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Abstract

The use of filterbank formalism has now become a current practice to analyze and
design MultiCarrier Modulation (MCM) systems. In this note, we reuse this pow-
erful tool to revisit the Orthogonal Frequency Division Multiplexing (OFDM)/Offset
Quadrature Amplitude Modulation(OQAM) or, equivalently, the Filter Bank Multi-
Carrier (FBMC)/OQAM scheme. Focusing on symmetric OFDM/OQAM systems with
a number of subcarriers being a multiple of 4, we, firstly propose a complete character-
ization of perfect, or nearly perfect, reconstruction FBMC systems using classical tools
of the linear algebra theory. In addition, we introduce two new families of prototype
filters that, with a reduced number of parameters, outperform classical solutions from
the literature for minimization of the total interference criterion.

1 Introduction

Introduced in the last mid-sixties the MultiCarrier Modulation (MCM) idea has become a
reality along the years. Nowadays, among the various possible MCM schemes, Orthogonal
Frequency Division Multiplexing (OFDM), being adopted in a large bunch of communication
standards, remains, from an industrial point of view, the clear leader. Filter Bank Multi-
Carrier (FBMC) is another MCM option that also attracts researchers and engineers. As
recalled in [1], even if it has been decided to stick to OFDM for the fifth generation (5G) mo-
bile communications, mainly for backwards compatibility with 4G, the modulation format,
and particularly the FBMC one, still needs to be investigated. Roughly speaking OFDM
and FBMC systems share many commonalities, among others, it is worth mentioning the
ease of implementation using fast Fourier transform algorithms and the possibility to preserve
orthogonality properties in spite of the overlap between frequency subcarriers. The main dif-
ference, when considering the FBMC/Offset Quadrature Amplitude Modulation (OQAM)
option, also known as OFDM/OQAM, comes from the fact that both MCM schemes do not
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refer to the same type of orthogonality. If for OFDM, the orthogonality holds in the complex
domain, i.e. the receiver directly attempts to recover the QAM symbols transmitted over
each sub-carrier, for FBMC/OQAM the orthogonality can only be reached in the real do-
main, transmitting OQAM symbols, i.e. at given time and frequency locations either purely
real or purely imaginary coefficients. Only satisfying a real orthogonality condition involves
some additional complexity, but FBMC/OQAM has the great advantage over OFDM of al-
lowing designers to introduce efficient filtering operations and, furthermore, can operate at
a maximum transmission bit rate since no Cyclic Prefix is required.
In this note, we only focus on the FBMC/OQAM scheme corresponding to the present
state of art description, i. e. the transmitted signal is generated using an exponentially
modulated Synthesis Filter Bank while at the receiver side the signal is decomposed using
the match filtering principle by an Analysis Filter Bank (AFB), such that the SFB-AFB
pair satisfies either a perfect, or a nearly perfect, reconstruction property, being abbreviated
by PR or NPR, respectively. Let us nevertheless recall a few landmarks papers that have
paved the way. For interested readers, a more complete and actualized overview can be
found in [2, Chapter 7]. The basic idea has been exposed at first in [3] and it originally leads
to a continuous-time description of this MCM scheme often named Staggered MultiTone
(SMT) either using, starting in 2010, a continuous [4] or, more recently, a discrete-time [5]
description.
The OFDM/OQAM spelling came at first in reference [6] but still corresponding to a
continuous-time description. A detailed description of OFDM/OQAM in discrete-time is
provided in [7]. What is now called FBMC/OQAM, a denomination introduced within the
European PHYDYAS project [8], globally reuses the description and implementation features
introduced in [7].
In this note, our aim is to bring a new look at the FBMC/OQAM described in [7] and
since then in many research papers, projects and standards. Doing so, compared to [7], we
introduce one single restriction. Instead of considering FBMC/OQAM systems equipped
with arbitrary length prototype filters, in the present note, we assume this length, denoted
L, is expressed as L = KM with K the overlapping factor and M the sub-carrier number
supposed to be a multiple of 4. Note that for practical applications these conditions are
generally satisfied and do not constitute veritable restrictions. For this KM -length prototype
filter our aim is three-fold:

1. Revisit the link between real orthogonality and PR of the FBMC/OQAM transmulti-
plexer (TMUX);

2. Derive a diagonalized form of the TMUX matrix transfer function;

3. Introduce new families of NPR prototype filters.

More precisely:

• [7] provides a first proof of the equivalence between perfect real orthogonality of
OFDM/OQAM systems and PR property of the associated back-to-back SFB and
AFB. In the present note, we exhibit a simplified proof for KM -length FBMC systems
and analyze more in details different equivalent PR conditions. In particular, we show,
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for the first time with a discrete-time formalism, the link between perfect real orthog-
onality and the conditions that have to be satisfied by the discrete-time ambiguity
function of the prototype filter.

• In various publications the transfer matrix function, say T , of the FBMC/OQAM
TMUX has been used to analyze its behavior, in particular w.r.t. the resulting Inter-
Symbol Interference (ISI) and InterCarrier Interference (ICI). Some interesting features
of T have already been mentioned, e.g. its symmetry in [7], the fact that its terms
were similar in every row [9], and, more recently, its Toeplitz nature in [10]. But, up
to now, no authors have taken simultaneously advantage of all these features. Doing
so, in this note, we obtain a diagonalization of the transfer matrix T .

• For large values of M and K, the direct computation of PR or NPR prototype filters
may lead to large size difficult optimization problems. On another hand, we can notice a
constant interest for the Square Root Raised Cosine (SRRC) prototype filter, that only
involves one parameter, while in the case of FBMC/OQAM systems a prototype filter
defined with at mostK parameters, introduced independently by Martin and Mirabbasi
[11, 12] and Bellanger [13], has also attracted a lot of interest, see for instance [2]. Let
call MMB this prototype filter. As for the SRRC and the MMB prototype filter, our aim
in this note is to propose new families of NPR prototype filters being characterized only
using a limiter number of parameters. Our goal is attained starting from the Extended
Gaussian Function (EGF) [14, 15, 16], a PR prototype filter if its length and number
of parameters can go to infinity. A first class of NPR prototype filters is obtained
using an appropriate modification of the original EGFs, named Linear Combination of
Gaussian Filters (LCGF), involving at most K + 2 parameters. To create the second
family, named GEN, we introduce another modification of the EGF. Then, with at
most 2K + 3 parameters, GEN family incorporates the LCGF and MMB families of
prototype filters. All these NPR FBMC/OQAM solutions are compared taking into
account an overall interference measure.

Our note is organized as follows. Section 2 is devoted to the presentation of the FBMC/OQAM
prototype filter. Starting from the PR conditions involving the polyphase components of the
prototype filter, sets of z-functions are introduced allowing us to derive four different PR
conditions. In Section 3, we introduce a z-matrix connected to one of the previous PR con-
dition and provide a diagonalization of this symmetric matrix. In Section 4, we rewrite the
FBMC/OQAM equations corresponding to the case where L = KM and, taking advantage
of the linear algebra analysis introduced in Section 3, an expression of the FBMC/OQAM
TMUX is derived. Then, in order to tackle the case of NPR systems, a few possible expres-
sions for the interference functions are restated. As in [9], in Section 5, the TOtal Interference
(TOI) criterion, i. e. ISI+ICI, is retained to optimize the different families of prototype fil-
ters considered in our study while usual metrics, as out-of-band energy and time-frequency
localization (TFL) are used to complete our comparisons. Our conclusions are finalized in
Section 6.

Notations
In this note, vectors and matrices are denoted by bold characters, and row and column
indexes start from 0. j designates the imaginary unit, i. e. j2 = −1. For a complex number,
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say c, <{c} and ={c} designate its real and imaginary part, respectively. Superscript .T

stands for transposition. Overlined terms denote complex conjugation, e. g. for a discrete-
time filter, p[n] with z-transform P (z), P (z) =

∑
n p[n]z−n.

For an n × n matrix B and m ≥ 2, the nm × nm block diagonal matrix with m diagonal
blocks equal to B is denoted by Dm[B]. The n× n identity matrix is denoted by In.

If v is a vector of dimension n, ∆[v] is the n×n diagonal matrix such that ∆[v]r,r = vr, 0 ≤
r ≤ n− 1.

Γn is the n× n diagonal matrix with diagonal elements [Γn]r,r = (−1)r, 0 ≤ r ≤ n− 1.

For n ≥ 1, as denoted for example in [17], CII
n is the n× n non normalized DCT-II matrix

defined by

[CII
n ]r,c = cos

πr(2c+ 1)

2n
, 0 ≤ r, c ≤ n− 1, (1)

and CIII
n is the n× n non normalized DCT-III matrix defined by

[
CIII
n

]
r,c

=


1

2
if c = 0

cos
(2r + 1)cπ

2n
if c 6= 0

, 0 ≤ r, c ≤ n− 1. (2)

Up to a multiplicative constant, CII
n and CIII

n are inverse matrices

CII
n C

III
n =

n

2
In. (3)

Let σ be a bijective application on the set {0, 1, . . . n−1} for n ≥ 2 that defines a permutation
of this set. Then the n× n permutation matrix Jσ is defined by [Jσ]r,c = 1 if c = σ(r) and
0 otherwise, for 0 ≤ r, c ≤ n− 1.
For σ and τ two permutations on {0, 1, . . . n − 1}, and τ ◦σ their composition defined by
τ ◦σ(r) = τ(σ(r)), 0 ≤ r ≤ n− 1, then Jσ J τ = J τ◦σ.
For a permutation σ on {0, 1, . . . n− 1} and a vector v of dimension n,

∆[Jσv] = Jσ∆[v]JTσ . (4)

Let sn denote the permutation on {0, 1, . . . , n−1} defined by sn(i) = n−1−i, and Jn = J sn
be the associated permutation matrix. The following lemma, with a straightforward proof,
will be used later on.

Lemma 1. For any n ≥ 1, CIII
n Γn = JnC

III
n .

Proof.– For c = 0 and 0 ≤ r ≤ n− 1, we get
[
CIII
n Γn

]
r,0

=
[
JnC

III
n

]
r,0

= 1
2
.

When c 6= 0,

[
CIII
n Γn

]
r,c

= (−1)c cos
(2r + 1)cπ

2n
,

4



[
JnC

III
n

]
r,c

= [CIII
n ]n−1−r,c = cos

[2(n− 1− r) + 1]cπ

2n

= cos

(
cπ − (2r + 1)cπ

2n

)
=
[
CIII
n Γn

]
r,c
,

which proves Lemma 1.

2 FBMC/OQAM prototype filter

As indicated in the introduction, in this note we focus on M -subcarrier FBMC/OQAM
systems equipped with a symmetrical prototype filter having a K overlapping factor. Be-
yond the brief reminder of the Perfect Reconstruction (PR) property reported in subsection
2.2, giving the condition for a distortion-free FBMC transmission, i. e. the capability to
exactly recover at the demodulator output the transmitted input symbols, we introduce
new functions allowing us afterwards to provide a complete and precise description of the
FBMC/OQAM transmission system.

2.1 Basic definitions

For K ≥ 2 and M ≥ 4, M multiple of 4, we consider in this note a causal symmetric real filter
P (z) =

∑L−1
n=0 p[n]z−n of length L = KM , called the prototype filter. So p[n] = p[L− 1− n]

for 0 ≤ n ≤ L− 1.
The M -polyphase components Gl(z), 0 ≤ l ≤M − 1 of P (z) are defined by

P (z) =
M−1∑
l=0

z−lGl(z
M), (5)

and we note that Gl(z) are polynomials of degree K − 1 in z−1.
If we define the functions s(Gl)(z), 0 ≤ l ≤ M − 1, by s(Gl)(z) = z−(K−1)Gl(z

−1), then the
symmetry of P (z) implies that s(Gl)(z) = GM−1−l(z) for any 0 ≤ l ≤M − 1.

Let us define the functions λr(z) and br(z), 0 ≤ r ≤ M
4
− 1, by

λr(z) =
M

2
z−1

[
Gr(z)s(Gr)(z) +Gr+M

2
(z)s(Gr+M

2
)(z)

]
, (6)

br(z) = 2(−1)rz−1

M
4
−1∑

l=0

[
Gr(z)s(Gr)(z) +Gr+M

2
(z)s(Gr+M

2
)(z)

]
cos

2πr(2l + 1)

M
. (7)

The M
4

-vector bM
4

(z) (resp. λM
4

(z)) is the vector with components br(z), 0 ≤ r ≤ M
4
− 1

(resp. λr(z), 0 ≤ r ≤ M
4
− 1).

Let us also define two M
4
×K matrices V and W by

[V ]r,c =
2K−2c−1∑
m=0

p

[
r +m

M

2

]
p

[
r +m

M

2
+ cM

]
, (8)
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[W ]r,c =
L−1−cM∑
k=0

p[k] p[k + cM ] cos
2πr(2k + 1)

M
, (9)

for 0 ≤ r ≤ M
4
− 1, 0 ≤ c ≤ K − 1.

Remark 1. [W ]0,0 = ‖P (z)‖2
2 =

∑L−1
k=0 p[k]2, the squared l2-norm of P (z).

The elements of matrix W are strongly related to the usual discrete-time ambiguity function
AP [l, ν] defined, as proposed for instance in [18], by

AP [l, ν] = e−jπνl
L−1−l∑
k=0

p[k]p|k + l]e−j2πkν . (10)

Then, over a (cM, 2r
M

) time-frequency lattice, using the symmetry of P (z), we get

AP

[
cM,

2r

M

]
=

L−1−cM∑
k=0

p[k]p[k + cM ]e−2jπk 2r
M

=
1

2

L−1−cM∑
k=0

p[k]p[k + cM ]
{
e2jπk 2r

M + e2jπ(L−1−cM−k) 2r
M

}
,

(11)

and therefore

AP

[
cM,

2r

M

]
= e−2jπ r

M

L−1−cM∑
k=0

p[k]p[k + cM ] cos
2πr(2k + 1)

M

= e−2jπ r
M [W ]r,c. (12)

Let us define the K-vector u(z) by

u(z) = [z−K , z−K+1 + z−K−1, . . . , z−1 + z−2K+1]T . (13)

Proposition 1. For K ≥ 2, M ≥ 4, M multiple of 4, and any symmetric prototype filter
P (z) of length L = KM , the following equalities are verified:

(i) bM
4

(z) =
4

M
ΓM

4
CII

M
4
λM

4
(z),

(ii) λM
4

(z) = 2CIII
M
4

ΓM
4
bM

4
(z),

(iii) W = 2CII
M
4
V ,

(iv) λM
4

(z) =
M

2
V u(z),
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(v) bM
4

(z) = ΓM
4
W u(z).

Proof.– Using (6), (7), and the definitions of ΓM
4

and CII
M
4

, (i) is evident.

(ii)– From (i), we get

λM
4

(z) =
M

4

[
CII

M
4

]−1

Γ−1
M
4

bM
4

(z).

As

Γ−1
M
4

= ΓM
4

and
[
CII

M
4

]−1

=
8

M
CIII

M
4
,

from (3), this proves (ii).

Setting k = a+mM
2

with 0 ≤ a ≤ M
2
− 1, 0 ≤ m ≤ 2K − 2c− 1 in (9) gives

[W ]r,c =

M
2
−1∑

a=0

2K−2c−1∑
m=0

p

[
a+m

M

2

]
p

[
a+m

M

2
+ cM

]
cos

2πr(2a+ 1)

M

=

M
4
−1∑

a=0

2K−2c−1∑
m=0

p

[
a+m

M

2

]
p

[
a+m

M

2
+ cM

]
cos

2πr(2a+ 1)

M
+

M
2
−1∑

a=M
4

2K−2c−1∑
m=0

p

[
a+m

M

2

]
p

[
a+m

M

2
+ cM

]
cos

2πr(2a+ 1)

M
.

In the second sum, we set a = M
2
− 1 − b and m = 2K − 2c − 1 −m′ and using the cosine

equality cos 2πr(2a+1)
M

= cos 2πr(2b+1)
M

, we find that

p

[
a+m

M

2

]
= p

[
KM − 1− (b+m′

M

2
+ cM)

]
= p

[
b+m′

M

2
+ cM

]
,

p

[
a+m

M

2
+ cM

]
= p

[
KM − 1− (b+m′

M

2
)

]
= p

[
b+m′

M

2

]
,

Then, using the symmetry of P (z), we get

[W ]r,c = 2

M
4
−1∑

a=0

cos
2πr(2a+ 1)

M

2K−2c−1∑
m=0

p

[
a+m

M

2

]
p

[
a+m

M

2
+ cM

]

= 2

M
4
−1∑

a=0

[
CII

M
4

]
r,a

[V ]a,c ,

which proves (iii).

(iv) is equivalent to

λr(z) =
M

2

2K−1∑
k=1

[V ]r,|K−k| z
−k, 0 ≤ r ≤ M

4
− 1. (14)
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For 0 ≤ r ≤ M
4
− 1, Rr(z) = Gr(z)s(Gr)(z) +Gr+M

2
(z)s(Gr+M

2
)(z) is a polynomial of degree

2K − 2 in z−1, satisfying z−(2K−2)Rr(z
−1) = Rr(z), that can therefore be written as

Rr(z) = cr,0z
−(K−1) +

K−1∑
k=1

cr,k
(
z−(K−1−k) + z−(K−1+k)

)
, (15)

with coefficients cr,k, 0 ≤ k ≤ K − 1. Rewriting the polyphase components and using P (z)
symmetry, we get

Gr(z) =
K−1∑
n=0

p[r + nM ] z−n,

s(Gr(z)) = GM−1−r(z) =
K−1∑
m=0

p[M − 1− r +mM ] z−m

=
K−1∑
m=0

p[(K − 1−m)M + r] z−m,

The coefficient d
(1)
r,k of z−(K−1−k) in Gr(z)s(Gr)(z) is obtained by keeping the term in the

product such that n+m = K − 1− k, i.e. m = K − 1− k − n and 0 ≤ n ≤ K − 1− k, and
therefore

d
(1)
r,k =

K−1−k∑
n=0

p[r + nM ] p[r + nM + kM ]

=
K−1−k∑
n=0

p

[
r + 2n

M

2

]
p

[
r + 2n

M

2
+ kM

]

In the same way, we get that the coefficient d
(2)
r,k of z−(K−1−k) in Gr+M

2
(z)s(Gr+M

2
)(z) is

d
(2)
r,k =

K−1−k∑
n=0

p

[
r + (2n+ 1)

M

2

]
p

[
r + (2n+ 1)

M

2
+ kM

]
,

and since cr,k = d
(1)
r,k + d

(2)
r,k, using the definition (8), it comes that

cr,k =
2K−2k−1∑

n=0

p

[
r + n

M

2

]
p

[
r + n

M

2
+ kM

]
= [V ]r,k, (16)

This proves (iv).

From (i), (iv) and (iii), we get

bM
4

(z) = 2 ΓM
4
CII

M
4
V u(z)
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= ΓM
4
W u(z), (17)

which is (v).
In an equivalent way, (v) may be written

br(z) = (−1)r
2K−1∑
k=1

[W ]r,|K−k| z
−k, 0 ≤ r ≤ M

4
− 1. (18)

2.2 Perfect reconstruction property

Directly deduced from [7], we can say that a FBMC/OQAM symmetric prototype filter
P (z) of length L = KM with K ≥ 2 and M ≥ 4, M multiple of 4, is PR if its M -polyphase
components Gl(z) satisfy the equalities

Gl(z)s(Gl)(z) +Gl+M
2

(z)s(Gl+M
2

)(z) =
2α

M
z−K+1, 0 ≤ l ≤ M

4
− 1, (19)

where α = ‖P (z)‖2
2.

Proposition 2. The PR property of such a symmetric filter P (z) is equivalent to any of the
following assertions:

(i) b0(z) = αz−K and br(z) = 0, 1 ≤ r ≤ M
4
− 1,

(ii) λr(z) = αz−K , 0 ≤ r ≤ M
4
− 1,

(iii) V verifies [V ]r,c = 2α
M

if c = 0, and 0 otherwise,

(iv) W verifies [W ]0,0 = α and [W ]r,c = 0 if (r, c) 6= (0, 0).

Proof.– Using the definition of br(z) by equation (7) and (19) gives immediately (ii). From
equation (18), that expresses the coefficients in z−1 as elements of matrix W , we get (iv).

From Proposition 1 (iii) and then by (3) we obtain

V = 1
2

[
CII

M
4

]−1

W = 4
M
CIII

M
4
W ,

and (iii) is therefore a direct consequence of (iv). Note also that (iii) equivalent to the PR
condition derived in [19] for cosine modulated filter banks.
As the coefficients of matrix V are related to coefficients of functions λr(z), 0 ≤ r ≤ M

4
− 1,

by equation (14), (ii) is obtained.

9



3 Diagonalization of a special symmetric matrix

One key element to get a precise overview of the FBMC/OQAM transmultiplexer (TMUX)
is provided with its transfer matrix expression. As shown in [7, (38)], this M×M−T matrix
involves an alternation of zeros and non-zeros terms along its rows and columns. All these
systematic zeros are a direct consequence, for the FBMC/OQAM scheme, of the alternate
transmission in time and frequency of purely real and purely imaginary symbols. In [7] and
later on also in [9, 20] this matrix has been efficiently used to derive interference expressions
permitting useful comparisons between different prototype filters.
As already noted, the T matrix possesses interesting properties, symmetry [7, page 1176],
similarity in every row [9] and a Toeplitz structure [10]. Exploiting all these features, in
this section, we propose a self-contained analysis with its main theorem, number 2, leading
to a simple diagonalization allowing us to provide afterwards a simplified FBMC/OQAM
presentation.
Let n be an even positive integer and n

2
parameters br, 0 ≤ r ≤ n

2
− 1 defining the n

2
vector

bn
2

= [b0, b1, . . . , bn
2
−1]T .

The n× n symmetric matrix Bn is defined, for 0 ≤ i, j ≤ n− 1, by

[Bn]i,j =


br if |i− j| = r < n

2
,

−bn−r if |i− j| = r > n
2
,

0 otherwise.
(20)

Bn is a special case of a symmetric Toeplitz matrix, [21, section 4.7], considered in the
literature as a kind of structured matrices for which fast computation algorithms have been
developed (see e.g. [22]), [23]).

In this section, a complete characterization of the spectral properties of Bn is given in
Theorem 2 but first the following special case is studied where b0 = 0, b1 = 1, br = 0, 2 ≤
r ≤ n

2
− 1. A special name Un is reserved for this matrix. For example, when n = 6,

U6 =



0 1 0 0 0 −1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

−1 0 0 0 1 0


. (21)

Theorem 1. The eigenvalues of Un are νc = 2 cos (4c+1)π
n

, 0 ≤ c ≤ n
2
− 1, each of them with

multiplicity 2.
We denote by ν the n

2
vector ν = [ν0, ν1, . . . , νn

2
−1]T and by ∆n

2
(ν) the diagonal n

2
× n

2
matrix

with diagonal elements νc, 0 ≤ c ≤ n
2
− 1.

The n× n matrix Rn defined by

[Rn]r,c =

√
2√
n

cos
(r + c+ 4rc)π

n
, 0 ≤ r, c ≤ n− 1, (22)
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is a symmetric orthogonal matrix and

RnUnRn = D2[∆n
2
(ν)]. (23)

Proof.– For 0 ≤ c ≤ n− 1, let us denote by V c the column of index c of Rn. We get

||V c||2 =
2

n

n−1∑
r=0

cos2 (r + c+ 4rc)π

n

=
2

n

n−1∑
r=0

1

2

[
1 + cos

2(r + c+ 4rc)π

n

]

= 1 +
1

n
<

[
e
j2πc
n

n−1∑
r=0

e
2jπ(1+4c)r

n

]
= 1,

the last sum, estimated as the sum of a geometric sequence, being null.

Using usual trigonometric formulas, it is straightforward to verify that, for 0 ≤ c ≤ n
2
− 1,

UnV c = νcV c and UnV c+n
2

= νcV c+n
2
, that is V c and V c+n

2
are eigenvectors of Un for

eigenvalue νc.

Because eigenspaces of a real symmetric matrix for different eigenvalues are orthogonal, it
remains to show that V c and V c+n

2
are orthogonal 0 ≤ c ≤ n

2
− 1. This is easily done using

trigonometric formulas:

V c.V c+n
2

=
2

n

n−1∑
r=0

cos

(
(r + c+ 4rc)π

n

)
cos

(
(r + c+ n

2
+ 4r(c+ n

2
)π

n

)

=
1

n

n−1∑
r=0

{
cos

(
2(r + c+ 4rc)π

n
+
π

2
+ 2πr

)
+ cos

(π
2

+ 2πr
)}

= − 1

n
=

[
e
j2πc
n

n−1∑
r=0

e
2jπ(1+4c)r

n

]
= 0.

Remark 2. Because Rn is symmetric, R2
n = In.

The eigenvalues of Rn are +1 and −1, each of them with multiplicity n
2
, with respective

eigenspaces E+1 and E−1. Rn is the matrix of the orthogonal symmetry in Rn with respect
to E+1 (parallel to E−1).

Let us consider now the n×n matrices, U (c)
n , 0 ≤ c ≤ n

2
− 1, defined by, for 0 ≤ i, j ≤ n− 1,

[U (c)
n ]i,j =


1 if |i− j| = c,
−1 if |i− j| = n− c,
0 otherwise.

(24)
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It immediately comes that U (0)
n = In, U (1)

n = Un and

Bn =

n
2
−1∑
c=0

bc U
(c)
n . (25)

Proposition 3. The matrices U (c)
n may be expressed as polynomials of Un as follows:

U (c)
n = 2Tc

(
1

2
Un

)
, 1 ≤ c ≤ n

2
− 1, (26)

where Tc is the first kind Chebyshev polynomial of degree c (Tc(cos θ) = cos cθ).

From (25) and Proposition 3, it follows that Bn may be expressed as a polynomial function
of Un as

Bn = b0In + 2

n
2
−1∑
c=1

bc Tc

(
1

2
Un

)
. (27)

Theorem 2. The eigenvalues of Bn are the numbers

µr = b0 + 2

n
2
−1∑
c=0

bc cos
(4r + 1)cπ

n
, 0 ≤ r ≤ n

2
− 1, (28)

each of them with multiplicity 2.
If we denote by µ the n

2
vector µ = [µ0, µ1, . . . , µn

2
−1]T and by ∆n

2
(µ) the diagonal n

2
× n

2

matrix with diagonal elements µc, 0 ≤ c ≤ n
2
− 1,

RnBnRn = D2[∆n
2
(µ)]. (29)

Proof.– Using equation (27), the eigenvalues of Bn are the numbers

µr = b0 + 2

n
2
−1∑
c=1

bc Tc(
1

2
νr), 0 ≤ r ≤ n

2
− 1, (30)

with multiplicity 2. Because

Tc(
1

2
νr) = Tc(cos

(4r + 1)π

n
) = cos

(4r + 1)cπ

n
, (31)

we get (28).
With the same change of basis Rn than for Un, using (23), we therefore obtain the diago-
nalization relation (29).

Example 1. For n = 6,

B6 =



b0 b1 b2 0 −b2 −b1
b1 b0 b1 b2 0 −b2
b2 b1 b0 b1 b2 0

0 b2 b1 b0 b1 b2

−b2 0 b2 b1 b0 b1

−b1 −b2 0 b2 b1 b0


, (32)
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R6 =

√
3

3



1
√

3
2

1
2 0 −1

2 −
√

3
2√

3
2 −1

√
3

2 −1
2 0 1

2

1
2

√
3

2 −1
2 −

√
3

2
1
2

√
3

2

0 −1
2 −

√
3

2 −1 −
√

3
2 −1

2

−1
2 0 1

2 −
√

3
2 1 −

√
3

2

−
√

3
2

1
2

√
3

2 −1
2 −

√
3

2
1
2


. (33)

D2[∆3(µ)] =



µ0 0 0 0 0 0
0 µ1 0 0 0 0
0 0 µ2 0 0 0
0 0 0 µ0 0 0
0 0 0 0 µ1 0
0 0 0 0 0 µ2

 , (34)

with
µ0 = b0 +

√
3 b1 + b2, µ1 = b0 −

√
3 b1 + b2, µ2 = b0 − 2 b2. (35)

Remark 3. Equations (28) may be expressed by the following matrix equality

µn
2

= C n
2
bn

2
(36)

where C n
2

is the n
2
× n

2
matrix defined by

[
C n

2

]
r,c

=

{
1 if c = 0

2 cos (4r+1)cπ
n

if c 6= 0
, 0 ≤ r, c ≤ n

2
− 1. (37)

Considering the permutation τ = [τ0, τ1, . . . , τn
2
−1] of {0, 1, . . . , n

2
− 1} obtained by the list of

even indexes in {0, 1, . . . , n
2
− 1} in increasing order followed by the list of odd indexes in

decreasing order, J τ is the permutation matrix associated to τ , and the following relation is
verified

C n
2

= 2J τ C
III
n
2
. (38)

Remark 4. Theorem 2 is an evidence for n = 2, since µ0 = b0, b1 = µ1 = [µ0], R2 = I2,
and B2 = µ0I2 = D2[µ0].

4 The FBMC/OQAM transmultiplexer

4.1 Structure of the TMUX transfer matrix

The FBMC/OQAM transmultiplexer corresponds to the direct concatenation of the Synthe-
sis Filter Bank (SFB), at the transmitter side, and of the Analysis Filter Bank (AFB) at the
receiver side. In this note, we consider the basic TMUX system represented in Figure 1, for
given K ≥ 2 and even M ≥ 4 multiple of 4.
It is a simple variant of a well-known scheme presented at first in [7, Figure 1] and later
on in [20, Figure 2.1]. Indeed in Figure 1, without loss of generality, we only focus on the
transmission of the real data symbols, say the am,n, with z-transform expressed as Xm(z) =

13



∑
n am,nz

−n, thus omitting the complex-to-real conversion at the transmission side and the
dual operation at the receiver side.
For given values of K and M , P (z) is a symmetric prototype filter such as defined in section
2 and the synthesis and analysis filters Fm(z), 0 ≤ m ≤ M − 1, are derived from P (z) by
Fm(z) =

∑L−1
n=0 fm[n]z−n with

fm[n] = p[n]e
2jπm
M

(n−L−1
2

), 0 ≤ n ≤ L− 1. (39)

It comes that F0(z) = P (z), FM−m(z) = −Fm(z), 1 ≤ m ≤ M − 1, where Fm(z) =∑L−1
n=0 fm[n]z−n.

The Fm(z) are linear phase filters, i.e.

fm[L− 1− n] = fm[n], 0 ≤ n ≤ L− 1, 0 ≤ m ≤M − 1. (40)

We get

Fm(z) =
L−1∑
n=0

p[n]e
2jπm
M

(n−L−1
2

)z−n = e−
jπm(L−1)

M P
(
e−

2jπm
M z

)
,

(41)

and, from (5),

Fm(z) = e−
jπm(L−1)

M

M−1∑
l=0

e
2jπml
M Gl(z

M)z−l. (42)

In Figure 1, the multiplicative operators act as shown below

jn+m

U(z) V (z) = jm U(−jz).

(43)

and

j−(n+m)

U(z) V (z) = j−m U(jz).

(44)

The M
2

upsampling and downsampling operators are denoted by UM
2

and DM
2

, respectively.

Xm(z) and X̂m(z), 0 ≤ m ≤ M − 1 are z-transforms of real data sequences and we denote
by X(z) (resp. X̂(z)) the M -vector X(z) = [X0(z), X1(z), . . . , XM−1]T (resp. X̂(z) =
[X̂0(z), X̂1(z), . . . , X̂M−1(z)]T ).

Let us define the M ×M permutation matrix Jσ, where σ is the permutation defined on
{0, 1, . . . ,M − 1}, by

σ(2r) = r, σ(2r + 1) =
M

2
+ r, 0 ≤ r ≤ M

2
− 1, (45)

and the M
4
×M

4
permutation matrix J τ̄ where τ̄ is the permutation defined on {0, 1, . . . , M

4
−1}

by

τ̄(i) =

{
M
4
− 1− 2i, 0 ≤ i ≤ bM−4

8
c,

2i− M
4
, bM+4

8
c ≤ i ≤ M

4
− 1.

(46)
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jn+1

jn

jn+M−1

M

2
F1(z)

M

2
F0(z)

M

2
FM−1(z)

X1(z)

X0(z)

XM−1(z)

z−1
S(z)

F1(z)
M

2

j−(n+1)

R{.} X̂1(z)
Y1(z)

F0(z)
M

2

j−n

R{.} X̂0(z)
Y0(z)

FM−1(z)
M

2

j−(n+M−1)

R{.} X̂M−1(z)
YM−1(z)

Figure 1: The basic FBMC/OQAM TMUX system for linear-phase synthesis and analysis
filter banks.

Theorem 3. For K ≥ 3, M ≥ 4 a multiple of 4 and P (z) a symmetric real prototype
filter P (z) of length L = KM , using the definitions of section 2, the following properties are
verified.

(i) The M ×M transfer matrix T (z) of the TMUX represented in Figure 1, i.e. X̂(z) =
T (z) X(z), is symmetric and satisfies, for 0 ≤ i, j ≤M − 1,

[T ]i,j(z) =


br(−z2) if |i− j| = 2r, 0 ≤ r < M

4
,

−br(−z2) if |i− j| = M − 2r, 0 ≤ r < M
4
,

0 otherwise.
(47)

(ii) The eigenvalues of T (z) are the numbers λr(−z2), 0 ≤ r ≤ M
4
− 1, distinct or not,

each of them with multiplicity 4.

(iii) The following matrix equality is verified

T (z) = U D4[∆(λM
4

(−z2))]UT , (48)

where U is the constant (not depending on z−1) M ×M orthogonal matrix

U = JσD2[RM
2

]D4[J τ̄ ], (49)

and RM
2

is defined in section 3.

(iv) The output signals X̂(z) are proportional to a delayed copy of the input signals X(z)
if and only if P (z) has the perfect reconstruction property. In this case X̂(z) =
(−1)Kαz−2KX(z) with α = ‖P (z)‖2

2.

Proof.– (i) – First remark that the application f : X(z) → X̂(z) is linear. For 0 ≤ m ≤
M − 1, let us consider the vector Xm(z) = [X0(z), X1(z), . . . , XM−1]T with Xm′(z) = 0, 0 ≤
m′ ≤M − 1, m′ 6= m and Xm(z) = 1.
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Because, f(z−nXm(z)) = z−nf(Xm(z)), it is sufficient to prove (i) for input signalsXm(z), 0 ≤
m ≤M − 1.

For input signals Xm(z), we get

S(z) = jmz−1Fm(z), (50)

and, using (42), for any 0 ≤ m′ ≤M − 1,

S(z)Fm′(z) = jmz−1e−
jπ(m+m′)(L−1)

M

[
M−1∑
l=0

e
2jπml
M Gl(z

M)z−l

][
M−1∑
l′=0

e
2jπm′l′
M Gl′(z

M)z−l
′

]

= jme−
jπ(m+m′)(L−1)

M

M−1∑
l,l′=0

e
2jπ(ml+m′l′)

M Gl(z
M)Gl′(z

M)z−(l+l′+1). (51)

Because 1 ≤ l + l′ + 1 ≤ 2M − 1, powers of z
M
2 appear in (51) only if l + l′ + 1 = M

2
,

l + l′ + 1 = M and l + l′ + 1 = 3M
2

, and

DM
2

[S(z)Fm′(z)] = T1(z) + T2(z) + T3(z), (52)

with

T1(z) = jm(−1)m
′
e−

jπ(m+m′)L
M e

jπ(m−m′)
M z−1

M
2
−1∑

l=0

e
2jπ(m−m′)l

M Gl(z
2)GM

2
−1−l(z

2), (53)

T2(z) = jme−
jπ(m+m′)L

M e
jπ(m−m′)

M z−2

M−1∑
l=0

e
2jπ(m−m′)l

M Gl(z
2)GM−1−l(z

2), (54)

T3(z) = jm(−1)m
′
e−

jπ(m+m′)L
M e

jπ(m−m′)
M z−3

M−1∑
l=M

2

e
2jπ(m−m′)l

M Gl(z
2)G 3M

2
−1−l(z

2). (55)

From (53), we get

j−m
′
T1(jz) = (−1)m

′
jm−m

′+1e−
jπ(m+m′)L

M e
jπ(m−m′)

M z−1

M
2
−1∑

l=0

e
2jπ(m−m′)l

M Gl(−z2)GM
2
−1−l(−z2),

= (−1)m
′
jm−m

′+1e−
jπ(m+m′)L

M e
jπ(m−m′)

M ×

z−1

M
4
−1∑

l=0

[
e

2jπ(m−m′)l
M + e

2jπ(m−m′)(M2 −1−l)
M

]
Gl(−z2)GM

2
−1−l(−z2),

= 2(−1)m
′
jm−m

′+1e−
jπ(m+m′)L)

M e
jπ(m−m′)

2 ×

z−1

M
4
−1∑

l=0

Gl(−z2)GM
2
−1−l(−z2) cos

π(m−m′)(4l + 2−M)

2M
, (56)
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and therefore, after simplification,

j−m
′
T1(jz) = 2j(−1)(m+m′)K+mz−1

M
4
−1∑

l=0

Gl(−z2)GM
2
−1−l(−z2) cos

π(m−m′)(4l + 2−M)

2M
,

and

R{j−m′T1(jz)} = 0, 0 ≤ m,m′ ≤M − 1. (57)

In the same way, using (55), it is proved that

R{j−m′T3(jz)} = 0, 0 ≤ m,m′ ≤M − 1. (58)

From (54), we get

j−m
′
T2(jz) = jm−m

′+2e−
jπ(m+m′)L

M e
jπ(m−m′)

M z−2

M−1∑
l=0

e
2jπ(m−m′)l

M Gl(−z2)GM−1−l(−z2),

= (−1)(m+m′)Kjm−m
′+2e

jπ(m−m′)
M z−2 ×

M
2
−1∑

l=0

Gl(−z2)GM−1−l(−z2)
{
e

2jπ(m−m′)l
M + e

2jπ(m−m′)(M−1−l)
M

}
= 2(−1)(m+m′)K+1jm−m

′
z−2 ×

M
2
−1∑

l=0

Gl(−z2)GM−1−l(−z2) cos
π(m−m′)(2l + 1)

M
. (59)

From (59), we deduce that R{j−m′T2(jz)} = 0, if

1. m−m′ is odd due to the factor jm−m
′
, the other factors being real,

2. |m−m′| = M
2

because all the cosines in the sum are null.

When |m−m′| = 2r with 0 ≤ r < M
4

, we get

R{j−m′T2(jz)} = −2(−1)rz−2

M
2
−1∑

l=0

Gl(−z2)GM−1−l(−z2) cos
2π(2l + 1)r

M
. (60)

We denote by cr(−z2) the right member in (60) with

cr(z) = 2(−1)rz−1

M
2
−1∑

l=0

Gl(z)GM−1−l(z) cos
2π(2l + 1)r

M
. (61)

When |m−m′| = M − 2r with 0 ≤ r < M
4

, we get

cos
π(m−m′)(2l + 1)

M
= cos

(
π(2l + 1)− 2π(2l + 1)r

M

)
17



= − cos
2π(2l + 1)r

M
,

and therefore, from (59), R{j−m′T2(jz)} = −cr(−z2).
Observing that

cos
2π(2l + 1)r

M
= cos

2π(2(M
2
− 1− l) + 1)r

M
,

and GM−1−l(z) = s(Gl)(z), GM
2
−1−l = s(Gl+M

2
)(z), we obtain

cr(z) = 2(−1)rz−1

M
4
−1∑

l=0

[
Gl(z)s(Gl)(z) +Gl+M

2
(z)s(Gl+M

2
)(z)

]
cos

2π(2l + 1)r

M

= br(z),

from the definition of br(z) by (7).
This proves that X̂m(z) = T (z)Xm(z) with T (z) defined by (47) and achieves the proof of
(i).

(ii)– From (i), we get
T (z) = JσD2[BM

2
(−z2)]JTσ , (62)

where BM
2

(z) is the matrix defined in (20) with n = M
2

and br = br(−z2), 0 ≤ r ≤ M
4
− 1.

Therefore, from (36), the eigenvalues of T (z) are the elements of the vector

µM
4

(−z2) = CM
4
bM

4
(−z2) with bM

4
(z) =


b0(z)
b1(z)
. . .

bM
4
−1(z)

 .
Now following (38), CM

4
= 2J τ C

III
4
2

, where τ is the permutation of {0, 1, . . . , M
4
− 1} of

even values in increasing order followed by the list of odd values in decreasing order. From
Proposition 1 (i), bM

4
(−z2) = 4

M
ΓM

4
CII

M
4
λM

4
(−z2). Therefore

µM
4

(−z2) =
8

M
J τ C

III
M
4

ΓM
4
CII

M
4
λM

4
(−z2).

Using Lemma 1 and (3), we get µM
4

(−z2) = J τ J M
4
λM

4
(−z2), which shows that the elements

of µM
4

(−z2) are a permutation of the elements of λM
4

(−z2). This proves (ii).

(iii)– We check that J τ J M
4

= J τ̄ where τ̄ is the permutation defined in (46).

From (29), we get

BM
2

(z) = RM
2
D2[∆(µM

4
(z))]RM

2

= RM
2
D2[∆(J τ̄λM

4
(z))]RM

2

= RM
2
D2[J τ̄∆(λM

4
(z))JTτ̄ ]RM

2
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using (4). Then, from (54), it comes

T (z) = JσD2[RM
2
D2[J τ̄ ∆(λM

4
(−z2))JTτ̄ ]RM

2
]JTσ ,

= JσD2[RM
2

]D4[J τ̄ ]D4[∆(λM
4

(−z2))]D4[JTτ̄ ]D2[RM
2

]JTσ . (63)

The result for (iii) follows.

(iv)– The matrix T (z) has the form βz−n IM for a non null constant β if and only if any
eigenvalue λr(−z2) = βz−n, 0 ≤ r ≤ M

4
− 1. Because λr(z) has the form λr(z) = z−1q(z)

where q(z) is a polynomial in z−1 of degree 2K − 2 with z−(2K−2)q(1/z) = q(z), this implies
that λr(z) = α z−K , and therefore λr(−z2) = (−1)Kα z−2K . From Proposition 2-(ii), this
is equivalent to the PR property of the prototype filter P (z) with α = ‖P (z)‖2

2 and β =
(−1)Kα.

4.2 The FBMC/OQAM interference function

According to Theorem 3, when the prototype filter is PR, the detected sequence is an exact
reproduction, up to a time offset, of the transmitted sequence. When the prototype filter is
no longer PR, we need a quantitative measurement of its distance to perfect reconstruction,
i.e. the interference function of the prototype filter.
Transmitting the X(z) sequence always results in the detection of X̂(z), a sequence which
is equal to (−1)Kαz−2KX(z) for a PR TMUX system. The difference is therefore equal to
Y (z) = [T (z)− (−1)Kαz−2KIM ]X(z).

To define a norm for matrix A(z) = T (z) − (−1)Kαz−2KIM , we first need a norm of its
elements.
A first possible choice is to consider the l1 norm on polynomials in z−1: if q(z) =

∑
n q[n]z−n,

then ‖q(z)‖1 =
∑

n |q[n]| and then

‖A(z)‖ = sup{
M−1∑
c=0

‖Ar,c(z)‖1, 0 ≤ r ≤M − 1}. (64)

For the considered TMUX, up to a sign change, any line of A(z) contains the same non null
elements, and

‖A(z)‖ = ‖b0(−z2)− (−1)Kz−2K‖1 + 2

M
4
−1∑

c=0

‖br(−z2)‖1 (65)

= ‖b0(z)− z−K‖1 + 2

M
4
−1∑

c=0

‖br(z)‖1. (66)

This is the choice made in [7] for example.

Another choice is to consider the l2 norm on filters q(z) =
∑

n q[n]z−n defined by

‖q(z)‖2
2 =

∑
n

|q[n]|2 =

∫ 1

0

∣∣q (e2jπν
)∣∣2 dν, (67)
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and then the interference is expressed using Frobenius norm ‖A(z)‖F defined by

‖A(z)‖2
F =

M−1∑
r,c=0

‖[A]r,c(z)‖2
F . (68)

This definition is chosen in [24], [20], [25] for example. Furthermore, as illustrated in [26, 27],
an adaption of the Frobenius norm of the ambiguity function could also be used to derive
the Signal to Interference Ratio (SIR) in the case of FBMC/OQAM transmission through
time and frequency dispersive channels. We, therefore here, choose to focus on this norm.

Using the notations of the first paragraph, we introduce the following definition.

Definition 1. Given K ≥ 3, M ≥ 4 multiple of 4, P (z) a symmetric prototype filter of
length L = KM , and the TMUX defined by P (z), as in Figure 1 with transfer matrix T (z),
then the interference function I(P ) is defined by

I(P ) =
1

Mα2
‖T (z)− (−1)Kαz−2K IM‖2

F with α = ‖P (z)‖2
2. (69)

The next proposition shows that I(P ) may be expressed in different equivalent ways, the
expression (72) in terms of matrix W elements being the most practical for calculations.

Proposition 4. Let K ≥ 3, M ≥ 4 a multiple of 4 and P (z) a symmetric real prototype
filter P (z) of length L = KM . With the definitions of section 2, the following properties are
verified

(i) I(P ) =
1

α2

‖b0(z)− αz−K‖2
2 + 2

M
4
−1∑

r=1

‖br(z)‖2
2

 , (70)

(ii) I(P ) =
4

Mα2

M
4
−1∑

r=0

‖λr(z)− αz−K‖2
2. (71)

(iii) I(P ) =
2

[W ]20,0

K−1∑
c=1

[W ]20,c +

M
4
−1∑

r=1

[W ]2r,0 + 2

M
4
−1∑

r=1

K−1∑
c=1

[W ]2r,c

 , (72)

(iv) I(P ) =
M

α2

M
4
−1∑

r=0

[(
[V ]r,0 −

2α

M

)2

+ 2
K−1∑
c=1

[V ]2r,c

]
. (73)

Proof.– (i)– Each row of matrix T (z) contains b0(−z2) and two copies of br(−z2), 1 ≤ r ≤
M
4
−1, with a sign ±1. This proves (i) because ‖q(−z2)‖2

2 = ‖q(z)‖2
2 for any polynomial q(z)

in z−1.

(ii)– From equation (48), we deduce that

T (z)− (−1)Kαz−2K = U D4

[
∆(λM

4
(−z2)− (−1)KαI M

4
z−2K)

]
UT . (74)

On another hand, for an N × N polynomial matrix A(z) =
∑

nAnz
−n where the An are

constant matrices, and for an N ×N orthogonal constant matrix U , we get

UT A(z)U =
∑
n

UT AnU z−n. (75)
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Because
‖UT AnU‖2

2 = ‖An‖2
2, (76)

and
‖A(z)‖2

F =
∑
n

‖An‖2
2, (77)

we get

‖T (z)− (−1)Kαz−2K‖2
F = ‖D4

[
∆(λM

4
(−z2)− (−1)KαI M

4
z−2K

]
‖2
F , (78)

which proves (ii).

(iii) is straightforward proved using (i) and equation (18) while (iv) is proved using (ii) and
equation (14).

Remark 5. With the previous definitions, changing P (z) to a proportional filter kP (z)
multiply the functions ‖P (z)‖2

2, br(z), λr(z), and the matrix T (z) of the MUX by the constant
k2. Therefore the interference function is not modified: I(kP ) = I(P ), as it is the case for
other optimization cost functions.

As in [9], the interference function I(P ) may be used as an optimizing criterion (criterion C4
where the interference function is denoted TOI for TOtal Interference) to design prototype
filters P (z). In the following paragraphs, the notation TOI is used.

5 Comparison of various nearly PR prototype filters

A large number of textbooks and publications clearly illustrate the fact that communication
system designers are often attracted by filters, or prototype filters, that only involve a limited
number of parameters. Furthermore, even if the PR property provides some implementation
advantages, often also nearly PR solutions are preferred. In this respect, the simplicity of
the Square Root Raised Cosine (SRRC) filter makes it a permanent reference in the field.
In the case of FBMC/OQAM systems, the prototype filters either based on the Martin and
Mirabassi design method [12] or, nearly equivalently, on the frequency sampling approach
proposed by M. Bellanger [13], also still reach a large audience due to their high frequency
selectivity combined with a nearly PR property. Let denominate this prototype filter as the
MMB prototype. On another hand, the importance of time-frequency localization for trans-
mission through time-frequency selective channels makes the Isotropic Orthogonal Transform
Algorithm (IOTA) [6] and the Extended Gaussian Function (EGF) [15] very appealing. But
the number of EGF parameters may become high according to the required accuracy.
Thus in this section we propose an EGF variant only involving a reduced number of param-
eters and another new family of prototype filters combining the proposed EGF variant with
the MMB prototype filter. But let us start with the SRRC prototype.
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5.1 SRRC prototype filters

If the SRRC function has been optimized for various single carrier settings, as illustrated
recently in [28] and [29], in the case of FBMC/OQAM, to the best of our knowledge, the
authors only use it with predetermined roll-off values, as the case still recently in reference
[30], often selecting, as in [31], the widest possible transition band.
The SRRC continuous function ([32]) of real variable t is defined, for a given roll-off r,
0 ≤ r ≤ 1 and a frequency bandwidth in the range [−F, F ], by

rC(t) =
4rF t cos(π(1 + r)Ft) + sin(π(1− r)Ft)√

Fπt(1− 16F 2r2t2)
, (79)

if the denominator does not vanish and extended by continuity otherwise, i.e.

rC(0) =
√
F

(
1− r +

4r

π

)
,

rC

(
± 1

4rF

)
=

√
2F

2π
r
[
(π − 2) cos

( π
4r

)
+ (π + 2) sin

( π
4r

)]
.

For K ≥ 3 and M ≥ 4 multiple of 4, the SRRC filter P (z) of length L = KM is obtained
by setting, F , the FBMC/OQAM frequency spacing, such as F = 1

M
and

P (z) =
L−1∑
n=0

p[n]z−n, p[n] = rC

(
2n+ 1− L

2

)
, 0 ≤ n ≤ L− 1. (80)
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Figure 2: TOI value as a function of r, 0 ≤ r ≤ 1, for the SRRC filters with 3 ≤ K ≤ 8 and
M = 64.
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For 3 ≤ K ≤ 8 and M = 64, Figure 2 shows the variation of -TOI(dB) as a function of r
for 0 ≤ r ≤ 1. The maximum value of -TOI(dB) for each value of K is indicated by a circle
symbol.
In Figure 2 it is worth noting that, according to the overlapping factor, e.g. for K = 5 and
7, TOI gains above 5 dB are attained when selecting the optimal r value instead of the most
frequently selected one, i. e. r = 1.
Table 1 gives the main characteristic constants of the SRRC filters optimized for the Total
Interference TOI: the value of ropt that gives the maximum -TOI(dB), the corresponding
values of -TOI(dB), -E(dB), where E is the out-of-band energy, and TFL the time-frequency
localization measure, a real value going from 0 to 1 for the worst to the best, as defined for
instance in [7] for discrete-time filters.
Note also that the results in Table 1 are consistent with the ones reported in [7, Table I] for
the l1 norm (66) where it also appeared that, among the three tested roll-off values (1/2,
3/4,1) , r = 1 was not always the best choice. On the contrary, it can be easily checked
that if the SRRC optimization is carried out with respect to the TFL criterion, r = 1 always
leads to the optimum solution with a maximum of 0.9004 attained for K = 4 when M = 64.

K ropt - TOI(dB) - E(dB) TFL

3 0.729686 40.91 37.23 0.8684
4 0.550574 45.69 37.47 0.7799
5 0.821964 51.24 44.44 0.8721
6 0.689446 53.75 45.05 0.8316
7 0.867511 58.19 49.05 0.8746
8 0.762957 59.07 49.96 0.8489

Table 1: Optimal SRRC prototype filters for TOI, 3 ≤ K ≤ 8 and M = 64.

5.2 A new variant of EGF prototype filters

For λ > 0 and τ0 > 0, ν0 > 0 such that ν0τ0 = 1
2
, we consider the real continuous-time

function zλ,ν0,τ0(t) of the real time variable t defined by

zλ,ν0,τ0(t) =
1

2

[
∞∑
k=0

ck

[
gλ(t+

k

ν0

) + gλ(t−
k

ν0

)

]]
×

[
∞∑
l=0

dl cos

(
2πl

t

τ0

)]
, (81)

where gλ(t) = (2λ)
1
4 e−λπt

2
and ck, dk, k ≥ 0, are real coefficients. In the FBMC/OQAM

context, (81) and (79) are connected by the equalities ν0 = F and τ0 = 1
2F

, real symbol
duration, with ν0τ0 = 1

2
.

This function, called the Extended Gaussian Function (EGF), was first introduced and stud-
ied in [14], [15], [16].
In this paragraph, we consider discrete-time filters obtained in the following way. First, a
very special case of the continuous-time function (81) is selected where the second sum is
reduced to a constant, i.e. d0 = 2 and dk = 0, k ≥ 1. Then the first sum is restricted to K
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terms with coefficients ck, 0 ≤ k ≤ K − 1, for a given K ≥ 2. Thus, we obtain the real-time
function zλ,a(t) defined by

zλ,a(t) =
K−1∑
k=0

ck [gλ(t+ ak) + gλ(t− ak)] . (82)

As we also need to consider the case λ = 0 while restricting λ, as factor in the exponential
argument, to be a positive constant, we define the function ḡλ(t) = e−λ

2πt2 and the function
z̄λ,a(t) by

z̄λ,a(t) =
K−1∑
k=0

ck [ḡλ(t+ ak) + ḡλ(t− ak)] . (83)

For M ≥ 4, multiple of 4, a regular sampling of (2λ̃)−
1
4 zλ̃,ã(t) with L = KM points, yn, 0 ≤

n < L, in the interval (−K
2
, K

2
), defined by

yn = K

(
2n+ 1

2L
− 1

2

)
(84)

is equivalent to the sampling in the interval (−1
2
, 1

2
) of z̄λ,a(t) with the L points xn, 0 ≤ n < L,

defined by

xn =
2n+ 1

2L
− 1

2
, (85)

if

λ̃ =
λ2

K2
, ã = Ka. (86)

We therefore consider the symmetric prototype filter P (z) =
∑L−1

n=0 z̄λ,a(xn)z−n and we look
for values of λ, a and ck, 0 ≤ k ≤ K − 1 that provide a filter with good frequency character-
istics and minimal TOI.
As this EGF variant corresponds to a linear combination of Gaussian functions, or Gaussian
filters, we name this new family of functions and/or prototype filters using the acronym
LCGF.

For given values of K and M , the optimization process with variables λ, a and ck, 0 ≤ k ≤
K − 1 is very difficult because there is a lot of local minima. As an example, for K = 3
and M = 64, for a fixed value of λ, 1.5 ≤ λ ≤ 20.5, we get a minimum of TOI, represented
in Figure 3 by -TOI(dB) as a function of λ in the blue curve. For λ = λ1 = 3.969156,
a maximum -TOI(dB) = 51.33 value is obtained, which is a local maximum of -TOI(dB).
For λ = λ3 = 12.4060, we get -TOI(dB) = 79.14 which seems to be a global maximum
for -TOI(dB). However, for λ = λ1, the out-of-band energy is E = 8.11 × 10−5 while E =
6.54× 10−2 for λ = λ3. The characteristics of these two filters are represented in Figures 4
and 5.
Therefore, in order to get a local TOI optimum with an acceptable out-of-band energy, for
4 ≤ K ≤ 8, as for K = 3, the value of λ is constrained by some bound. Table 2 gives the
main characteristics of the obtained local optimal prototype filters.
In the comparison between the SRRC and LCGF prototype filters, it appears that with the
LCGF an overlapping of K = 3 is sufficient to outperform a nettly much longer, with K = 5,
SRRC with regard to the three measures considered : TOI, E and TFL.
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Figure 3: TOI optimization for LCGF with K = 3, M = 64 and 1.5 ≤ λ ≤ 20.5.
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Figure 5: LCGF with K = 3, M = 64, λ = λ3 = 12.4060 with optimal TOI: -TOI(dB) =
79.142708.

K λopt aopt - TOI(dB) - E(dB) TFL

3 3.96916 1.301623× 10−1 51.33 40.91 0.9118
4 4.16950 9.818990× 10−2 70.60 44.94 0.9054
5 4.46048 7.964676× 10−2 84.39 50.77 0.8775
6 4.38281 1.173788× 10−1 86.17 52.90 0.8493
7 4.99656 9.968591× 10−2 89.71 57.06 0.8281
8 5.42586 8.838837× 10−2 96.47 62.72 0.8140

Table 2: Characteristics of optimized LCGF prototype for the interference criterion (TOI),
3 ≤ K ≤ 8, M = 64).
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K 3 4 5
c1 8.684747× 10−1 5.751089× 10−1 3.793495× 10−1

c2 −4.148046× 10−1 −5.942950× 10−1 −7.104150× 10−1

c3 — 9.721558× 10−2 1.515300× 10−1

c4 — — 5.912280× 10−3

K 6 7 8
c1 −7.185977× 10−1 −7.208048× 10−1 −8.196402× 10−1

c2 1.846397× 10−1 1.466245× 10−1 2.120102× 10−1

c3 −5.350222× 10−2 −1.307413× 10−2 −4.116862× 10−2

c4 2.427846× 10−2 −2.313501× 10−3 9.141708× 10−3

c5 −1.336278× 10−2 2.624612× 10−3 −3.796928× 10−3

c6 — −3.582594× 10−3 2.880454× 10−3

c7 — — −3.875055× 10−3

Table 3: Coefficients ck, 1 ≤ k ≤ K− 1, 3 ≤ K ≤ 8, of the LCGF prototype filter optimized
for TOI with c0 = 1 (M = 64).

5.3 A more general class of EGF prototype filters

In this subsection, a more general class of EGF prototype filters, here denoted by GENeral
EGF filters (abbreviated by GEN), is introduced that contains the MMB prototype filters
such as described in [12] and [20] and the LCGF described in the previous subsection.
For a given value of K ≥ 3, the generating prototype function for the GEN class is the real
continuous-time function z(t) defined by

z(t) =

[
K−1∑
k=0

ck [ḡλ(t+ ak) + ḡλ(t− ka)]

]
×

[
K−1∑
l=0

dl cos(2π β l (2t+ 1))

]
, (87)

depending on the 2K + 3 parameters λ, a, ck, 0 ≤ k ≤ K − 1, β and dl, 0 ≤ l ≤ K − 1.

For d0 = 1 and dl = 0, 1 ≤ l ≤ K − 1, z(t) generates by a sampling at the points
xn = 2n+1

2L
− 1

2
, 0 ≤ n ≤ KM − 1 the EGF prototypes of length L = KM .

With the same time-discretization points, and λ = 0, C = 2
∑K−1

k=0 ck 6= 0 and β = 1, the
P (z) filters are given, up to the multiplicative constant C, by

P (z) =
L−1∑
n=0

p[n]z−n, (88)

with

p[n] =
K−1∑
l=0

dl cos(2πlyn), yn =
2n+ 1

2L
, 0 ≤ n ≤ L− 1, (89)

which is the definition given by equation (6) in [12] and in the Phydyas project [20]. There
is however a slight modification of coefficients dl (d0 = k0 and dl = 2kl, 1 ≤ l ≤ K − 1),
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a different multiplicative constant and an adaption of the discretization points to get a
symmetric prototype filter with even length.
For 3 ≤ K ≤ 5, Tables 4, 5 and 6 compare the characteristics of the prototype filters,
obtained by optimization of the TOI criterion with M = 64:

1. SRRC: the Square Root Raised Cosine filter described in subsection 5.1,

2. MMB: the Mirabassi-Martin-Bellanger filter such as described in [20] (Phydyas filters),
with an even length,

3. LCGF: the Linear Combination of Extended Gaussian Filters described in subsection
5.2,

4. GEN: the prototype filter described in this subsection.

Figure 6, 7 and 8 show the frequency curves of these filters. However, in Figure 8, the
frequency curve of the GEN filter is not plotted because it is almost identical to the one of
the LCGF prototype.

- TOI(dB) - E(dB) TFL
SRRC 40.91 37.23 0.8684
MMB 46.25 39.78 0.8844
LCGF 51.33 40.91 0.9118
GEN 57.36 36.64 0.9307

Table 4: Characteristics comparison of prototype filters SRRC, MMB, LCGF and GEN
optimized for TOI criterion with K = 3 and M = 64.

- TOI(dB) - E(dB) TFL
SRRC 45.69 37.47 0.7799
MMB 67.20 43.89 0.8866
LCGF 70.60 44.94 0.9054
GEN 74.12 46.63 0.9070

Table 5: Characteristics comparison of prototype filters SRRC, MMB, LCGF and GEN
optimized for TOI criterion with K = 4 and M = 64.

Our MMB prototypes optimizations are carried out over K − 1 coefficients, simply setting
c0 = 1, while in [20], the authors only take advantage of one degree of freedom for K = 3
and 4 and only of 2 for K = 5. By the way, compared to [20], we obtain a TOI improvement
ranging from 0.75 dB, for K = 3 to more than 9 dB for K = 5. Our comparisons reported
in Tables 4-6 between all the prototype filters focus on the three most commonly used
overlapping factors, i. e. K = 3, 4 or 5. These tables clearly show that the new families of
prototype filters we have introduced outperform the SRRC and MMB solutions with TOI
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- TOI(dB) - E(dB) TFL
SRRC 51.24 44.44 0.8721
MMB 80.96 61.07 0.8423
LCGF 84.39 50.77 0.8775
GEN 84.88 51.24 0.8767

Table 6: Characteristics comparison of prototype filters SRRC, MMB, LCGF and GEN
optimized for TOI criterion with K = 5 and M = 64.

K 3 4 5
λ 2.237626 1.950356 4.459006
a −2.832273× 10−1 4.361842× 10−1 7.951699× 10−2

c1 1.286036 −2.128282× 10−1 3.785814× 10−1

c2 1.106024× 10−2 4.383833× 10−1 −7.096004× 10−1

c3 — 1.154026× 10−1 1.505152× 10−1

c4 — — 6.395659× 10−3

β 1.002248 6.578910× 10−1 9.992112× 10−1

d1 −9.871248× 10−1 −4.712546× 10−1 1.052062× 10−3

d2 −4.259598× 10−1 −3.566996× 10−1 −2.381287× 10−3

d3 — 7.317746× 10−1 −8.112096× 10−4

d4 — — −1.370125× 10−4

Table 7: Coefficients of the GEN prototype filter optimized for TOI with c0 = d0 = 1
(M = 64).
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improvements w.r.t. the optimized MMB ranging for the GEN solution between 3.92 (K = 5)
and 17.85 (K = 3) dB. The new families of prototypes also lead to better TFL measures.
Results, not reported here, have shown that up to M = 2048, keeping the optimized coeffi-
cients as for M = 64, lead to similar performance measures.
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Figure 6: Comparison of characteristics of prototype filters for K = 3, M = 64: SRRC,
MMB, LCGF and GEN filters optimized for TOI.

6 Conclusion

In this note we have revisited the analysis and design problem of symmetrical FBMC/OQAM
system. We have assumed the number M of its subcarrier is a multiple of 4 while the length
of its prototype filter is expressed as L = KM , with K the integer overlapping factor. Then,
some simplifications happen and a new useful description is readily obtained using standard
tools from the linear algebra theory. By the way, several equivalent forms of the PR and
NPR properties are derived together with a diagonalization of the FBMC/OQAM transfer
matrix. On another hand, two new families of prototype filters are introduced that only
involve a few parameters. The first one, named LCGF, takes its roots from the EGF, see
e.g. [15]. The second one, named GEN, results from a combination of the LCGF with the
famous prototype filter introduced, independently, in [11, 12], [13], named here MMB. Our
design comparisons have included four families of prototype filters: SRRC, MMB, LCGF
and GEN. For an optimization criterion, which is the minimization of the total interference,
we showed that, slightly increasing the degree of freedom, setting it to K + 1 for the LCGF,
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Figure 7: Comparison of characteristics of prototype filters for K = 4, M = 64: MMB filter,
and SRRC, LCGF and GEN filters optimized for TOI.
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Figure 8: Comparison of characteristics of prototype filters for K = 5, M = 64: MMB filter,
and SRRC and LCGF optimized for TOI.
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and to 2K + 1 for GEN, instead of K − 1 for MMB and 1 for the the SRRC, allowed us to
get significantly better design results.

References

[1] R. Nissel, S. Schwarz, and M. Rupp. Filter bank multicarrier modulation schemes for
future mobile communications. IEEE Journal on Selected Areas in Communications,
35(8):1768–1782, 2017.

[2] M. Renfors and al. (eds). Orthogonal waveforms and filter banks for future communica-
tions. Academic Press, 2017. xxvii + 555 pages.

[3] B. R. Saltzberg. Performance of an efficient parallel data transmission system. IEEE
Transactions on Communication Technology, 15(6):805–811, December 1967.

[4] B. Farhang-Boroujeny and C. Yuen. Cosine modulated and offset QAM filter bank
multicarrier techniques: A continuous-time prospect. EURASIP Journal on Advances
in Signal Processing, 2010(8):1–16, 2010.

[5] A. Stevens, T. Sibbett, J. Driggs, H. Moradi, and B. Farhang-Boroujeny. Spread spec-
trum technique using staggered multi-tone. In 2020 International Conference on Com-
puting, Networking and Communications (ICNC), pages 326–331, 2020.

[6] B. Le Floch, M. Alard, and C. Berrou. Coded Orthogonal Frequency Division Multiplex.
Proceedings of the IEEE, 83:982–996, June 1995.

[7] P. Siohan, C. Siclet, and N. Lacaille. Analysis and design of OFDM/OQAM systems
based on filterbank theory. IEEE Trans. Sig. Proc., 50(5):1170–1183, 2002.

[8] European Union 7th Framework Programme: Project PHYDYAS. http://www.ict-
phydyas.org.

[9] A. Viholainen, T. Ihalainen, et al. Prototype filter design for filter bank based mul-
ticarrier transmission. In Proc. 17th European Signal Porcessing Conference (EU-
SIPCO’2009), Glasgow, Scotland, pages 1–5, 2009.

[10] Li Zhongnian and Liu Shouyin. Novel matrix representation for OFDM/OQAM systems.
The Journal of China Universities of Posts and Telecommunications, 25(3), 2018.

[11] K.W. Martin. Small side-lobe filter design for multitone data-communication applica-
tions. IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing,
45(8):1155–1161, 1998.

[12] S. Mirabbasi and K.W. Martin. Overlapped complex-modulated transmultiplexer filters
with simplified design and superior stopbands. IEEE Trans. on Circuits and Systems
II: Analog and Digital Signal Processing, 50(8):456–469, 2003.

32



[13] M.G. Bellanger. Specification and design of a prototype filter for filter banks based on
multicarrier transmission. In Proc. 2001 IEEE Intern. Conf. on Acoustics, Speech, and
Signal Processing, volume 4, pages 2417–2420, 2001.

[14] C. Roche and P. Siohan. A family of Extended Gaussian Functions with a nearly optimal
localization property. In Proc. First Int. Workshop on Multi-Carrier Spread-Spectrum
(Oberfaffenhofen, Germany), pages 179–186, 1997.

[15] P. Siohan and C. Roche. Cosine-modulated filterbanks based on Extended Gaussian
Function. IEEE Trans. Sig. Proc., 48(11):3052–3061, 2000.

[16] P. Siohan and C. Roche. Derivation of Extended Gaussian Functions based on the Zak
transform. IEEE Sig. Proc. Letters, 11(3):401–403, 2004.

[17] V. Britanak, P.C. Yip, and K.R. Rao. Discrete cosine transforms: Algo-
rithms,Advantages, Applications. Academic Press, 2006. xiv + 349 pages.

[18] J. J. Benedetto, I. Konstantinidis, and M. Rangaswamy. Phase-coded waveforms and
their design. IEEE Signal Processing Magazine, 26(1):22–31, Jan 2009.

[19] H.S. Malvar. Modulated QMF filter banks with perfect reconstruction. Electronic
Letters, 26(13):906–907, 1990.

[20] A. Viholainen, M.G. Bellanger, and M. Huchard. Prototype filter and structure op-
timization. Technical report, PHYDYAS, 2009. Project deliverable nb D5-1-1, PHY-
DYAS 007, 102 pages.

[21] G.H. Golub and Ch.F. Van Loan. Matrix computations. John Hopkins, 4th. edition,
2013. xxi + 756 pages.

[22] V. Pan. Structured matrices and polynomials: Unified superfast algorithms. Springer
Science & Business Media, 2001. 278 pages.

[23] R.M. Gray. Toeplitz and circulant matrices: a review. Foundations and Trends in
Communications and Information Theory, 2(5):155–239, 2006.

[24] P. Martin-Martin, F. Cruz-Roldan, and T. Saramäki. Optimized transmultiplexers for
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