u), (u 1 , u 1 v 1 ) and (u 4 , u 4 v m ), respectively. This concludes the proof.

Lemma 19 For every integer m ≥ 5, χ s i (HD m,5 ) = σ(HD m,5 ) + 1.

Proof. By Proposition 15, χ s i (HD m,5 ) ≥ 2m + 8 = σ(HD m,5 ) + 1. To complete the proof, we give a strong incidence (2m + 8)-colouring by extending λ to a colouring of HD m,5 as follows.

• We first sequentially colour the incidences of the path P , starting from the incidence (v 1 , v 1 v 2 ), according to the value of m mod 5 as follows.

m = 5k + 3, k ≥ 1 (see Figure 19(a) for the case m = 7). We use the pattern (m + 4)(m + 5)(m + 6)(m + 7)(m + 3). m = 5k + 3, k ≥ 1 (see Figure 19(b) for the case m = 8).

We use the pattern (m + 4)(m + 5)(m + 7)(m + 6)(m + 3).

• We then sequentially colour the incidences of the path P , starting from the incidence (u 1 , u 1 u 2 ), using the pattern 32456.

• We finally colour the remaining incidences of HD m,5 by assigning the colours 2m + 7, m + 10, 2m + 8, m + 12, m + 8, m + 11, m + 11 and 2m + 8 to the incidences (u 1 , u 1 u), (u 2 , u 2 u), (u 3 , u 3 u), (u 4 , u 4 u), (u 5 , u 5 u) (u 1 , u 1 v 1 ), (u 5 , u 5 v m ) and (v m , v m u n ), respectively.

This concludes the proof.

Lemma 20 For every two integers m and n, m ≥ n ≥ 6, χ s i (HD m,n ) = σ(HD m,n ) + 1.

Proof. By Proposition 15, χ s i (HD m,n ) ≥ 2m + n + 3 = σ(HD m,n ) + 1. To complete the proof, we give a strong incidence (2m + n + 3)-colouring by extending λ to a colouring of HD m,n as follows (see Figure 20).

• We first sequentially colour the incidences of the path P , starting from the incidence (v 1 , v 1 v 2 ), using the pattern (m + 4)(m + 5)(m + 6)(m + 3)(m + 7).

• We then sequentially colour the incidences of the path P , starting from the incidence (u 1 , u 1 u 2 ), using the pattern 32456.

• We finally set λ(u i , u i u) = 2m + n + 3 -i, for every i, i ∈ {1, 2, 4, . . . , n}, λ(u 3 , u 3 u) = 2m + n + 3, λ(u n , u n v m ) = λ(u 1 , u 1 v 1 ) = 2m + n and λ(v m , v m u n ) = 2m + n + 3.

This concludes the proof.

Putting together Lemmas 16, 17, 18, 19 and 20, we finally get the following theorem.

Theorem 21 For every two integers m and n, m ≥ n ≥ 3, 

χ s i (HD m,n ) =               
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 2 Figure 2: Strongly adjacent incidences.
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 3 Figure 3: The graph L.
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 4 Figure 4: A strong incidence 10-colouring of L 5 .
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 5 Figure 5: The graph N h .
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 6 Figure 6: Strong incidence 12-colourings of N 1 , N 2 and N 3 .
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 78 Figure 7: Each graph H ∈ H c h \ {N h } has the form (a) or the form (b)
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 9 Figure 9: Strong incidence 14-colourings of graphs in H c h , 4 ≤ h ≤ 8.
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 10 Figure 10: The necklace N 5 (for the proof of Theorem 14).
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 11 Figure 11: Strong incidence 11-colourings of N h , 6 ≤ h ≤ 11.
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 212 Figure 12: The Halin graph HD m,n .
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 13 Figure 13: Strong incidence colourings of HD 2,2 and HD 3,2 .

Figure 14 :

 14 Figure 14: Strong incidence colourings of HD m,2 , 5 ≤ m ≤ 9.

Figure 15 :

 15 Figure 15: Strong incidence colourings of HD 3,3 and HD 4,3 .

Figure 16 :

 16 Figure 16: Strong incidence colourings of HD m,3 , 5 ≤ m ≤ 9.

Figure 17 :

 17 Figure 17: Strong incidence colourings of HD 4,4 and HD 5,4 .
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 1819 Figure 18: Strong incidence colourings of HD 7,4 and HD 8,4 .

Figure 20 :

 20 Figure 20: Strong incidence colourings of HD 7,7 and HD 8,7 .

  σ(HD m,n ) + 4 if n = 2 and m = 2, σ(HD m,n ) + 3 if n = 2 and m = 2, or (n, m) ∈ {(3, 3), (3, 4), (4, 4)}, σ(HD m,n ) + 2 if n = 3 and m ∈ {3, 4}, or n = 4 and m = 4 and m ≡ 3 (mod 5), σ(HD m,n ) + 1 otherwise.

deg G\A (u ) = 2 deg G (u ) ≤ σ(G) -deg G (u) + 1

Discussion

In this paper, we have introduced and studied the strong version of incidence colouring. We have determined the exact value of -or upper bounds on -the strong incidence chromatic number of several classes of graphs, namely cycles, wheel graphs, trees, ladder graphs and some subclasses of Halin graphs. We leave as open problems the following questions.

1. What is the best possible upper bound on the strong incidence chromatic number of graphs with bounded maximum degree? In particular, what about graphs with maximum degree 3?

2. What is the best possible upper bound on the strong incidence chromatic number of Halin graphs?

3. What is the best possible upper bound on the strong incidence chromatic number of ddegenerated graphs?