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New Proposals for the Analysis and Design of Linear-Phase FBMC/OQAM Transmultiplexers

The use of filterbank formalism has now become a current practice to analyze and design MultiCarrier Modulation (MCM) systems. In this note, we reuse this powerful tool to revisit the Orthogonal Frequency Division Multiplexing (OFDM)/Offset Quadrature Amplitude Modulation(OQAM) or, equivalently, the Filter Bank Multi-Carrier (FBMC)/OQAM scheme. Focusing on symmetric OFDM/OQAM systems with a number of subcarriers being a multiple of 4, we, firstly propose a complete characterization of perfect, or nearly perfect, reconstruction FBMC systems using classical tools of the linear algebra theory. In addition, we introduce two new families of prototype filters that, with a reduced number of parameters, outperform classical solutions from the literature for minimization of the total interference criterion.

Introduction

Introduced in the last mid-sixties the MultiCarrier Modulation (MCM) idea has become a reality along the years. Nowadays, among the various possible MCM schemes, Orthogonal Frequency Division Multiplexing (OFDM), being adopted in a large bunch of communication standards, remains, from an industrial point of view, the clear leader. Filter Bank Multi-Carrier (FBMC) is another MCM option that also attracts researchers and engineers. As recalled in [START_REF] Nissel | Filter bank multicarrier modulation schemes for future mobile communications[END_REF], even if it has been decided to stick to OFDM for the fifth generation (5G) mobile communications, mainly for backwards compatibility with 4G, the modulation format, and particularly the FBMC one, still needs to be investigated. Roughly speaking OFDM and FBMC systems share many commonalities, among others, it is worth mentioning the ease of implementation using fast Fourier transform algorithms and the possibility to preserve orthogonality properties in spite of the overlap between frequency subcarriers. The main difference, when considering the FBMC/Offset Quadrature Amplitude Modulation (OQAM) option, also known as OFDM/OQAM, comes from the fact that both MCM schemes do not refer to the same type of orthogonality. If for OFDM, the orthogonality holds in the complex domain, i.e. the receiver directly attempts to recover the QAM symbols transmitted over each sub-carrier, for FBMC/OQAM the orthogonality can only be reached in the real domain, transmitting OQAM symbols, i.e. at given time and frequency locations either purely real or purely imaginary coefficients. Only satisfying a real orthogonality condition involves some additional complexity, but FBMC/OQAM has the great advantage over OFDM of allowing designers to introduce efficient filtering operations and, furthermore, can operate at a maximum transmission bit rate since no Cyclic Prefix is required. In this note, we only focus on the FBMC/OQAM scheme corresponding to the present state of art description, i. e. the transmitted signal is generated using an exponentially modulated Synthesis Filter Bank while at the receiver side the signal is decomposed using the match filtering principle by an Analysis Filter Bank (AFB), such that the SFB-AFB pair satisfies either a perfect, or a nearly perfect, reconstruction property, being abbreviated by PR or NPR, respectively. Let us nevertheless recall a few landmarks papers that have paved the way. For interested readers, a more complete and actualized overview can be found in [2, Chapter 7]. The basic idea has been exposed at first in [START_REF] Saltzberg | Performance of an efficient parallel data transmission system[END_REF] and it originally leads to a continuous-time description of this MCM scheme often named Staggered MultiTone (SMT) either using, starting in 2010, a continuous [START_REF] Farhang-Boroujeny | Cosine modulated and offset QAM filter bank multicarrier techniques: A continuous-time prospect[END_REF] or, more recently, a discrete-time [START_REF] Stevens | Spread spectrum technique using staggered multi-tone[END_REF] description. The OFDM/OQAM spelling came at first in reference [START_REF] Floch | Coded Orthogonal Frequency Division Multiplex[END_REF] but still corresponding to a continuous-time description. A detailed description of OFDM/OQAM in discrete-time is provided in [START_REF] Siohan | Analysis and design of OFDM/OQAM systems based on filterbank theory[END_REF]. What is now called FBMC/OQAM, a denomination introduced within the European PHYDYAS project [START_REF]European Union 7th Framework Programme: Project PHYDYAS[END_REF], globally reuses the description and implementation features introduced in [START_REF] Siohan | Analysis and design of OFDM/OQAM systems based on filterbank theory[END_REF]. In this note, our aim is to bring a new look at the FBMC/OQAM described in [START_REF] Siohan | Analysis and design of OFDM/OQAM systems based on filterbank theory[END_REF] and since then in many research papers, projects and standards. Doing so, compared to [START_REF] Siohan | Analysis and design of OFDM/OQAM systems based on filterbank theory[END_REF], we introduce one single restriction. Instead of considering FBMC/OQAM systems equipped with arbitrary length prototype filters, in the present note, we assume this length, denoted L, is expressed as L = KM with K the overlapping factor and M the sub-carrier number supposed to be a multiple of 4. Note that for practical applications these conditions are generally satisfied and do not constitute veritable restrictions. For this KM -length prototype filter our aim is three-fold:

1. Revisit the link between real orthogonality and PR of the FBMC/OQAM transmultiplexer (TMUX);

2. Derive a diagonalized form of the TMUX matrix transfer function;

3. Introduce new families of NPR prototype filters.

More precisely:

• [START_REF] Siohan | Analysis and design of OFDM/OQAM systems based on filterbank theory[END_REF] provides a first proof of the equivalence between perfect real orthogonality of OFDM/OQAM systems and PR property of the associated back-to-back SFB and AFB. In the present note, we exhibit a simplified proof for KM -length FBMC systems and analyze more in details different equivalent PR conditions. In particular, we show, for the first time with a discrete-time formalism, the link between perfect real orthogonality and the conditions that have to be satisfied by the discrete-time ambiguity function of the prototype filter.

• In various publications the transfer matrix function, say T , of the FBMC/OQAM TMUX has been used to analyze its behavior, in particular w.r.t. the resulting Inter-Symbol Interference (ISI) and InterCarrier Interference (ICI). Some interesting features of T have already been mentioned, e.g. its symmetry in [START_REF] Siohan | Analysis and design of OFDM/OQAM systems based on filterbank theory[END_REF], the fact that its terms were similar in every row [START_REF] Viholainen | Prototype filter design for filter bank based multicarrier transmission[END_REF], and, more recently, its Toeplitz nature in [START_REF] Zhongnian | Novel matrix representation for OFDM/OQAM systems[END_REF]. But, up to now, no authors have taken simultaneously advantage of all these features. Doing so, in this note, we obtain a diagonalization of the transfer matrix T .

• For large values of M and K, the direct computation of PR or NPR prototype filters may lead to large size difficult optimization problems. On another hand, we can notice a constant interest for the Square Root Raised Cosine (SRRC) prototype filter, that only involves one parameter, while in the case of FBMC/OQAM systems a prototype filter defined with at most K parameters, introduced independently by Martin and Mirabbasi [START_REF] Martin | Small side-lobe filter design for multitone data-communication applications[END_REF][START_REF] Mirabbasi | Overlapped complex-modulated transmultiplexer filters with simplified design and superior stopbands[END_REF] and Bellanger [START_REF] Bellanger | Specification and design of a prototype filter for filter banks based on multicarrier transmission[END_REF], has also attracted a lot of interest, see for instance [START_REF]Orthogonal waveforms and filter banks for future communications[END_REF]. Let call MMB this prototype filter. As for the SRRC and the MMB prototype filter, our aim in this note is to propose new families of NPR prototype filters being characterized only using a limiter number of parameters. Our goal is attained starting from the Extended Gaussian Function (EGF) [START_REF] Roche | A family of Extended Gaussian Functions with a nearly optimal localization property[END_REF][START_REF] Siohan | Cosine-modulated filterbanks based on Extended Gaussian Function[END_REF][START_REF] Siohan | Derivation of Extended Gaussian Functions based on the Zak transform[END_REF], a PR prototype filter if its length and number of parameters can go to infinity. A first class of NPR prototype filters is obtained using an appropriate modification of the original EGFs, named Linear Combination of Gaussian Filters (LCGF), involving at most K + 2 parameters. To create the second family, named GEN, we introduce another modification of the EGF. Then, with at most 2K + 3 parameters, GEN family incorporates the LCGF and MMB families of prototype filters. All these NPR FBMC/OQAM solutions are compared taking into account an overall interference measure.

Our note is organized as follows. Section 2 is devoted to the presentation of the FBMC/OQAM prototype filter. Starting from the PR conditions involving the polyphase components of the prototype filter, sets of z-functions are introduced allowing us to derive four different PR conditions. In Section 3, we introduce a z-matrix connected to one of the previous PR condition and provide a diagonalization of this symmetric matrix. In Section 4, we rewrite the FBMC/OQAM equations corresponding to the case where L = KM and, taking advantage of the linear algebra analysis introduced in Section 3, an expression of the FBMC/OQAM TMUX is derived. Then, in order to tackle the case of NPR systems, a few possible expressions for the interference functions are restated. As in [START_REF] Viholainen | Prototype filter design for filter bank based multicarrier transmission[END_REF], in Section 5, the TOtal Interference (TOI) criterion, i. e. ISI+ICI, is retained to optimize the different families of prototype filters considered in our study while usual metrics, as out-of-band energy and time-frequency localization (TFL) are used to complete our comparisons. Our conclusions are finalized in Section 6.

Notations

In this note, vectors and matrices are denoted by bold characters, and row and column indexes start from 0. j designates the imaginary unit, i. e. j 2 = -1. For a complex number, say c, {c} and {c} designate its real and imaginary part, respectively. Superscript . T stands for transposition. Overlined terms denote complex conjugation, e. g. for a discretetime filter, p[n] with z-transform P (z),

P (z) = n p[n]z -n .
For an n × n matrix B and m ≥ 2, the nm × nm block diagonal matrix with m diagonal blocks equal to B is denoted by

D m [B]. The n × n identity matrix is denoted by I n . If v is a vector of dimension n, ∆[v] is the n × n diagonal matrix such that ∆[v] r,r = v r , 0 ≤ r ≤ n -1. Γ n is the n × n diagonal matrix with diagonal elements [Γ n ] r,r = (-1) r , 0 ≤ r ≤ n -1.
For n ≥ 1, as denoted for example in [START_REF] Britanak | Discrete cosine transforms: Algorithms,Advantages, Applications[END_REF], C II n is the n × n non normalized DCT-II matrix defined by

[C II n ] r,c = cos πr(2c + 1) 2n , 0 ≤ r, c ≤ n -1, (1) 
and C III n is the n × n non normalized DCT-III matrix defined by

C III n r,c =      1 2 if c = 0 cos (2r + 1)cπ 2n if c = 0 , 0 ≤ r, c ≤ n -1. (2) 
Up to a multiplicative constant, C II n and C III n are inverse matrices

C II n C III n = n 2 I n . (3) 
Let σ be a bijective application on the set {0, 1, . . . n-1} for n ≥ 2 that defines a permutation of this set. Then the n × n permutation matrix J σ is defined by [J σ ] r,c = 1 if c = σ(r) and 0 otherwise, for 0 ≤ r, c ≤ n -1.

For σ and τ two permutations on {0, 1, . . . n -1}, and τ • σ their composition defined by

τ •σ(r) = τ (σ(r)), 0 ≤ r ≤ n -1, then J σ J τ = J τ •σ .
For a permutation σ on {0, 1, . . . n -1} and a vector v of dimension n,

∆[J σ v] = J σ ∆[v]J T σ . (4) 
Let s n denote the permutation on {0, 1, . . . , n-1} defined by s n (i) = n-1-i, and J n = J sn be the associated permutation matrix. The following lemma, with a straightforward proof, will be used later on.

Lemma 1. For any n ≥ 1, C III n Γ n = J n C III n .
Proof.-For c = 0 and 0 ≤ r ≤ n -1, we get

C III n Γ n r,0 = J n C III n r,0 = 1 2 . When c = 0, C III n Γ n r,c = (-1) c cos (2r + 1)cπ 2n , J n C III n r,c = [C III n ] n-1-r,c = cos [2(n -1 -r) + 1]cπ 2n = cos cπ - (2r + 1)cπ 2n = C III n Γ n r,c ,
which proves Lemma 1.

FBMC/OQAM prototype filter

As indicated in the introduction, in this note we focus on M -subcarrier FBMC/OQAM systems equipped with a symmetrical prototype filter having a K overlapping factor. Beyond the brief reminder of the Perfect Reconstruction (PR) property reported in subsection 2.2, giving the condition for a distortion-free FBMC transmission, i. e. the capability to exactly recover at the demodulator output the transmitted input symbols, we introduce new functions allowing us afterwards to provide a complete and precise description of the FBMC/OQAM transmission system.

Basic definitions

For K ≥ 2 and M ≥ 4, M multiple of 4, we consider in this note a causal symmetric real filter

P (z) = L-1 n=0 p[n]z -n of length L = KM , called the prototype filter. So p[n] = p[L -1 -n] for 0 ≤ n ≤ L -1.
The M -polyphase components G l (z), 0 ≤ l ≤ M -1 of P (z) are defined by

P (z) = M -1 l=0 z -l G l (z M ), (5) 
and we note that G l (z) are polynomials of degree K -

1 in z -1 . If we define the functions s(G l )(z), 0 ≤ l ≤ M -1, by s(G l )(z) = z -(K-1) G l (z -1 ), then the symmetry of P (z) implies that s(G l )(z) = G M -1-l (z) for any 0 ≤ l ≤ M -1.
Let us define the functions λ r (z) and b r (z), 0 ≤ r ≤ M 4 -1, by

λ r (z) = M 2 z -1 G r (z)s(G r )(z) + G r+ M 2 (z)s(G r+ M 2 )(z) , (6) 
b r (z) = 2(-1) r z -1 M 4 -1 l=0 G r (z)s(G r )(z) + G r+ M 2 (z)s(G r+ M 2 )(z) cos 2πr(2l + 1) M . (7) 
The

M 4 -vector b M 4 (z) (resp. λM 4 (z)) is the vector with components b r (z), 0 ≤ r ≤ M 4 -1 (resp. λ r (z), 0 ≤ r ≤ M 4 -1). Let us also define two M 4 × K matrices V and W by [V ] r,c = 2K-2c-1 m=0 p r + m M 2 p r + m M 2 + cM , (8) 
[W ] r,c = L-1-cM k=0 p[k] p[k + cM ] cos 2πr(2k + 1) M , (9) 
for 0 ≤ r ≤ M 4 -1, 0 ≤ c ≤ K -1. Remark 1. [W ] 0,0 = P (z) 2 2 = L-1 k=0 p[k] 2
, the squared l 2 -norm of P (z).

The elements of matrix W are strongly related to the usual discrete-time ambiguity function A P [l, ν] defined, as proposed for instance in [START_REF] Benedetto | Phase-coded waveforms and their design[END_REF], by

A P [l, ν] = e -jπνl L-1-l k=0 p[k]p|k + l]e -j2πkν . (10) 
Then, over a (cM, 2r M ) time-frequency lattice, using the symmetry of P (z), we get

A P cM, 2r M = L-1-cM k=0 p[k]p[k + cM ]e -2jπk 2r M = 1 2 L-1-cM k=0 p[k]p[k + cM ] e 2jπk 2r M + e 2jπ(L-1-cM -k) 2r M , (11) 
and therefore

A P cM, 2r M = e -2jπ r M L-1-cM k=0 p[k]p[k + cM ] cos 2πr(2k + 1) M = e -2jπ r M [W ] r,c . (12) 
Let us define the K-vector u(z) by

u(z) = [z -K , z -K+1 + z -K-1 , . . . , z -1 + z -2K+1 ] T . ( 13 
)
Proposition 1. For K ≥ 2, M ≥ 4, M multiple of 4, and any symmetric prototype filter P (z) of length L = KM , the following equalities are verified:

(i) b M 4 (z) = 4 M ΓM 4 C II M 4 λM 4 (z), (ii) λM 4 (z) = 2 C III M 4 ΓM 4 b M 4 (z), (iii) W = 2 C II M 4 V , (iv) λM 4 (z) = M 2 V u(z), (v) b M 4 (z) = Γ M 4 W u(z).
Proof.-Using ( 6), [START_REF] Siohan | Analysis and design of OFDM/OQAM systems based on filterbank theory[END_REF], and the definitions of ΓM , (i) is evident.

(ii)-From (i), we get

λM 4 (z) = M 4 C II M 4 -1 Γ -1 M 4 b M 4 (z). As Γ -1 M 4 = ΓM 4 and C II M 4 -1 = 8 M C III M 4 , from (3) 
, this proves (ii).

Setting

k = a + m M 2 with 0 ≤ a ≤ M 2 -1, 0 ≤ m ≤ 2K -2c -1 in (9) gives [W ] r,c = M 2 -1 a=0 
2K-2c-1 m=0 p a + m M 2 p a + m M 2 + cM cos 2πr(2a + 1) M = M 4 -1 a=0 2K-2c-1 m=0 p a + m M 2 p a + m M 2 + cM cos 2πr(2a + 1) M + M 2 -1 a= M 4 2K-2c-1 m=0 p a + m M 2 p a + m M 2 + cM cos 2πr(2a + 1) M .
In the second sum, we set a = M 2 -1 -b and m = 2K -2c -1 -m and using the cosine equality cos 2πr(2a+1) M = cos 2πr(2b+1) M , we find that

p a + m M 2 = p KM -1 -(b + m M 2 + cM ) = p b + m M 2 + cM , p a + m M 2 + cM = p KM -1 -(b + m M 2 ) = p b + m M 2 ,
Then, using the symmetry of P (z), we get

[W ] r,c = 2 M 4 -1 a=0 cos 2πr(2a + 1) M 2K-2c-1 m=0 p a + m M 2 p a + m M 2 + cM = 2 M 4 -1 a=0 C II M 4 r,a [V ] a,c ,
which proves (iii).

(iv) is equivalent to

λ r (z) = M 2 2K-1 k=1 [V ] r,|K-k| z -k , 0 ≤ r ≤ M 4 -1. ( 14 
) For 0 ≤ r ≤ M 4 -1, R r (z) = G r (z)s(G r )(z) + G r+ M 2 (z)s(G r+ M 2 )(z) is a polynomial of degree 2K -2 in z -1 , satisfying z -(2K-2) R r (z -1 ) = R r (z), that can therefore be written as R r (z) = c r,0 z -(K-1) + K-1 k=1 c r,k z -(K-1-k) + z -(K-1+k) , (15) 
with coefficients c r,k , 0 ≤ k ≤ K -1. Rewriting the polyphase components and using P (z) symmetry, we get

G r (z) = K-1 n=0 p[r + nM ] z -n , s(G r (z)) = G M -1-r (z) = K-1 m=0 p[M -1 -r + mM ] z -m = K-1 m=0 p[(K -1 -m)M + r] z -m , The coefficient d (1) r,k of z -(K-1-k) in G r (z)s(G r )(z) is obtained by keeping the term in the product such that n + m = K -1 -k, i.e. m = K -1 -k -n and 0 ≤ n ≤ K -1 -k, and therefore d (1) r,k = K-1-k n=0 p[r + nM ] p[r + nM + kM ] = K-1-k n=0 p r + 2n M 2 p r + 2n M 2 + kM
In the same way, we get that the coefficient d

(2) r,k of z -(K-1-k) in G r+ M 2 (z)s(G r+ M 2 )(z) is d (2) r,k = K-1-k n=0 p r + (2n + 1) M 2 p r + (2n + 1) M 2 + kM ,
and since c r,k = d (1) r,k + d (2)
r,k , using the definition (8), it comes that

c r,k = 2K-2k-1 n=0 p r + n M 2 p r + n M 2 + kM = [V ] r,k , (16) 
This proves (iv).

From (i), (iv) and (iii), we get

b M 4 (z) = 2 ΓM 4 C II M 4 V u(z) W u(z), (17) 
which is (v).

In an equivalent way, (v) may be written

b r (z) = (-1) r 2K-1 k=1 [W ] r,|K-k| z -k , 0 ≤ r ≤ M 4 -1. ( 18 
)

Perfect reconstruction property

Directly deduced from [START_REF] Siohan | Analysis and design of OFDM/OQAM systems based on filterbank theory[END_REF], we can say that a FBMC/OQAM symmetric prototype filter

P (z) of length L = KM with K ≥ 2 and M ≥ 4, M multiple of 4, is PR if its M -polyphase components G l (z) satisfy the equalities G l (z)s(G l )(z) + G l+ M 2 (z)s(G l+ M 2 )(z) = 2α M z -K+1 , 0 ≤ l ≤ M 4 -1, (19) 
where

α = P (z) 2 2 .
Proposition 2. The PR property of such a symmetric filter P (z) is equivalent to any of the following assertions:

(i) b 0 (z) = αz -K and b r (z) = 0, 1 ≤ r ≤ M 4 -1, (ii) λ r (z) = αz -K , 0 ≤ r ≤ M 4 -1, (iii) V verifies [V ] r,c = 2α M if c = 0, and 0 otherwise, (iv) W verifies [W ] 0,0 = α and [W ] r,c = 0 if (r, c) = (0, 0).
Proof.-Using the definition of b r (z) by equation ( 7) and [START_REF] Malvar | Modulated QMF filter banks with perfect reconstruction[END_REF] gives immediately (ii). From equation [START_REF] Benedetto | Phase-coded waveforms and their design[END_REF], that expresses the coefficients in z -1 as elements of matrix W , we get (iv).

From Proposition 1 (iii) and then by (3) we obtain

V = 1 2 C II M 4 -1 W = 4 M C III M 4 W ,
and (iii) is therefore a direct consequence of (iv). Note also that (iii) equivalent to the PR condition derived in [START_REF] Malvar | Modulated QMF filter banks with perfect reconstruction[END_REF] for cosine modulated filter banks.

As the coefficients of matrix V are related to coefficients of functions λ r (z), 0 ≤ r ≤ M 4 -1, by equation ( 14), (ii) is obtained.

Diagonalization of a special symmetric matrix

One key element to get a precise overview of the FBMC/OQAM transmultiplexer (TMUX) is provided with its transfer matrix expression. As shown in [7, (38)], this M ×M -T matrix involves an alternation of zeros and non-zeros terms along its rows and columns. All these systematic zeros are a direct consequence, for the FBMC/OQAM scheme, of the alternate transmission in time and frequency of purely real and purely imaginary symbols. In [START_REF] Siohan | Analysis and design of OFDM/OQAM systems based on filterbank theory[END_REF] and later on also in [START_REF] Viholainen | Prototype filter design for filter bank based multicarrier transmission[END_REF][START_REF] Viholainen | Prototype filter and structure optimization[END_REF] this matrix has been efficiently used to derive interference expressions permitting useful comparisons between different prototype filters. As already noted, the T matrix possesses interesting properties, symmetry [7, page 1176], similarity in every row [START_REF] Viholainen | Prototype filter design for filter bank based multicarrier transmission[END_REF] and a Toeplitz structure [START_REF] Zhongnian | Novel matrix representation for OFDM/OQAM systems[END_REF]. Exploiting all these features, in this section, we propose a self-contained analysis with its main theorem, number 2, leading to a simple diagonalization allowing us to provide afterwards a simplified FBMC/OQAM presentation.

Let n be an even positive integer and n

2 parameters b r , 0 ≤ r ≤ n 2 -1 defining the n 2 vector b n 2 = [b 0 , b 1 , . . . , b n 2 -1 ] T . The n × n symmetric matrix B n is defined, for 0 ≤ i, j ≤ n -1, by [B n ] i,j =    b r if |i -j| = r < n 2 , -b n-r if |i -j| = r > n 2 , 0 otherwise. ( 20 
)
B n is a special case of a symmetric Toeplitz matrix, [21, section 4.7], considered in the literature as a kind of structured matrices for which fast computation algorithms have been developed (see e.g. [START_REF] Pan | Structured matrices and polynomials: Unified superfast algorithms[END_REF]), [START_REF] Gray | Toeplitz and circulant matrices: a review[END_REF]).

In this section, a complete characterization of the spectral properties of B n is given in Theorem 2 but first the following special case is studied where b

0 = 0, b 1 = 1, b r = 0, 2 ≤ r ≤ n 2 -1.
A special name U n is reserved for this matrix. For example, when n = 6,

U 6 =              0 1 0 0 0 -1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 -1 0 0 0 1 0              . ( 21 
)
Theorem 1. The eigenvalues of

U n are ν c = 2 cos (4c+1)π n , 0 ≤ c ≤ n 2 -1, each of them with multiplicity 2. We denote by ν the n 2 vector ν = [ν 0 , ν 1 , . . . , ν n 2 -1 ] T and by ∆ n 2 (ν) the diagonal n 2 × n 2 matrix with diagonal elements ν c , 0 ≤ c ≤ n 2 -1. The n × n matrix R n defined by [R n ] r,c = √ 2 √ n cos (r + c + 4rc)π n , 0 ≤ r, c ≤ n -1, ( 22 
)
is a symmetric orthogonal matrix and

R n U n R n = D 2 [∆ n 2 (ν)]. (23) 
Proof.-For 0 ≤ c ≤ n -1, let us denote by V c the column of index c of R n . We get

||V c || 2 = 2 n n-1 r=0 cos 2 (r + c + 4rc)π n = 2 n n-1 r=0 1 2 1 + cos 2(r + c + 4rc)π n = 1 + 1 n e j2πc n n-1 r=0 e 2jπ(1+4c)r n = 1,
the last sum, estimated as the sum of a geometric sequence, being null.

Using usual trigonometric formulas, it is straightforward to verify that, for 0

≤ c ≤ n 2 -1, U n V c = ν c V c and U n V c+ n 2 = ν c V c+ n 2 , that is V c and V c+ n 2 are eigenvectors of U n for eigenvalue ν c .
Because eigenspaces of a real symmetric matrix for different eigenvalues are orthogonal, it remains to show that V c and V c+ n 2 are orthogonal 0 ≤ c ≤ n 2 -1. This is easily done using trigonometric formulas:

V c .V c+ n 2 = 2 n n-1 r=0 cos (r + c + 4rc)π n cos (r + c + n 2 + 4r(c + n 2 )π n = 1 n n-1 r=0 cos 2(r + c + 4rc)π n + π 2 + 2πr + cos π 2 + 2πr = - 1 n e j2πc n n-1 r=0 e 2jπ(1+4c)r n = 0. Remark 2. Because R n is symmetric, R 2 n = I n .
The eigenvalues of R n are +1 and -1, each of them with multiplicity n 2 , with respective eigenspaces E +1 and E -1 . R n is the matrix of the orthogonal symmetry in R n with respect to E +1 (parallel to E -1 ).

Let us consider now the

n × n matrices, U (c) n , 0 ≤ c ≤ n 2 -1, defined by, for 0 ≤ i, j ≤ n -1, [U (c) n ] i,j =    1 if |i -j| = c, -1 if |i -j| = n -c, 0 otherwise. ( 24 
)
It immediately comes that U (0) n = I n , U (1) n = U n and

B n = n 2 -1 c=0 b c U (c) n . (25) 
Proposition 3. The matrices U (c) n may be expressed as polynomials of U n as follows:

U (c) n = 2T c 1 2 U n , 1 ≤ c ≤ n 2 -1, ( 26 
)
where T c is the first kind Chebyshev polynomial of degree c (T c (cos θ) = cos cθ).

From [START_REF] Soni | An optimized transmultiplexer using combinatorial window functions[END_REF] and Proposition 3, it follows that B n may be expressed as a polynomial function of U n as

B n = b 0 I n + 2 n 2 -1 c=1 b c T c 1 2 U n . ( 27 
)
Theorem 2. The eigenvalues of B n are the numbers

µ r = b 0 + 2 n 2 -1 c=0 b c cos (4r + 1)cπ n , 0 ≤ r ≤ n 2 -1, (28) 
each of them with multiplicity 2.

If we denote by µ the n

2 vector µ = [µ 0 , µ 1 , . . . , µ n 2 -1 ] T and by ∆ n 2 (µ) the diagonal n 2 × n 2 matrix with diagonal elements µ c , 0 ≤ c ≤ n 2 -1, R n B n R n = D 2 [∆ n 2 (µ)]. ( 29 
)
Proof.-Using equation [START_REF] Lin | Impact of time and carrier frequency offsets on the FBMC/OQAM modulation scheme[END_REF], the eigenvalues of B n are the numbers

µ r = b 0 + 2 n 2 -1 c=1 b c T c ( 1 2 ν r ), 0 ≤ r ≤ n 2 -1, (30) 
with multiplicity 2. Because

T c ( 1 2 ν r ) = T c (cos (4r + 1)π n ) = cos (4r + 1)cπ n , (31) 
we get [START_REF] Nguyen | Optimizing pulse shaping filter for DOCSIS systems[END_REF].

With the same change of basis R n than for U n , using [START_REF] Gray | Toeplitz and circulant matrices: a review[END_REF], we therefore obtain the diagonalization relation [START_REF] Biswas | A novel approach of various QAM with roll off factor variation using raised cosine filter and SRRC filter for analysis of BER and SNR[END_REF].

Example 1. For n = 6,

B 6 =              b 0 b 1 b 2 0 -b 2 -b 1 b 1 b 0 b 1 b 2 0 -b 2 b 2 b 1 b 0 b 1 b 2 0 0 b 2 b 1 b 0 b 1 b 2 -b 2 0 b 2 b 1 b 0 b 1 -b 1 -b 2 0 b 2 b 1 b 0              , (32) 
R 6 = √ 3 3             1 √ 3 2 1 2 0 -1 2 - √ 3 2 √ 3 2 -1 √ 3 2 -1 2 0 1 2 1 2 √ 3 2 -1 2 - √ 3 2 1 2 √ 3 2 0 -1 2 - √ 3 2 -1 - √ 3 2 -1 2 -1 2 0 1 2 - √ 3 2 1 - √ 3 2 - √ 3 2 1 2 √ 3 2 -1 2 - √ 3 2 1 2             . ( 33 
) D 2 [∆ 3 (µ)] =         µ 0 0 0 0 0 0 0 µ 1 0 0 0 0 0 0 µ 2 0 0 0 0 0 0 µ 0 0 0 0 0 0 0 µ 1 0 0 0 0 0 0 µ 2         , ( 34 
)
with

µ 0 = b 0 + √ 3 b 1 + b 2 , µ 1 = b 0 - √ 3 b 1 + b 2 , µ 2 = b 0 -2 b 2 . ( 35 
)
Remark 3. Equations ( 28) may be expressed by the following matrix equality

µ n 2 = C n 2 b n 2 (36)
where C n 2 is the n 2 × n 2 matrix defined by

C n 2 r,c = 1 if c = 0 2 cos (4r+1)cπ n if c = 0 , 0 ≤ r, c ≤ n 2 -1. ( 37 
)
Considering the permutation τ = [τ 0 , τ 1 , . . . , τ n 2 -1 ] of {0, 1, . . . , n 2 -1} obtained by the list of even indexes in {0, 1, . . . , n 2 -1} in increasing order followed by the list of odd indexes in decreasing order, J τ is the permutation matrix associated to τ , and the following relation is verified

C n 2 = 2J τ C III n 2 . ( 38 
) Remark 4. Theorem 2 is an evidence for n = 2, since µ 0 = b 0 , b 1 = µ 1 = [µ 0 ], R 2 = I 2 ,
and

B 2 = µ 0 I 2 = D 2 [µ 0 ]. 4 
The FBMC/OQAM transmultiplexer

Structure of the TMUX transfer matrix

The FBMC/OQAM transmultiplexer corresponds to the direct concatenation of the Synthesis Filter Bank (SFB), at the transmitter side, and of the Analysis Filter Bank (AFB) at the receiver side. In this note, we consider the basic TMUX system represented in Figure 1, for given K ≥ 2 and even M ≥ 4 multiple of 4.

It is a simple variant of a well-known scheme presented at first in [7, Figure 1] and later on in [20, Figure 2.1]. Indeed in Figure 1, without loss of generality, we only focus on the transmission of the real data symbols, say the a m,n , with z-transform expressed as X m (z) = n a m,n z -n , thus omitting the complex-to-real conversion at the transmission side and the dual operation at the receiver side. For given values of K and M , P (z) is a symmetric prototype filter such as defined in section 2 and the synthesis and analysis filters F m (z), 0 ≤ m ≤ M -1, are derived from P (z) by

F m (z) = L-1 n=0 f m [n]z -n with f m [n] = p[n]e 2jπm M (n-L-1 2 ) , 0 ≤ n ≤ L -1. ( 39 
) It comes that F 0 (z) = P (z), F M -m (z) = -F m (z), 1 ≤ m ≤ M -1, where F m (z) = L-1 n=0 f m [n]z -n . The F m (z) are linear phase filters, i.e. f m [L -1 -n] = f m [n], 0 ≤ n ≤ L -1, 0 ≤ m ≤ M -1. ( 40 
)
We get

F m (z) = L-1 n=0 p[n]e 2jπm M (n-L-1 2 ) z -n = e -jπm(L-1) M P e -2jπm M z , (41) and, from (5) 
,

F m (z) = e -jπm(L-1) M M -1 l=0 e 2jπml M G l (z M )z -l . (42) 
In Figure 1, the multiplicative operators act as shown below

j n+m U (z) V (z) = j m U (-jz).
(43) and

j -(n+m) U (z) V (z) = j -m U (jz). (44) 
The M 2 upsampling and downsampling operators are denoted by UM X m (z) and Xm (z), 0 ≤ m ≤ M -1 are z-transforms of real data sequences and we denote by X(z) (resp. X(z)) the M -vector

X(z) = [X 0 (z), X 1 (z), . . . , X M -1 ] T (resp. X(z) = [ X0 (z), X1 (z), . . . , XM-1 (z)] T ).
Let us define the M × M permutation matrix J σ , where σ is the permutation defined on {0, 1, . . . , M -1}, by

σ(2r) = r, σ(2r + 1) = M 2 + r, 0 ≤ r ≤ M 2 -1, (45) 
and the M 4 × M 4 permutation matrix J τ where τ is the permutation defined on {0, 1, . . . , M 4 -1} by

τ (i) = M 4 -1 -2i, 0 ≤ i ≤ M -4 8 , 2i -M 4 , M +4 8 ≤ i ≤ M 4 -1.
(46)

j n+1 j n j n+M -1 M 2 F 1 (z) M 2 F 0 (z) M 2 F M-1 (z) X 1 (z) X 0 (z) X M-1 (z) z -1 S(z) F 1 (z) M 2 j -(n+1) R{.} X1 (z) Y1(z) F 0 (z) M 2 j -n R{.} X0 (z) Y0(z) F M-1 (z) M 2 j -(n+M -1)
R{.} XM-1 (z)

YM-1(z)

Figure 1: The basic FBMC/OQAM TMUX system for linear-phase synthesis and analysis filter banks.

Theorem 3. For K ≥ 3, M ≥ 4 a multiple of 4 and P (z) a symmetric real prototype filter P (z) of length L = KM , using the definitions of section 2, the following properties are verified.

(i) The M × M transfer matrix T (z) of the TMUX represented in Figure 1, i.e. X(z) = T (z) X(z), is symmetric and satisfies, for

0 ≤ i, j ≤ M -1, [T ] i,j (z) =    b r (-z 2 ) if |i -j| = 2r, 0 ≤ r < M 4 , -b r (-z 2 ) if |i -j| = M -2r, 0 ≤ r < M 4 , 0 otherwise. (47) 
(ii) The eigenvalues of T (z) are the numbers λ r (-z 2 ), 0 ≤ r ≤ M 4 -1, distinct or not, each of them with multiplicity 4.

(iii) The following matrix equality is verified

T (z) = U D 4 [∆(λM 4 (-z 2 ))] U T , ( 48 
)
where U is the constant (not depending on z -1 ) M × M orthogonal matrix

U = J σ D 2 [R M 2 ] D 4 [J τ ], (49) 
and R M 2 is defined in section 3.

(iv) The output signals X(z) are proportional to a delayed copy of the input signals X(z) if and only if P (z) has the perfect reconstruction property. In this case X(z) = (-1) K αz -2K X(z) with α = P (z) 2 2 .

Proof.-(i) -First remark that the application f : X(z) → X(z) is linear. For 0 ≤ m ≤ M -1, let us consider the vector

X m (z) = [X 0 (z), X 1 (z), . . . , X M -1 ] T with X m (z) = 0, 0 ≤ m ≤ M -1, m = m and X m (z) = 1. Because, f (z -n X m (z)) = z -n f (X m (z)), it is sufficient to prove (i) for input signals X m (z), 0 ≤ m ≤ M -1.
For input signals X m (z), we get

S(z) = j m z -1 F m (z), (50) 
and, using (42), for any 0 ≤ m ≤ M -1,

S(z)F m (z) = j m z -1 e -jπ(m+m )(L-1) M M -1 l=0 e 2jπml M G l (z M )z -l M -1 l =0 e 2jπm l M G l (z M )z -l = j m e -jπ(m+m )(L-1) M M -1 l,l =0 e 2jπ(ml+m l ) M G l (z M )G l (z M )z -(l+l +1) . ( 51 
) Because 1 ≤ l + l + 1 ≤ 2M -1, powers of z M 2 appear in (51) only if l + l + 1 = M 2 , l + l + 1 = M and l + l + 1 = 3M
2 , and

D M 2 [S(z)F m (z)] = T 1 (z) + T 2 (z) + T 3 (z), (52) 
with

T 1 (z) = j m (-1) m e -jπ(m+m )L M e jπ(m-m ) M z -1 M 2 -1 l=0 e 2jπ(m-m )l M G l (z 2 )GM 2 -1-l (z 2 ), (53) 
T 2 (z) = j m e -jπ(m+m )L M e jπ(m-m ) M z -2 M -1 l=0 e 2jπ(m-m )l M G l (z 2 )G M -1-l (z 2 ), (54) 
T 3 (z) = j m (-1) m e -jπ(m+m )L M e jπ(m-m ) M z -3 M -1 l= M 2 e 2jπ(m-m )l M G l (z 2 )G3M 2 -1-l (z 2 ). ( 55 
)
From (53), we get

j -m T 1 (jz) = (-1) m j m-m +1 e -jπ(m+m )L M e jπ(m-m ) M z -1 M 2 -1 l=0 e 2jπ(m-m )l M G l (-z 2 )GM 2 -1-l (-z 2 ), = (-1) m j m-m +1 e -jπ(m+m )L M e jπ(m-m ) M × z -1 M 4 -1 l=0 e 2jπ(m-m )l M + e 2jπ(m-m )( M 2 -1-l) M G l (-z 2 )GM 2 -1-l (-z 2 ), = 2(-1) m j m-m +1 e -jπ(m+m )L) M e jπ(m-m ) 2 × z -1 M 4 -1 l=0 G l (-z 2 )GM 2 -1-l (-z 2 ) cos π(m -m )(4l + 2 -M ) 2M , (56) 
= -cos 2π(2l + 1)r M , and therefore, from (59),

R{j -m T 2 (jz)} = -c r (-z 2 ). Observing that cos 2π(2l + 1)r M = cos 2π(2( M 2 -1 -l) + 1)r M ,
and

G M -1-l (z) = s(G l )(z), G M 2 -1-l = s(G l+ M 2 )(z), we obtain c r (z) = 2(-1) r z -1 M 4 -1 l=0 G l (z)s(G l )(z) + G l+ M 2 (z)s(G l+ M 2 )(z) cos 2π(2l + 1)r M = b r (z),
from the definition of b r (z) by ( 7). This proves that Xm (z) = T (z) X m (z) with T (z) defined by ( 47) and achieves the proof of (i).

(ii)-From (i), we get

T (z) = J σ D 2 [B M 2 (-z 2 )] J T σ , (62) 
where B M 2 (z) is the matrix defined in [START_REF] Viholainen | Prototype filter and structure optimization[END_REF] with n = M 2 and b r = b r (-z 2 ), 0 ≤ r ≤ M 4 -1. Therefore, from (36), the eigenvalues of T (z) are the elements of the vector

µM 4 (-z 2 ) = C M 4 b M 4 (-z 2 ) with b M 4 (z) =     b 0 (z) b 1 (z) . . . b M 4 -1 (z)     . Now following (38), C M 4 = 2J τ C III 4 2
, where τ is the permutation of {0, 1, . . . , M 4 -1} of even values in increasing order followed by the list of odd values in decreasing order. From Proposition

1 (i), b M 4 (-z 2 ) = 4 M ΓM 4 C II M 4 λM 4 (-z 2 ). Therefore µM 4 (-z 2 ) = 8 M J τ C III M 4 Γ M 4 C II M 4 λM 4 (-z 2 ).
Using Lemma 1 and (3), we get µM

4 (-z 2 ) = J τ J M 4 λM 4 
(-z 2 ), which shows that the elements of µM 4 (-z 2 ) are a permutation of the elements of λ M 4 (-z 2 ). This proves (ii).

(iii)-We check that J τ J M 4 = J τ where τ is the permutation defined in (46). From (29), we get

B M 2 (z) = R M 2 D 2 [∆(µM 4 (z))] R M 2 = R M 2 D 2 [∆(J τ λM 4 (z))] R M 2 = R M 2 D 2 [J τ ∆(λM 4 (z))J T τ ] R M 2 18
using (4). Then, from (54), it comes

T (z) = J σ D 2 [R M 2 D 2 [J τ ∆(λM 4 (-z 2 ))J T τ ] R M 2 ] J T σ , = J σ D 2 [R M 2 ] D 4 [J τ ] D 4 [∆(λM 4 (-z 2 ))] D 4 [J T τ ] D 2 [R M 2 ] J T σ . (63) 
The result for (iii) follows.

(iv)-The matrix T (z) has the form βz -n I M for a non null constant β if and only if any eigenvalue λ r (-z 2 ) = βz -n , 0 ≤ r ≤ M 4 -1. Because λ r (z) has the form λ r (z) = z -1 q(z) where q(z) is a polynomial in z -1 of degree 2K -2 with z -(2K-2) q(1/z) = q(z), this implies that λ r (z) = α z -K , and therefore λ r (-z 2 ) = (-1) K α z -2K . From Proposition 2-(ii), this is equivalent to the PR property of the prototype filter P (z) with α = P (z) 2 2 and β = (-1) K α.

The FBMC/OQAM interference function

According to Theorem 3, when the prototype filter is PR, the detected sequence is an exact reproduction, up to a time offset, of the transmitted sequence. When the prototype filter is no longer PR, we need a quantitative measurement of its distance to perfect reconstruction, i.e. the interference function of the prototype filter. Transmitting the X(z) sequence always results in the detection of X(z), a sequence which is equal to (-1) K αz -2K X(z) for a PR TMUX system. The difference is therefore equal to

Y (z) = [T (z) -(-1) K αz -2K I M ] X(z).
To define a norm for matrix A(z) = T (z) -(-1) K αz -2K I M , we first need a norm of its elements. A first possible choice is to consider the l 1 norm on polynomials in z -1 : if q(z) = n q[n]z -n , then q(z) 1 = n |q[n]| and then

A(z) = sup{ M -1 c=0 A r,c (z) 1 , 0 ≤ r ≤ M -1}. ( 64 
)
For the considered TMUX, up to a sign change, any line of A(z) contains the same non null elements, and

A(z) = b 0 (-z 2 ) -(-1) K z -2K 1 + 2 M 4 -1 c=0 b r (-z 2 ) 1 (65) = b 0 (z) -z -K 1 + 2 M 4 -1 c=0 b r (z) 1 . ( 66 
)
This is the choice made in [START_REF] Siohan | Analysis and design of OFDM/OQAM systems based on filterbank theory[END_REF] for example.

Another choice is to consider the l 2 norm on filters q(z) = n q[n]z -n defined by

q(z) 2 2 = n |q[n]| 2 = 1 0 q e 2jπν 2 dν, (67) 
and then the interference is expressed using Frobenius norm A(z) F defined by

A(z) 2 F = M -1 r,c=0 [A] r,c (z) 2 F . ( 68 
)
This definition is chosen in [START_REF] Martin-Martin | Optimized transmultiplexers for multirate systems[END_REF], [START_REF] Viholainen | Prototype filter and structure optimization[END_REF], [START_REF] Soni | An optimized transmultiplexer using combinatorial window functions[END_REF] for example. Furthermore, as illustrated in [START_REF] Saeedi-Sourck | Sensitivity analysis of offset qam multicarrier systems to residual carrier frequency and timing offsets[END_REF][START_REF] Lin | Impact of time and carrier frequency offsets on the FBMC/OQAM modulation scheme[END_REF], an adaption of the Frobenius norm of the ambiguity function could also be used to derive the Signal to Interference Ratio (SIR) in the case of FBMC/OQAM transmission through time and frequency dispersive channels. We, therefore here, choose to focus on this norm.

Using the notations of the first paragraph, we introduce the following definition.

Definition 1. Given K ≥ 3, M ≥ 4 multiple of 4, P (z) a symmetric prototype filter of length L = KM , and the TMUX defined by P (z), as in Figure 1 with transfer matrix T (z), then the interference function I(P ) is defined by

I(P ) = 1 M α 2 T (z) -(-1) K αz -2K I M 2 F with α = P (z) 2 2 . (69) 
The next proposition shows that I(P ) may be expressed in different equivalent ways, the expression (72) in terms of matrix W elements being the most practical for calculations.

Proposition 4. Let K ≥ 3, M ≥ 4 a multiple of 4 and P (z) a symmetric real prototype filter P (z) of length L = KM . With the definitions of section 2, the following properties are verified (i)

I(P ) = 1 α 2   b 0 (z) -αz -K 2 2 + 2 M 4 -1 r=1 b r (z) 2 2   , (70) 
(ii)

I(P ) = 4 M α 2 M 4 -1 r=0 λ r (z) -αz -K 2 2 . ( 71 
) (iii) I(P ) = 2 [W ] 2 0,0   K-1 c=1 [W ] 2 0,c + M 4 -1 r=1 [W ] 2 r,0 + 2 M 4 -1 r=1 K-1 c=1 [W ] 2 r,c   , (72) 
(iv)

I(P ) = M α 2 M 4 -1 r=0 [V ] r,0 - 2α M 2 + 2 K-1 c=1 [V ] 2 r,c . (73) 
Proof.-(i)-Each row of matrix T (z) contains b 0 (-z 2 ) and two copies of b r (-z 2 ), 1 ≤ r ≤ M 4 -1, with a sign ±1. This proves (i) because q(-z 2 ) 2 2 = q(z) 2 2 for any polynomial q(z) in z -1 .

(ii)-From equation (48), we deduce that

T (z) -(-1) K αz -2K = U D 4 ∆(λ M 4 (-z 2 ) -(-1) K αI M 4 z -2K ) U T . (74) 
On another hand, for an N × N polynomial matrix A(z) = n A n z -n where the A n are constant matrices, and for an N × N orthogonal constant matrix U , we get

U T A(z) U = n U T A n U z -n . (75) 

SRRC prototype filters

If the SRRC function has been optimized for various single carrier settings, as illustrated recently in [START_REF] Nguyen | Optimizing pulse shaping filter for DOCSIS systems[END_REF] and [START_REF] Biswas | A novel approach of various QAM with roll off factor variation using raised cosine filter and SRRC filter for analysis of BER and SNR[END_REF], in the case of FBMC/OQAM, to the best of our knowledge, the authors only use it with predetermined roll-off values, as the case still recently in reference [START_REF] Abdel-Atty | Evaluation and analysis of FBMC-OQAM systems based on pulse shaping filters[END_REF], often selecting, as in [START_REF] Bai | On the effects of carrier frequency offset on cyclic prefix based OFDM and filter bank based multicarrier systems[END_REF], the widest possible transition band.

The SRRC continuous function ( [START_REF] Chevillat | An optimized transmultiplexer using combinatorial window functions[END_REF]) of real variable t is defined, for a given roll-off r, 0 ≤ r ≤ 1 and a frequency bandwidth in the range [-F, F ], by

r C (t) = 4rF t cos(π(1 + r)F t) + sin(π(1 -r)F t) √ F πt(1 -16F 2 r 2 t 2 ) , (79) 
if the denominator does not vanish and extended by continuity otherwise, i.e.

r C (0) = √ F 1 -r + 4r π , r C ± 1 4rF = √ 2F 2π r (π -2) cos π 4r + (π + 2) sin π 4r .
For K ≥ 3 and M ≥ 4 multiple of 4, the SRRC filter P (z) of length L = KM is obtained by setting, F , the FBMC/OQAM frequency spacing, such as F = 1 M and For 3 ≤ K ≤ 8 and M = 64, Figure 2 shows the variation of -TOI(dB) as a function of r for 0 ≤ r ≤ 1. The maximum value of -TOI(dB) for each value of K is indicated by a circle symbol. In Figure 2 it is worth noting that, according to the overlapping factor, e.g. for K = 5 and 7, TOI gains above 5 dB are attained when selecting the optimal r value instead of the most frequently selected one, i. e. r = 1. Table 1 gives the main characteristic constants of the SRRC filters optimized for the Total Interference TOI: the value of r opt that gives the maximum -TOI(dB), the corresponding values of -TOI(dB), -E(dB), where E is the out-of-band energy, and TFL the time-frequency localization measure, a real value going from 0 to 1 for the worst to the best, as defined for instance in [START_REF] Siohan | Analysis and design of OFDM/OQAM systems based on filterbank theory[END_REF] for discrete-time filters. Note also that the results in Table 1 are consistent with the ones reported in [START_REF] Siohan | Analysis and design of OFDM/OQAM systems based on filterbank theory[END_REF]Table I] for the l 1 norm (66) where it also appeared that, among the three tested roll-off values (1/2, 3/4,1) , r = 1 was not always the best choice. On the contrary, it can be easily checked that if the SRRC optimization is carried out with respect to the TFL criterion, r = 1 always leads to the optimum solution with a maximum of 0.9004 attained for K = 4 when M = 64. 

P (z) = L-1 n=0 p[n]z -n , p[n] = r C 2n + 1 -L 2 , 0 ≤ n ≤ L -1. (80) 

K

A new variant of EGF prototype filters

For λ > 0 and τ 0 > 0, ν 0 > 0 such that ν 0 τ 0 = 1 2 , we consider the real continuous-time function z λ,ν 0 ,τ 0 (t) of the real time variable t defined by

z λ,ν 0 ,τ 0 (t) = 1 2 ∞ k=0 c k g λ (t + k ν 0 ) + g λ (t - k ν 0 ) × ∞ l=0 d l cos 2πl t τ 0 , (81) 
where g λ (t) = (2λ)

1 4 e -λπt 2 and c k , d k , k ≥ 0, are real coefficients. In the FBMC/OQAM context, (81) and (79) are connected by the equalities ν 0 = F and τ 0 = 1 2F , real symbol duration, with ν 0 τ 0 = 1 2 . This function, called the Extended Gaussian Function (EGF), was first introduced and studied in [START_REF] Roche | A family of Extended Gaussian Functions with a nearly optimal localization property[END_REF], [START_REF] Siohan | Cosine-modulated filterbanks based on Extended Gaussian Function[END_REF], [START_REF] Siohan | Derivation of Extended Gaussian Functions based on the Zak transform[END_REF]. In this paragraph, we consider discrete-time filters obtained in the following way. First, a very special case of the continuous-time function (81) is selected where the second sum is reduced to a constant, i.e. d 0 = 2 and d k = 0, k ≥ 1. Then the first sum is restricted to K terms with coefficients c k , 0 ≤ k ≤ K -1, for a given K ≥ 2. Thus, we obtain the real-time function z λ,a (t) defined by

z λ,a (t) = K-1 k=0 c k [g λ (t + ak) + g λ (t -ak)] . (82) 
As we also need to consider the case λ = 0 while restricting λ, as factor in the exponential argument, to be a positive constant, we define the function ḡλ (t) = e -λ 2 πt 2 and the function zλ,a (t) by zλ,a (t) =

K-1 k=0 c k [ḡ λ (t + ak) + ḡλ (t -ak)] . (83) 
For M ≥ 4, multiple of 4, a regular sampling of (2 λ) -1 4 z λ,ã (t) with L = KM points, y n , 0 ≤ n < L, in the interval (-K 2 , K 2 ), defined by

y n = K 2n + 1 2L - 1 2 (84) 
is equivalent to the sampling in the interval (-1 2 , 1 2 ) of zλ,a (t) with the L points x n , 0 ≤ n < L, defined by

x n = 2n + 1 2L - 1 2 , ( 85 
) if λ = λ 2 K 2 , ã = Ka. (86) 
We therefore consider the symmetric prototype filter P (z) = L-1 n=0 zλ,a (x n )z -n and we look for values of λ, a and c k , 0 ≤ k ≤ K -1 that provide a filter with good frequency characteristics and minimal TOI. As this EGF variant corresponds to a linear combination of Gaussian functions, or Gaussian filters, we name this new family of functions and/or prototype filters using the acronym LCGF.

For given values of K and M , the optimization process with variables λ, a and c k , 0 ≤ k ≤ K -1 is very difficult because there is a lot of local minima. As an example, for K = 3 and M = 64, for a fixed value of λ, 1.5 ≤ λ ≤ 20.5, we get a minimum of TOI, represented in Figure 3 by -TOI(dB) as a function of λ in the blue curve. For λ = λ 1 = 3.969156, a maximum -TOI(dB) = 51.33 value is obtained, which is a local maximum of -TOI(dB). For λ = λ 3 = 12.4060, we get -TOI(dB) = 79.14 which seems to be a global maximum for -TOI(dB). However, for λ = λ 1 , the out-of-band energy is E = 8.11 × 10 -5 while E = 6.54 × 10 -2 for λ = λ 3 . The characteristics of these two filters are represented in Figures 4 and5. Therefore, in order to get a local TOI optimum with an acceptable out-of-band energy, for 4 ≤ K ≤ 8, as for K = 3, the value of λ is constrained by some bound. Table 2 gives the main characteristics of the obtained local optimal prototype filters. In the comparison between the SRRC and LCGF prototype filters, it appears that with the LCGF an overlapping of K = 3 is sufficient to outperform a nettly much longer, with K = 5, SRRC with regard to the three measures considered : TOI, E and TFL. 

c k , 1 ≤ k ≤ K -1, 3 ≤ K ≤ 8
, of the LCGF prototype filter optimized for TOI with c 0 = 1 (M = 64).

A more general class of EGF prototype filters

In this subsection, a more general class of EGF prototype filters, here denoted by GENeral EGF filters (abbreviated by GEN), is introduced that contains the MMB prototype filters such as described in [START_REF] Mirabbasi | Overlapped complex-modulated transmultiplexer filters with simplified design and superior stopbands[END_REF] and [START_REF] Viholainen | Prototype filter and structure optimization[END_REF] and the LCGF described in the previous subsection. For a given value of K ≥ 3, the generating prototype function for the GEN class is the real continuous-time function z(t) defined by

z(t) = K-1 k=0 c k [ḡ λ (t + ak) + ḡλ (t -ka)] × K-1 l=0 d l cos(2π β l (2t + 1)) , (87) 
depending on the 2K + 3 parameters λ, a, c k , 0 ≤ k ≤ K -1, β and d l , 0 ≤ l ≤ K -1.

For d 0 = 1 and d l = 0, 1 ≤ l ≤ K -1, z(t) generates by a sampling at the points

x n = 2n+1 2L -1 2 , 0 ≤ n ≤ KM -1 the EGF prototypes of length L = KM .
With the same time-discretization points, and λ = 0, C = 2 K-1 k=0 c k = 0 and β = 1, the P (z) filters are given, up to the multiplicative constant C, by

P (z) = L-1 n=0 p[n]z -n , (88) 
with

p[n] = K-1 l=0 d l cos(2πly n ), y n = 2n + 1 2L , 0 ≤ n ≤ L -1, (89) 
which is the definition given by equation ( 6) in [START_REF] Mirabbasi | Overlapped complex-modulated transmultiplexer filters with simplified design and superior stopbands[END_REF] and in the Phydyas project [START_REF] Viholainen | Prototype filter and structure optimization[END_REF]. There is however a slight modification of coefficients d l (d 0 = k 0 and d l = 2k l , 1 ≤ l ≤ K -1), a different multiplicative constant and an adaption of the discretization points to get a symmetric prototype filter with even length. For 3 ≤ K ≤ 5, Tables 4, 5 and 6 compare the characteristics of the prototype filters, obtained by optimization of the TOI criterion with M = 64:

1. SRRC: the Square Root Raised Cosine filter described in subsection 5.1, 2. MMB: the Mirabassi-Martin-Bellanger filter such as described in [START_REF] Viholainen | Prototype filter and structure optimization[END_REF] (Phydyas filters), with an even length, 3. LCGF: the Linear Combination of Extended Gaussian Filters described in subsection 5.2, 4. GEN: the prototype filter described in this subsection.

Figure 6, 7 and 8 show the frequency curves of these filters. However, in Figure 8, the frequency curve of the GEN filter is not plotted because it is almost identical to the one of the LCGF prototype.

- Our MMB prototypes optimizations are carried out over K -1 coefficients, simply setting c 0 = 1, while in [START_REF] Viholainen | Prototype filter and structure optimization[END_REF], the authors only take advantage of one degree of freedom for K = 3 and 4 and only of 2 for K = 5. By the way, compared to [START_REF] Viholainen | Prototype filter and structure optimization[END_REF], we obtain a TOI improvement ranging from 0.75 dB, for K = 3 to more than 9 dB for K = 5. Our comparisons reported in Tables 4-6 between all the prototype filters focus on the three most commonly used overlapping factors, i. e. K = 3, 4 or 5. These tables clearly show that the new families of prototype filters we have introduced outperform the SRRC and MMB solutions with TOI 

Conclusion

In this note we have revisited the analysis and design problem of symmetrical FBMC/OQAM system. We have assumed the number M of its subcarrier is a multiple of 4 while the length of its prototype filter is expressed as L = KM , with K the integer overlapping factor. Then, some simplifications happen and a new useful description is readily obtained using standard tools from the linear algebra theory. By the way, several equivalent forms of the PR and NPR properties are derived together with a diagonalization of the FBMC/OQAM transfer matrix. On another hand, two new families of prototype filters are introduced that only involve a few parameters. The first one, named LCGF, takes its roots from the EGF, see e.g. [START_REF] Siohan | Cosine-modulated filterbanks based on Extended Gaussian Function[END_REF]. The second one, named GEN, results from a combination of the LCGF with the famous prototype filter introduced, independently, in [START_REF] Martin | Small side-lobe filter design for multitone data-communication applications[END_REF][START_REF] Mirabbasi | Overlapped complex-modulated transmultiplexer filters with simplified design and superior stopbands[END_REF], [START_REF] Bellanger | Specification and design of a prototype filter for filter banks based on multicarrier transmission[END_REF], named here MMB. Our design comparisons have included four families of prototype filters: SRRC, MMB, LCGF and GEN. For an optimization criterion, which is the minimization of the total interference, we showed that, slightly increasing the degree of freedom, setting it to K + 1 for the LCGF, and to 2K + 1 for GEN, instead of K -1 for MMB and 1 for the the SRRC, allowed us to get significantly better design results.
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 2 Figure 2: TOI value as a function of r, 0 ≤ r ≤ 1, for the SRRC filters with 3 ≤ K ≤ 8 and M = 64.
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 3345 Figure 3: TOI optimization for LCGF with K = 3, M = 64 and 1.5 ≤ λ ≤ 20.5.
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 6 Figure 6: Comparison of characteristics of prototype filters for K = 3, M = 64: SRRC, MMB, LCGF and GEN filters optimized for TOI.
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 7 Figure 7: Comparison of characteristics of prototype filters for K = 4, M = 64: MMB filter, and SRRC, LCGF and GEN filters optimized for TOI.

Figure 8 :

 8 Figure 8: Comparison of characteristics of prototype filters for K = 5, M = 64: MMB filter, and SRRC and LCGF optimized for TOI.

Table 1 :

 1 Optimal SRRC prototype filters for TOI, 3 ≤ K ≤ 8 and M = 64.

	r opt	-TOI(dB) -E(dB) TFL
	3 0.729686	40.91	37.23	0.8684
	4 0.550574	45.69	37.47	0.7799
	5 0.821964	51.24	44.44	0.8721
	6 0.689446	53.75	45.05	0.8316
	7 0.867511	58.19	49.05	0.8746
	8 0.762957	59.07	49.96	0.8489

Table 3 :

 3 Coefficients

Table 4 :

 4 Characteristics comparison of prototype filters SRRC, MMB, LCGF and GEN optimized for TOI criterion with K = 3 and M = 64.

		TOI(dB) -E(dB) TFL
	SRRC	40.91	37.23	0.8684
	MMB	46.25	39.78	0.8844
	LCGF	51.33	40.91	0.9118
	GEN	57.36	36.64	0.9307
		-TOI(dB) -E(dB) TFL
	SRRC	45.69	37.47	0.7799
	MMB	67.20	43.89	0.8866
	LCGF	70.60	44.94	0.9054
	GEN	74.12	46.63	0.9070

Table 5 :

 5 Characteristics comparison of prototype filters SRRC, MMB, LCGF and GEN optimized for TOI criterion with K = 4 and M = 64.

Table 6 :

 6 Characteristics comparison of prototype filters SRRC, MMB, LCGF and GEN optimized for TOI criterion with K = 5 and M = 64. 10 -1 9.992112 × 10 -1 d 1 -9.871248 × 10 -1 -4.712546 × 10 -1 1.052062 × 10 -3 d 2 -4.259598 × 10 -1 -3.566996 × 10 -1 -2.381287 × 10 -3 d 3 -7.317746 × 10 -1 -8.112096 × 10 -4

		-TOI(dB) -E(dB) TFL
	SRRC	51.24	44.44	0.8721
	MMB	80.96	61.07	0.8423
	LCGF	84.39	50.77	0.8775
	GEN	84.88	51.24	0.8767

Table 7 :

 7 Coefficients of the GEN prototype filter optimized for TOI with c 0 = d 0 = 1 (M = 64). improvements w.r.t. the optimized MMB ranging for the GEN solution between 3.92 (K = 5) and 17.85 (K = 3) dB. The new families of prototypes also lead to better TFL measures. Results, not reported here, have shown that up to M = 2048, keeping the optimized coefficients as for M = 64, lead to similar performance measures.

				Frequency response	
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and therefore, after simplification,

and

In the same way, using (55), it is proved that

From (54), we get

From (59), we deduce that R{j -m T 2 (jz)} = 0, if 1. m -m is odd due to the factor j m-m , the other factors being real, 2. |m -m | = M 2 because all the cosines in the sum are null. When |m -m | = 2r with 0 ≤ r < M 4 , we get

We denote by c r (-z 2 ) the right member in (60) with

and

we get

which proves (ii).

(iii) is straightforward proved using (i) and equation ( 18) while (iv) is proved using (ii) and equation ( 14).

Remark 5. With the previous definitions, changing P (z) to a proportional filter kP (z) multiply the functions P (z) 2 2 , b r (z), λ r (z), and the matrix T (z) of the MUX by the constant k 2 . Therefore the interference function is not modified: I(kP ) = I(P ), as it is the case for other optimization cost functions.

As in [START_REF] Viholainen | Prototype filter design for filter bank based multicarrier transmission[END_REF], the interference function I(P ) may be used as an optimizing criterion (criterion C4 where the interference function is denoted TOI for TOtal Interference) to design prototype filters P (z). In the following paragraphs, the notation TOI is used.

Comparison of various nearly PR prototype filters

A large number of textbooks and publications clearly illustrate the fact that communication system designers are often attracted by filters, or prototype filters, that only involve a limited number of parameters. Furthermore, even if the PR property provides some implementation advantages, often also nearly PR solutions are preferred. In this respect, the simplicity of the Square Root Raised Cosine (SRRC) filter makes it a permanent reference in the field. In the case of FBMC/OQAM systems, the prototype filters either based on the Martin and Mirabassi design method [START_REF] Mirabbasi | Overlapped complex-modulated transmultiplexer filters with simplified design and superior stopbands[END_REF] or, nearly equivalently, on the frequency sampling approach proposed by M. Bellanger [START_REF] Bellanger | Specification and design of a prototype filter for filter banks based on multicarrier transmission[END_REF], also still reach a large audience due to their high frequency selectivity combined with a nearly PR property. Let denominate this prototype filter as the MMB prototype. On another hand, the importance of time-frequency localization for transmission through time-frequency selective channels makes the Isotropic Orthogonal Transform Algorithm (IOTA) [START_REF] Floch | Coded Orthogonal Frequency Division Multiplex[END_REF] and the Extended Gaussian Function (EGF) [START_REF] Siohan | Cosine-modulated filterbanks based on Extended Gaussian Function[END_REF] very appealing. But the number of EGF parameters may become high according to the required accuracy. Thus in this section we propose an EGF variant only involving a reduced number of parameters and another new family of prototype filters combining the proposed EGF variant with the MMB prototype filter. But let us start with the SRRC prototype.