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Abstract

Graph Neural Networks (GNNs) have emerged as a pow-
erful and flexible framework for representation learning on
irregular data. As they generalize the operations of clas-
sical CNNs on grids to arbitrary topologies, GNNs also
bring much of the implementation challenges of their Eu-
clidean counterparts. Model size, memory footprint, and
energy consumption are common concerns for many real-
world applications. Network binarization allocates a sin-
gle bit to parameters and activations, thus dramatically re-
ducing the memory requirements (up to 32x compared to
single-precision floating-point numbers) and maximizing the
benefits of fast SIMD instructions on modern hardware for
measurable speedups. However, in spite of the large body
of work on binarization for classical CNNs, this area re-
mains largely unexplored in geometric deep learning. In this
paper, we present and evaluate different strategies for the
binarization of graph neural networks. We show that through
careful design of the models, and control of the training pro-
cess, binary graph neural networks can be trained at only a
moderate cost in accuracy on challenging benchmarks. In
particular, we present the first dynamic graph neural net-
work in Hamming space, able to leverage efficient k-NN
search on binary vectors to speed-up the construction of
the dynamic graph. We further verify that the binary models
offer significant savings on embedded devices. Our code is
publicly available on Github1.

1. Introduction

Standard CNNs assume their input to have a regular grid
structure, and are therefore suitable for data that can be well-
represented in an Euclidean space, such as images, sound, or
videos. However, many increasingly relevant types of data
do not fit this framework [5]. Graph theory offers a broad
mathematical formalism for modeling interactions, and is
therefore commonly used in fields such as network sciences
[12], bioinformatics [24, 40], and recommender systems

1https://github.com/mbahri/binary gnn
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Figure 1. Top: Test accuracy of different binarization schemes at
all stages of our cascaded distillation protocol (baseline: 92.89%).
Bottom: The ”BF2” variant of our XorEdgeConv operator.

[37], as well as for studying discretisations of continuous
mathematical structures such as in computer graphics [4].
This motivates the development of machine learning meth-
ods able to deal with graph-supported data. Among them,
Graph Neural Networks (GNNs) generalize the operations of
CNNs to arbitrary topologies by extending the basic building
blocks of CNNs such as convolutions and pooling to graphs.
Similarly to CNNs, GNNs learn deep representations of
graphs or graph elements, and have emerged as the best per-
forming models for learning on graphs as well as on 3D
meshes with the development of advanced and increasingly
deep architectures [33, 18].

As the computational complexity of the networks and the
scale of graph datasets increase, so does the need for faster
and smaller models. The motivations for resource-efficient
deep learning are numerous and also apply to deep learning
on graphs and 3D shapes. Computer vision models are rou-
tinely deployed on embedded devices, such as mobile phones
or satellites [2, 32], where energy and storage constraints
are important. The development of smart devices and IoT
may bring about the need for power-efficient graph learning
models [27, 62, 8]. Finally, models that require GPUs for
inference can be expensive to serve, whereas CPUs are typi-
cally more affordable. This latter point is especially relevant
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to the applications of GNNs in large-scale data mining on
relational datasets, such as those produced by popular social
networks, or in bioinformatics [35].

While recent work has proposed algorithmic changes to
make graph neural networks more scalable, such as the use
of sampling [21, 61] or architectural improvements [15, 10]
and simplifications [56], our approach is orthogonal to these
advances and focuses on compressing existing architectures
while preserving model performance. Model compression
is a well-researched area for Euclidean neural networks, but
has seen very little application in geometric deep learning. In
this paper, we study different strategies for binarizing GNNs.

Our contributions are as follows:

• We present a binarization strategy inspired by the latest
developments in binary neural networks for images
[7, 36] and knowledge distillation for graph networks

• We develop an efficient dynamic graph neural network
model that constructs the dynamic graph in Hamming
space, thus paving the way for significant speedups at
inference time, with negligible loss of accuracy when
using real-valued weights

• We conduct a thorough ablation study of the hyperpa-
rameters and techniques used in our approach

• We demonstrate real-world acceleration of our models
on a budget ARM device

Notations Matrices and vectors are denoted by upper and
lowercase bold letters (e.g., X and x), respectively. I de-
notes the identity matrix of compatible dimensions. The
ith column of X is denoted as xi. The set of real numbers
is denoted by R. A graph G = (V, E) consists of vertices
V = {1, . . . , n} and edges E ⊆ V × V . The neighborhood
of vertex i, denoted by N (i) = {j : (i, j) ∈ E}, is the set
of vertices adjacent to i. Other mathematical notations are
summarized in Appendix E of the Supplementary Material.

2. Related Work
Knowledge distillation uses a pretrained teacher network
to supervise and inform the training of a smaller student net-
work . In logit matching [22], a cross-entropy loss is used to
regularize the output logits of the student by matching them
with a blurred version of the teacher’s logits computed using
a softmax with an additional temperature hyperparameter.
More recent works also focus on matching internal activa-
tions of both networks, such as attention volumes in [60], or
on preserving relational knowledge [44, 31, 49].

Quantized and Binary Neural Networks Network quan-
tization [19, 63] refers to the practice of lowering the nu-
merical precision of a model in a bid to reduce its size and

speed-up inference. Binary Neural Networks (BNNs) [25]
push it to the extreme and use a single bit for weights and
activations. The seminal work of XNOR-Net [47] showed
that re-introducing a small number of floating point oper-
ations in BNNs can drastically improve the performance
compared to using pure binary operations by reducing the
quantization error. In XNOR-Net, a dot product ? between
real vectors a and b of dimension n is approximated by
a ? b ≈ (sign(a) ~ sign(b))αβ, where β = 1

n ||a||1 and
α = 1

n ||b||1 are rescaling constants. XNOR-Net++ [7] pro-
posed to instead learn a rescaling tensor Γ, with shared fac-
tors to limit the number of trainable parameters and avoid
overfitting. Finally, in Real-to-Binary networks [36], the au-
thors compile state-of-the-art techniques and improve the
performance of binary models with knowledge distillation.

Graph Neural Networks Graph Neural Networks were
initially proposed in [20, 48] as a form of recursive neural
networks. Later formulations relied on Fourier analysis on
graphs using the eigendecomposition of the graph Lapla-
cian [6] and approximations of such [11], but suffered from
the connectivity-specific nature of the Laplacian. Attention-
based models [38, 14, 51, 50] are purely spatial approaches
that compute a vertex’s features as a dynamic weighting of its
neighbours’. Spatial and spectral approaches have been uni-
fied [29] and shown to derive from the more general neural
message passing [17] framework. We refer to recent reviews
on GNNs, such as [57], for a comprehensive overview, and
focus only on the operators we binarize in this paper.

The message-passing framework offers a general formu-
lation of graph neural networks:

x
(l)
i =

γ(l)
(

x
(l−1)
i , �

j∈N (i)
φ(l)

(
x
(l−1)
i ,x

(l−1)
j , e

(l−1)
ij

))
,

(1)

where � denotes a differentiable symmetric (permutation-
invariant) function, (e.g. max or

∑
), φ a differentiable ker-

nel function, γ is an MLP, and xi and eij are features asso-
ciated with vertex i and edge (i, j), respectively.

The EdgeConv operator is a special case introduced as
part of the Dynamic Graph CNN (DGCNN) model [54] and
defines an edge message as a function of xj − xi:

e
(l)
ij = ReLU

(
θ(l)(x

(l−1)
j − x

(l−1)
i ) + φ(l)x

(l−1)
i

)
(2)

= ReLU
(
Θ(l)X̃(l−1)

)
(3)

where X̃(l−1) =
[
x
(l−1)
i ||x(l−1)

j − x
(l−1)
i

]
, θ and φ are

trainable weights, and Θ their concatenation.
The output of the convolution is the max aggregation

(� = max) of the edge messages:

x
(l)
i = max

j∈N (i)
e
(l)
ij (4)
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While the EdgeConv operator is applicable to graph inputs,
the main use case presented in [54] is for point clouds,
where the neighbours are found by k-Nearest Neighbours (k-
NN) search in feature space before each convolutional layer.
DGCNN is the first example of a dynamic graph architecture,
with follow-up work in [26].

The GraphSAGE [21] operator introduced inductive learn-
ing on large graphs with sampling and can also be phrased
as a message passing operator:

x
(l)
i = Norm

(
ReLU

(
W(l)

[
x
(l−1)
i || Aggr

j∈N (i)

x
(l−1)
j

]))
(5)

Where Aggr is a symmetric aggregation function such as
max, sum or mean; Norm denotes the `2 normalization,
and W is a tensor of learnable weights.

Model Compression in Geometric Deep Learning In
[52], the authors propose to binarize the Graph Attention
(GAT) operator [50], and evaluate their method on small-
scale datasets such as Cora [39] and Pubmed [29]. In [53],
the authors apply the XNOR-Net approach to GCN [29]
with success, but also on small-scale datasets. Finally, [46]
propose to binarize PointNet with tailored aggregation and
scaling functions. At the time of writing, the Local Structure
Preserving (LSP) module of [59] is the only knowledge dis-
tillation method specifically designed for GNNs. LSP defines
local structure vectors LSi for each node in the graph:

LSij =
exp(SIM(xi,xj))∑

k∈N (I) exp(SIM(xi,xk))
(6)

where SIM denotes a similarity measure, e.g., ||.||22 or a
kernel function such as a Gaussian RBF kernel. The total
local structure preserving loss between a student network s
and a teacher t is then defined as:

LLSP =
1

|V|
∑
i∈V

∑
j∈Nu(i)

LSs
ij log

LSs
ij

LSt
ij

. (7)

N u(i) = N s(i) ∪N t(i) to support dynamic graph models.

3. Method
Eq. 1 is more general than the vanilla Euclidean convolu-

tion, which boils down to a single matrix product to quantize.
We must therefore choose which elements of Eq. 1 to bina-
rize and how: the node features xi, the edge messages eij ,
and the functions �, γ and φ may all need to be adapted.

Quantization We follow the literature and adopt the sign
operator as the binarization function:

sign(x) =

{
1 if x ≥ 0

−1 if x < 0
. (8)

As the gradient of sign is zero almost everywhere, we employ
the straight-through estimator [3] to provide a valid gradient.
We use this method for both network weights and activations.
Furthermore, we mean-center and clip the real latent network
weights after their update in the backpropagation step.

Learnable rescaling Assuming a dot product operation
(e.g. a fully-connected or convolutional layer) A ? B ∈
Ro×h×w, we approximate it as in [7]:

A ?B ≈ (sign(A)~ sign(B))� Γ, (9)

with Γ a learned rescaling tensor. We use two constructions
of Γ depending on the model. Channel-wise:

Γ = α ∈ Ro×1×1 (10)

and one rank-1 factor per mode:

Γ = α⊗ β ⊗ γ, α ∈ Ro, β ∈ Rh, γ ∈ Rw (11)

Activation functions Recent work [36] has shown us-
ing non-linear activations in XNOR-Net - type blocks can
improve the performance of binary neural networks, with
PReLU bringing the most improvement.

Knowledge Distillation Inspired by [36], we investigate
the applicability of knowledge distillation for the binariza-
tion of graph neural networks. For classification tasks, we
use a logit matching loss [22] as the base distillation method.
We also implemented the LSP module of [59].

Multi-stage training We employ a cascaded distillation
scheme [36], an overview of which is shown in Figure 2.
Stage 1: We first build a real-valued and real-weighted net-
work with the same architecture as the desired binary net-
work by replacing the quantization function with tanh. We
distillate the original (base) network into this first student
network. We employ weight decay with weight λ = 1e− 5,
logit matching, and LSP. We use the same initial learning
rate and learning rate schedule as for the base network.
Stage 2: The model of stage 1 becomes the teacher, the
student is a binary network with real-valued weights but
binary activations. We initialize the student with the weights
of the teacher. We employ weight decay with λ = 1e − 5,
logit matching, and LSP. We use a smaller learning rate (e.g.
25%) than for stage 1 and the same learning rate schedule.
Stage 3: The model of stage 2 becomes the teacher, the
student is a binary network with binary weights and binary
activations. We use logit matching and LSP but no weight
decay. The hyperparameters we used are available in Section
5.2. We did not observe a significant difference in models
initialized randomly or using the weights of the teacher.
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Figure 2. Distillation with the ”BF1” variant of XorEdgeConv: the student model is more heavily quantized than the teacher. Knowledge
transfer points equipped with LSP modules encourage similar dynamic graph feature distributions after each k-NN graph computation
(except for the first, performed on the fixed 3D coordinates). Logit matching is used to further inform the training of the student.

Batch Normalization We investigate the importance of
the order of the dot product and batch normalization oper-
ations for discretizing dot product operations within graph
convolution operators. However, our base approach is to
follow the XNOR-Net block structure [47] with learnable
rescaling (i.e. XNOR-Net++ block). In particular, all fully-
connected layers of MLPs that follow graph feature extrac-
tion layers are binarized using the XNOR-Net++ block.

4. Models

We choose the Dynamic Graph CNN model, built around
the EdgeConv operator of Eq. 3 as our main case study.
DGCNN has several characteristics that make it an interest-
ing candidate for binarization. First, the EdgeConv operator
is widely applicable to graphs and point clouds. Second,
the operator relies on both node features and edge mes-
sages, contrary to other operators previously studied in GNN
binarization such as GCN. Third, the time complexity of
DGCNN is strongly impacted by the k-NN search in fea-
ture space. k-NN search can be made extremely efficient in
Hamming space, and fast algorithms could theoretically be
implemented for the construction of the dynamic graph at
inference, provided that the graph features used in the search
are binary, which requires a different binarization strategy
than merely approximating the dense layer in EdgeConv.

For completeness, we also derive a binary SAGE operator.

4.1. Direct binarization

Our first approach binarizes the network weights and the
graph features at the input of the graph convolution layers,
but keeps the output real-valued. The network, therefore, pro-
duces real-valued node features. We replace the EdgeConv
operator by a block similar to XNOR-Net++, using learnable
rescaling and batch normalization pre-quantization.
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Figure 3. The BinEdgeConv operator (”RF” model in the exper-
iments) can be deployed as a drop-in replacement for EdgeConv
and follows the XNOR-Net++ approach to binarization.

We define the BinEdgeConv operator as:

e
(l)
ij = σ

(
sign(Θ(l))~ sign

(
BN
(
X̃(l−1)

))
� Γ(l)

)
(12)

x
(l)
i = max

j∈N (i)
e
(l)
ij (13)

with σ the PReLU activation, and Γ(l) a real rescaling tensor.
BinEdgeConv is visualized in Figure 3.

We use the same structure to approximate the MLP clas-
sifier. Similarly, we binarize Eq. 5 to get:

h(l) = sign

(
BN

([
x
(l−1)
i || Aggr

j∈N (i)

x
(l−1)
j

]))
(14)

x
(l)
i = Norm

(
σ
(

(sign(W(l))~ h(l))� Γ(l)
))

. (15)

with σ the PReLu activation and Γ(l) following Eq. 10.

4.2. Dynamic Graph in Hamming Space

As mentioned, one advantage of binary node features is to
enable fast computation of the k-Nearest Neighbours graph
at inference time by replacing the `2 norm with the Hamming
distance. We detail our approach to enable quantization-
aware training with k-NN search on binary vectors.
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Edge feature The central learnable operation of Edge-
Conv is Θ [xi ||xj − xi] as per Eq. 3, where the edge fea-
ture is xj − xi. Assuming binary node features, the standard
subtraction operation becomes meaningless. Formally, for
x1,x2 ∈ Rn with Rn the n-dimensional Euclidean vector
space over the field of real numbers,

x1 − x2 := x1 + (−x2) (16)

by definition, with (−x2) the additive inverse of x2. See-
ing binary vectors as elements of vector spaces over the
finite field F2, we can adapt Eq. 16 with the operations of
boolean algebra. The addition therefore becomes the boolean
exclusive or (XOR) ⊕, and the additive inverse of (−x)F2

is
x itself (x ⊕ x = 0). With our choice of quantizer (Eq. 8),
xi,xj ∈ {−1, 1}n and we observe that xi⊕xj = −xi � xj .
We therefore base our binary EdgeConv operator for binary
node features, XorEdgeConv, on the following steps:

e
(l)
ij = σ

(
sign(Θ(l))~ X̃

(l−1)
b � Γ(l)

)
(17)

x
(l)
i = sign

(
max

j∈N (i)
e
(l)
ij

)
(18)

with X̃
(l−1)
b =

[
x
(l−1)
i || −x

(l−1)
j � x

(l−1)
i

]
, Θ(l) a set of

learnable real parameters and Γ(l) a real rescaling tensor. We
further investigate the practical importance of the placement
of the batch normalization operation, either before or after
the aggregation function, by proposing two variants:

x
(l)
i = sign

(
BN
(

max
j∈N (i)

e
(l)
ij

))
(19)

shown as part of Figure 2 and

x
(l)
i = sign

(
max

j∈N (i)
BN
(
e
(l)
ij

))
(20)

drawn in Figure 1. Here, the main difference lies in the
distribution of the features pre-quantization.

Nearest Neighbours Search The Hamming distance be-
tween two binary vectors x,y is dH(x,y) = ||x ⊕ y||H
where ||.||H is the number of non-zero bits, and can be effi-
ciently implemented as popcount(x xor y). We note
that this relates our approach to previous work on efficient
hashing [41, 43, 30] and metric learning [42], especially
given the dynamic nature of the graph. Unfortunately, like
the sign function, the hamming distance has an ill-defined
gradient, which hinders its use as-is for training. We there-
fore investigate two continuous relaxations. (1) we use the
standard `2 norm for training, since all norms are equivalent
in finite dimensions. (2) we observe that the matrix of pair-
wise Hamming distances between d-dimensional vectors xi

valued in {−1, 1} can be computed in a single matrix-matrix
product up to a factor 2 as (see Eq. 5 of [34]):

D = −(XXT − dId) (21)

with X the matrix of the xi stacked row-wise, and Id the
identity matrix. We investigate both options.

Local structure With binary node features, we now have
to choose how to define the local structure similarity measure
of Eq. 6. One option is to use the standard Gaussian RBF
as in the real-valued case. Another option is to define the
similarity in Hamming space, like for the k-NN search. We
therefore investigate the following similarity metric:

SIM(xi,xj) = e−||xi⊕xj ||H (22)

For vectors x,y ∈ {−1, 1}n, we note that ||x ⊕ y||H =
1
2

∑n
k=1(−xkyk + 1).

5. Experimental Evaluation
We perform a thorough ablation study of our method on

Dynamic Graph CNN. The model binarized according to the
method of Section 4.1 and using the BinEdgeConv operator
of Eq. 12 is referred to as RF for ”Real graph Features”.
The model binarized according to Section 4.2 and using the
XorEdgeConv operator is referred to as BF1, if following
Eq. 19, or BF2, if following Eq. 20. We evaluate DGCNN
on the ModelNet40 classification benchmark, as in [54]. We
implement Γ as per Eq. 11 for the RF model and Eq. 10
for the BF models. In the next paragraphs, the numbers in
parentheses refer to the corresponding lines of Table 1.

Balance functions (16-18, 23-24) Recent work [46] has
uncovered possible limitations in binary graph and point
cloud learning models when quantizing the output of
the max-pooling aggregation of batch-normalized high-
dimensional features. Similarly, the authors of [52] claim
that a balance function is necessary to avoid large values
in the outputs of the dot product operations when most pre-
quantization inputs are positive.

We evaluate two strategies for re-centering the input of
sign , namely mean-centering, and median-centering (thus
ensuring a perfectly balanced distribution of positive and
negative values pre-quantization). We evaluate these tech-
niques for the max aggregation of edge messages (”edge
balance”, e.g. between the framed block and the sign op-
eration in Figure 1) and for the max and average pooling
operations before the MLP classifier (”global balance”).

We can see in Table 1 that in all cases, the addition of
balance functions actually lowered the performance of the
models. This suggests that using batch normalization prior to
quantization, as is common in the binary CNN literature, is
sufficient at the message aggregation level and for producing
graph embedding vectors.
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# Model Distillation Stage k-NN LSP λLSP Activation Global balance Edge balance Acc (%)
1 BF1 None - H - - PReLU - - 61.26
2 BF1 Direct - H - - PReLU - - 62.84
3 BF1 Cascade 3 H - - PReLU - - 81.04
4 BF1 Cascade 3 H - - None - - 74.80
5 BF1 Cascade 2 H `2 100 PReLU - - 90.32
6 BF1 Cascade 3 H `2 100 PReLU - - 81.32
7 BF1 Cascade 3 H `2 100 ReLU - - 76.46
8 BF1 None - `2 - - PReLU - - 62.97
9 BF1 Direct - `2 - - PReLU - - 61.95

10 BF1 Cascade 3 `2 - - PReLU - - 81.00
11 BF1 Cascade 2 `2 `2 100 PReLU - - 91.00
12 BF1 Cascade 3 `2 `2 100 PReLU - - 81.00
13 BF2 None - H - - PReLU - - 59.72
14 BF2 Direct - H - - PReLU - - 59.00
15 BF2 Cascade 3 H - - PReLU - - 79.58
16 BF2 Cascade 3 H - - PReLU - Mean 51.05
17 BF2 Cascade 3 H - - PReLU - Median 75.93
18 BF2 Cascade 3 H - - None - Median 71.96
19 BF2 Cascade 2 H `2 100 PReLU - - 91.57
20 BF2 Cascade 3 H `2 100 PReLU - - 81.08
21 BF2 Cascade 3 H `2 100 None - - 76.09
22 BF2 Cascade 3 H `2 100 ReLU - - 76.22
23 BF2 Cascade 3 H `2 100 PReLU Mean - 67.87
24 BF2 Cascade 3 H `2 100 PReLU Median - 60.82
25 BF2 None - `2 - - PReLU - - 57.90
26 BF2 Direct - `2 - - PReLU - - 59.12
27 BF2 Cascade 3 `2 - - PReLU - - 80.11
28 BF2 Cascade 2 `2 `2 100 PReLU - - 91.53
29 BF2 Cascade 3 `2 `2 100 PReLU - - 81.52
30 RF None - `2 - - PReLU - - 79.30
31 RF Direct - `2 - - PReLU - - 72.69
32 RF Cascade 3 `2 - - PReLU - - 91.05
33 RF Cascade 3 `2 `2 100 PReLU - - 90.52
34 RF Cascade 3 `2 `2 100 None - - 89.71
35 RF Cascade 3 `2 `2 100 ReLU - - 89.59
36 Baseline - - - - ReLU - - - 92.89

Table 1. Different variants and ablations of our binarized DGCNN models on the ModelNet40 dataset.

Non-linear activation (3-4,6-7,17-18,20-22,33-35) Since
the sign operation can be seen as acting as an activation
applied on the output and to the weights of the XorEdgeConv
operator, we compare the models with binary node features
with PReLU, ReLU, or no additional activation in Table
1. We can see the PReLU non-linearity offers significant
improvements over the models trained with ReLU or without
non-linearity in the edge messages, at the cost of a single
additional fp32 parameter - the largest improvement being
observed for the models that apply either median-centering
or batch normalization before the quantization operation.

Binary node features and k-NN We now study the final
performance of our models depending on whether we use
BinEdgeConv (real node features) or XorEdgeConv. Look-
ing at the final models (stage 3) in Table 1, the model with

real-valued node features that performs k-NN search with
the `2 norm (32) performs comparably with the full floating-
point model (36). On the other hand, we saw a greater re-
duction in accuracy with the binary node features for the
full binary models (6,12,20,29), and comparable accuracy
whether we use the `2 norm (12,29) or the relaxed Ham-
ming distance (6,20). However, as reported in Table 1, using
real weights (stage 2) with binary node features and k-NN
search performed in Hamming space (5,11,19,28) matched
the performance of the original floating point model (36).

We found stage 3 to be crucial to the final model’s per-
formance, and sensitive to the choice of learning rate and
learning rate schedule. This suggests that, although more
research and parameter tuning is necessary to maximize the
performance of the full binary networks in Hamming space,
dynamic graph networks that learn binary codes and con-
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struct the dynamic graph in Hamming space can be trained
with minimal reduction in performance.

Impact of LSP The node features of the teacher and of
the students are always real-valued at stage 1. Stage 2 was
carried out using either the Gaussian RBF similarity or Eq.
22 for the student (which may have binary node features)
and the Gaussian RBF for the teacher. Stage 3 uses either
similarity measure for both the teacher and student. We also
report the results of distilling the baseline DGCNN (full
floating-point) model into a BF1 or BF2 full-binary model
using the similarity in Hamming space for the student.

We saw inconsistent improvements when using LSP
with the Gaussian RBF (`2), as seen in Table 1
(3,6,10,12,15,20,27,29,32,33). This suggest the usefulness of
the additional structure preserving knowledge is situational,
as it can both increase (3,4,15,20,27,29) or decrease model
performance (32,33). Contrary to the models trained using k-
NN search performed in Hamming space, the models trained
with distillation using Eq. 22 did not match the performance
of their Gaussian `2 counterparts, as shown in Table 2, which
we conjecture to be due to poor gradients.

Model Stage KNN LSP λLSP Acc. (%)
BF1 2 H H 100 38.21
BF1 2 `2 H 100 38.94
BF2 2 H H 100 63.25
BF2 2 `2 H 100 64.71
BF1 3 H H 100 16.29
BF1 3 `2 H 100 20.34
BF2 3 `2 H 100 9.40
BF2 3 H H 100 11.47
BF1 Direct `2 H 100 23.34
BF2 Direct H H 100 30.23
BF2 Direct `2 H 100 32.17
BF1 Direct H H 100 36.47

Table 2. Performance of models trained with LSP using the
Hamming-based similarity of Eq. 22 (H) at different stages and
for direct distillation. Compared to the models trained using the
Gaussian RBF (`2) similarity, low performance was observed.

Cascaded distillation (1-3,13-15,25-27,30-32) Table 1
compares distilling the baseline network directly into a bi-
nary network, training from scratch, and the three-stage dis-
tillation. We observed consistently higher performance with
the progressive distillation, confirming its effectiveness.

Large-scale inductive learning with GraphSAGE We
benchmark our binarized GraphSAGE on the OGB-Products
and OGB-Proteins node property prediction datasets
[23], which are recent and challenging (2,449,029 nodes,
61,859,140 edges for OGB-Product) benchmarks with stan-
dardized evaluation procedures, compared to the more com-

monly used ones, such as Cora [39] (2708 nodes, 5429 edges)
used in [52] or Reddit [21] (232,965 nodes, 114,615,892
edges) used in [53]. Notably, the Proteins dataset is challeng-
ing due to the high average node degree and small graph
diameter, which may exacerbate limitations of GNNs [1].

OGBN-Products OGBN-Proteins
Model Mean acc. Std. acc. Mean acc. Std. acc.

SAGE fp32 0.7862 0.0043 0.7734 0.0041
SAGE bin f.s. 0.7300 0.0156 0.7497 0.0047
SAGE bin l.m. 0.7260 0.0153 - -

GCN fp32 0.7564 0.0021 0.7254 0.0044
Table 3. Final test accuracy on the OGB-Products and OGB-
Proteins node property prediction benchmarks, averaged over 10
runs. ”f.s.”: from scratch. ”l.m.”: logit matching.

We implemented BinSAGE according to Eq. 15 - details
of the architecture can be found in Section 5.2. For OGB-
Products, we use logit matching only for distillation and
no PReLU activation. For OGB-Proteins, we use PReLU
activations and no distillation, as the task is multi-label clas-
sification, and the very large number of edges made using
LSP impractical. We use channel-wise rescaling only for
both to maximize scalability. On OGB-Products, we did not
observe a statistically significant different between training
the model from scratch and three-stage distillation with logit
matching: in both cases, the full binary model came within
5-6% of the full-precision model. On OGB-Proteins, the
simple binary network trained from scratch is within 3%
of the accuracy of the full-precision network and outper-
forms the full-precision GCN. This suggests other strategies
to improve model scalability, in this case sampling, can be
successfully combined with our binarisation method.

5.1. Speed on embedded hardware

In order to measure the speed improvements yielded by
our binary conversion scheme, we benchmark it on a Rasp-
berry Pi 4B board with 4GB of RAM and a Broadcom
BCM2711 Quad core Cortex-A72 (ARM v8) 64-bit SoC
clocked at 1.5GHz, running Manjaro 64-bit. The Pi is a pop-
ular, cheap, and readily available ARM-based platform, and
is thus a good fit for our experiments.

We benchmark four DGCNN models, in order to measure
the speedup for each subsequent optimization. The specifics
of each model are given in Table 4. The input size is set
to 1024 points with a batch size of 8, 40 output classes,
and 20 nearest neighbors. We convert our models to Ten-
sorflow Lite using LARQ [16], an open-source library for
binarized neural networks, and benchmark them using the
LARQ Compute Engine (LCE) tool. Once converted, the
smallest model’s file size is only 341KB down from 7.2MB,
for a 20x reduction.

Figure 4 shows the benchmark results. Our optimized bi-
nary model halves the run-time, thus achieving a substantial
speedup. Peak memory usage is also significantly reduced,
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Model Binary Weights Binary Features Hamming Distance
DGCNN

BDGCNN RF X
BDGCNN BF X X

BDGCNN BF H X X X
Table 4. Features of benchmarked models. Hamm Dist = Pairwise Ham-
ming distance instead of `2, implemented in ARM NEON operations on
bit-packed features (simulated).

from 575MB to 346MB. It is to be noted that DGCNN is a
complex model with costly operations, such as concatenation
and top-k, that are not made faster by binarization (denoted
as ”incompressible ops” in Figure 4). We provide a profiling
of the models in Appendix B of the Supplementary Material.

0.0 0.2 0.4 0.6 0.8 1.0
Relative run time

DGCNN

BDGCNN RF

BDGCNN BF

BDGCNN BF H Relative speed
Incompressible ops

Figure 4. Relative run time on a Raspberry Pi 4B compared to the base
DGCNN model. A 2x speedup is achieved by our final optimized model.
Run times computed with the LCE benchmark tool over 50 runs.

Unfortunately, we did not have an optimized version of
the Hamming distance in LCE at the time of writing. Thus,
the final result is simulated by profiling the run-time of an
un-optimized implementation, and estimating the savings we
would get with ARM NEON instructions. It is theoretically
possible to treat 64 features at a time, and achieve a 64x
speedup (or higher by grouping loads and writes with vld4).
We use 32x as a conservative estimate since we couldn’t
account for LCE’s bit-packed conversion.

5.2. Implementation details

For DGCNN, we follow the architecture of [55]. For
GraphSAGE, we use the baseline architecture of the OGB
benchmarks [23]; that is, three layers with 256 hidden fea-
tures and mean aggregation. We use three knowledge transfer
points for LSP on DGCNN, one after each EdgeConv layer
except for the first layer (the k-NN and graph features are
computed on the 3D coordinates of the point clouds and
do not change). All binary models use binary inputs for the
convolution and dense layers. For DGCNN, the final layer
of the MLP classifier is kept real-weighted, as is customary
in the binary neural network literature due to the small num-
ber of parameters, but the input features are binarized. For
GraphSAGE, all three layers have binary weights.

Our models are implemented in Pytorch [45]. We use
the implementation of DGCNN by the authors as a starting

point, and Pytorch Geometric [13] for GraphSAGE and OGB
[23]. We use the Adam optimizer [28]. We train the DGCNN
models for 250 epochs for stage 1 and 350 epochs for stages
2 and 3, on 4 Nvidia 2080 Ti GPUs. The intial learning
rate of stage 1 is set to 1e − 3 and for stage 2 to 2.5e − 4,
with learning rate decay of 0.5 at 50% and 75% of the total
number of epochs. For stage 3, we set the learning rate
to 1e − 3 and decay by a factor of 0.5 every 50 epochs.
We trained GraphSAGE according to the OGB benchmark
methodology, using the provided training, validation, and
test sets. We trained all models for 20 epochs and averaged
the performance over 10 runs. For GraphSAGE, we used `2
regularization on the learnable scaling factors only, with a
weight λ = 1e − 4. For logit matching, we set T = 3 and
α = 1e− 1. For LSP, we set λLSP = 1e2.

6. Conclusion
In this work, we introduce a binarization scheme for

GNNs based on the XNOR-Net++ methodology and knowl-
edge distillation. We study the impact of various strategies
and design decisions on the final performance of binarized
graph neural networks, and show that our approach allows
us to closely match or equal the performance of floating-
point models on difficult benchmarks, with significant re-
ductions in memory consumption and inference time. We
further demonstrate that dynamic graph neural networks can
be trained to high accuracy with binary node features, en-
abling fast construction of the dynamic graph at inference
time through efficient Hamming-based algorithms, and fur-
ther relating dynamic graph models to metric learning and
compact hashing. Our DGCNN in Hamming space nearly
equals the performance of the full floating point model when
trained with floating point weights, and offers competitive
accuracy with large speed and memory savings when trained
with binary weights. We believe higher performance can
already be obtained with this model by adjusting the learn-
ing rate schedule in the final distillation stage. Future work
will investigate further improving the accuracy of the mod-
els, theoretical properties on binary graph convolutions, and
inference with fast k-NN search in Hamming space.
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A. DGCNN and ModelNet40
In this appendix, we provide details of the DGCNN model

and of the ModelNet40 dataset ommitted from the main text
for brevity.

ModelNet40 classification The ModelNet40 dataset [58]
contains 12311 shapes representing 3D CAD models of man-
made objects pertaining to 40 categories. We follow the
experimental setting of [55] and [9]. We keep 9843 shapes
for training and 2468 for testing. We uniformly sample 1024
points on mesh faces weighted by surface area and normalize
the resulting point clouds in the unit sphere. The original
meshes are discarded. Only the 3D cartesian coordinates
(x, y, z) of the points are used as input. We use the same data
augmentation techniques (random scaling and perturbations)
as [55] and base our implementation on the author’s public
code2. We report the overall accuracy as the model score.

Model architecture All DGCNN models use 4 EdgeConv
(or BinEdgeConv or XorEdgeConv) layers with 64, 64, 128,
and 256 output channels and no spatial transformer networks.
According to the architecture of [55], the output of the four
graph convolution layers are concatenated and transformed
to node embeddings of dimension 1024. We use both global
average pooling and global max pooling to obtain graph
embeddings from all node embeddings; the resulting features
are concatenated and fed to a three layer MLP classifier with
output dimensions 512, 256, and 40 (the number of classes
in the dataset). We use dropout with probability p = 0.5.

B. Low-level implementation
This appendix provides further details on the low-level

implementation and memory cost of our models.

B.1. Parameter counts

We report the counts of binary and floating-point parame-
ters for the baseline DGCNN and our binary models (stage
3) in Table 5.

Model FP32 Param. Bin. param. Total param.
Baseline 1,812,648 0 1,812,648

BF1 11,064 1,804,672 1,815,736
BF2 11,064 1,804,672 1,815,736
RF 15,243 1,804,672 1,819,915

Table 5. Number of parameters given by torchsummaryX. Separated
into FP and binary operations. 99.39% of the parameters are binary
for BF1 and BF2, 99.16% of the parameters are binary for RF.

As can be seen in Table 5, our binarization procedure in-
troduces a few extra parameters, but over 99% of the network
parameters are binary.

2https://github.com/WangYueFt/dgcnn/tree/master/pytorch

B.2. Profiling and optimization of DGCNN

In order to obtain the data from Section 5.1 of the main
paper, we convert our models with the LARQ converter and
benchmark them using the LCE benchmark utility.

The pairwise Hamming distance is naively implemented
as a matrix multiplication operation (Eq. 21 of the main text),
and we obtain the profiler data in Table 6, where we have
highlighted the nodes used by that operation. However, not
all nodes of these types belong to the three pairwise distances
calculations. We thus provide in Table 7 the complete profiler
output for only one distance calculation in binary space, of
which there are three in the DGCNN models.

Node Type Avg. ms Avg % Times called
TOPK V2 488.007 22.18% 4

CONCATENATION 384.707 17.485% 6
FULLY CONNECTED 171.175 7.77994% 32

PRELU 143.086 6.50329% 7
TILE 136.443 6.20137% 4

LceBconv2d 127.371 5.78904% 6
MAX POOL 2D 122.743 5.5787% 5

MUL 105.993 4.81741% 11
SUB 92.382 4.19878% 4

LceQuantize 91.168 4.14361% 10
NEG 78.453 3.56571% 4
PACK 56.301 2.55889% 4

GATHER 55.989 2.54471% 4
CONV 2D 39.096 1.77692% 2
RESHAPE 35.091 1.59489% 82

ADD 28.557 1.29792% 6
TRANSPOSE 23.829 1.08303% 36

AVERAGE POOL 2D 8.071 0.366829% 1
SLICE 5.278 0.239886% 64

LceDequantize 5.174 0.235159% 4
SUM 1.132 0.0514497% 1

SQUARE 0.153 0.00695389% 1
SOFTMAX 0.01 0.000454502% 1

Table 6. LCE Profiler data for ”BDGCNN BF H”, summary by
node types. In red: nodes that appear in Matmul op which can be
rewritten as NEON operations for Hamming distance.

These operations account for 24% of the network’s run
time. Thus, a speed-up of 32x of these operations would
reduce them to around 1% of the network’s run time, which
is negligible.

While we did not have an optimized version integrated
with the LARQ runtime at the time of writing, optimizing
the pairwise Hamming distance computation in binary space
with ARM NEON (SIMD) operations is quite simple, since it
can be implemented as popcount(xxory). On bit-packed 64-
bit data (conversion handled by LCE), with feature vectors
of dimension 64, this can be written as:

1 # i n c l u d e ” arm neon . h ”
2
3 / / i n p u t da ta i n f e a t s
4 i n t 8 t n o u t s = n p o i n t s * ( n p o i n t s −1) / 2
5 i n t 8 t * o u t = ma l l oc ( n o u t s * s i z e o f ( i n t 8 t ) ) ;
6 f o r ( i n t i = 0 ; i < n p o i n t s ; i ++) {
7
8 / / l oad f i r s t f e a t u r e
9 u i n t 3 2 x 2 t a = v l d 1 u 3 2 ( f e a t s + 8* i ) ;
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Node type Avg. time Avg? % Operation name
TRANSPOSE 5.91618 0.268874% [bin dgcnn b f1 h/MatMul 315]:208

SLICE 0.45752 0.020793% [bin dgcnn b f1 h/MatMul 316]:209
RESHAPE 0.43792 0.0199023% [bin dgcnn b f1 h/MatMul 317]:210

SLICE 0.14872 0.00675892% [bin dgcnn b f1 h/MatMul 318]:211
RESHAPE 0.22018 0.0100066% [bin dgcnn b f1 h/MatMul 319]:212

SLICE 0.16006 0.0072743% [bin dgcnn b f1 h/MatMul 320]:213
RESHAPE 0.22242 0.0101084% [bin dgcnn b f1 h/MatMul 321]:214

SLICE 0.16268 0.00739337% [bin dgcnn b f1 h/MatMul 322]:215
RESHAPE 0.21126 0.0096012% [bin dgcnn b f1 h/MatMul 323]:216

SLICE 0.15406 0.00700161% [bin dgcnn b f1 h/MatMul 324]:217
RESHAPE 0.20686 0.00940123% [bin dgcnn b f1 h/MatMul 325]:218

SLICE 0.1494 0.00678983% [bin dgcnn b f1 h/MatMul 326]:219
RESHAPE 0.21348 0.00970209% [bin dgcnn b f1 h/MatMul 327]:220

SLICE 0.15514 0.00705069% [bin dgcnn b f1 h/MatMul 328]:221
RESHAPE 0.2117 0.00962119% [bin dgcnn b f1 h/MatMul 329]:222

SLICE 0.15154 0.00688708% [bin dgcnn b f1 h/MatMul 330]:223
RESHAPE 0.17318 0.00787056% [bin dgcnn b f1 h/MatMul 331]:224

SLICE 0.15244 0.00692799% [bin dgcnn b f1 h/MatMul 332]:225
RESHAPE 0.16864 0.00766423% [bin dgcnn b f1 h/MatMul 333]:226

SLICE 0.15614 0.00709614% [bin dgcnn b f1 h/MatMul 334]:227
RESHAPE 0.1736 0.00788965% [bin dgcnn b f1 h/MatMul 335]:228

SLICE 0.15118 0.00687072% [bin dgcnn b f1 h/MatMul 336]:229
RESHAPE 0.17086 0.00776513% [bin dgcnn b f1 h/MatMul 337]:230

SLICE 0.149 0.00677165% [bin dgcnn b f1 h/MatMul 338]:231
RESHAPE 0.16924 0.0076915% [bin dgcnn b f1 h/MatMul 339]:232

SLICE 0.1505 0.00683982% [bin dgcnn b f1 h/MatMul 340]:233
RESHAPE 0.16894 0.00767787% [bin dgcnn b f1 h/MatMul 341]:234

SLICE 0.14994 0.00681437% [bin dgcnn b f1 h/MatMul 342]:235
RESHAPE 0.17058 0.0077524% [bin dgcnn b f1 h/MatMul 343]:236

SLICE 0.15018 0.00682528% [bin dgcnn b f1 h/MatMul 344]:237
RESHAPE 0.16996 0.00772422% [bin dgcnn b f1 h/MatMul 345]:238

SLICE 0.1496 0.00679892% [bin dgcnn b f1 h/MatMul 346]:239
RESHAPE 0.17112 0.00777694% [bin dgcnn b f1 h/MatMul 347]:240

TRANSPOSE 0.41792 0.0189933% [bin dgcnn b f1 h/MatMul 348]:241
FULLY CONNECTED 8.78396 0.399207% [bin dgcnn b f1 h/MatMul 349]:242

TRANSPOSE 0.72016 0.0327293% [bin dgcnn b f1 h/MatMul 350]:243
FULLY CONNECTED 8.64452 0.39287% [bin dgcnn b f1 h/MatMul 351]:244

TRANSPOSE 0.71804 0.032633% [bin dgcnn b f1 h/MatMul 352]:245
FULLY CONNECTED 8.63224 0.392312% [bin dgcnn b f1 h/MatMul 353]:246

TRANSPOSE 0.72162 0.0327957% [bin dgcnn b f1 h/MatMul 354]:247
FULLY CONNECTED 8.62624 0.392039% [bin dgcnn b f1 h/MatMul 355]:248

TRANSPOSE 0.68654 0.0312014% [bin dgcnn b f1 h/MatMul 356]:249
FULLY CONNECTED 8.6722 0.394128% [bin dgcnn b f1 h/MatMul 357]:250

TRANSPOSE 0.69886 0.0317613% [bin dgcnn b f1 h/MatMul 358]:251
FULLY CONNECTED 8.6892 0.394901% [bin dgcnn b f1 h/MatMul 359]:252

TRANSPOSE 0.71076 0.0323021% [bin dgcnn b f1 h/MatMul 360]:253
FULLY CONNECTED 8.70248 0.395504% [bin dgcnn b f1 h/MatMul 361]:254

TRANSPOSE 0.71256 0.0323839% [bin dgcnn b f1 h/MatMul 362]:255
FULLY CONNECTED 8.76456 0.398326% [bin dgcnn b f1 h/MatMul 363]:256

PACK 13.822 0.628173% [bin dgcnn b f1 h/MatMul 364]:257
SUB 29.9335 1.3604% [bin dgcnn b f1 h/sub 3;bin dgcnn b f1 h/MatMul 3;b]:258

Table 7. LCE Profiler data for a single Hamming distance computation as a matrix multiplication, in ”BDGCNN BF H”.

10
11 f o r ( i n t j = i ; j < n p o i n t s ; j ++) {
12
13 / / l oad second f e a t u r e
14 u i n t 3 2 x 2 t b = v l d 1 u 3 2 ( f e a t s + 8* j ) ;
15
16 b = v e o r u 3 2 ( a , b ) ; / / XOR op
17
18 / / popcoun t op
19 i n t 8 x 8 t c = v r e i n t e r p r e t u 3 2 s 8 ( b ) ;
20 c = v c n t s 8 ( c ) ;
21
22 / / r e d uc e t o s i n g l e number
23 / / by add ing as a t r e e

24 i n t 6 4 x 1 t r e s ;
25 r e s = v p a d d l s 3 2 ( v p a d d l s 1 6 ( v p a d d l s 8 ( c ) ) ) ;
26
27 / / s t o r e t h e o u t p u t ( l a s t 8 b i t s )
28 i n t 8 x 8 t r e s 8 = v r e i n t e r p r e t s 6 4 s 8 ( r e s ) ;
29 o u t [ j + n p o i n t s * j ] = v g e t l a n e s 8 ( r e s8 , 7 ) ;
30 }
31 }

Listing 1. Implementation of pairwise Hamming distance in ARM
NEON instrinsics (for readability). Note that this code actually
treats 64 features at a time and could thus provide a 64x speedup
(or more by grouping loads and writes with vld4). We use 32x
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as a conservative estimate since we couldn’t account for LCE’s
bit-packed conversion.

”TopK” operations account for 22% of the runtime and
we view them as incompressible in our simulation (Table 6).
It is possible that they could be written in NEON as well,
however, this optimization is not as trivial as the Hamming
distance one. Remaining operations, such as ”Concatena-
tion”, cannot be optimized further.

Contrary to simpler GNNs such as GCN, DGCNN is
quite computationally intensive and involves a variety of
operations on top of simple dot products, which makes it an
interesting challenge for binarization, and illustrate that for
complex graph neural networks more efforts are required,
such as redefining suitable edge messages for binary graph
features, or speeding-up pairwise distances computations,
as done in this work. The inherent complexity also limits
the attainable speedups from binarization, as shown by the
large portion of the runtime taken by memory operations
(concatenation) and top-k.

C. Details regarding GraphSAGE

In all experiments, the architecture used is identical to
that used as a baseline by the OGB team. We report the accu-
racy following verbatim the experimental procedure of the
OGB benchmark, using the suitable provided evaluators and
dataset splits. Due to the very large number of edges in the
dataset, we were unable to implement LSP in a sufficiently
scalable manner (although the forward pass of the similarity
computation can be implemented efficiently, the gradient of
the similarity with respect to the node features is a tensor of
size |E| × |V| ×D where |E| is the number of edges in the
graph, |V| the number of nodes, and D the dimension of the
features. Although the tensor is sparse, Pytorch currently did
not have sufficient support of sparse tensors for gradients.
We therefore chose not to include the results in the main
text. We report the results of our binary GraphSAGE models,
against two floating-point baselines: GraphSAGE and GCN.

D. Balance functions

For completeness, we also report the results at stage 2 of
the multi-stage distillation scheme in Table 8. It is apparent
that the additional operations degraded the performance not
only for the full-binary models of stage 3, but also for the
models for which all inputs are binary but weights are real.

E. Table of mathematical operators
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Model Stage KNN LSP Global balance Edge balance Acc
BF2 2 H - - Median 90.07
BF2 2 H - - Mean 83.87
BF2 2 H `2 Median 87.60
BF2 2 H `2 Mean 89.47

Baseline BF2 2 H `2 None 91.57
Table 8. Effect of additional balance functions on models with binary activations but floating-point weights. The performance of the baseline
model suffers with the introduction of either mean or median centering prior to quantization.

Symbol Name Description
||.||H Hamming norm Number of non-zero (or not -1) bits in a binary vector
d(., .)H Hamming distance Number of bits that differ between two binary vectors, equivalent to

popcount(xor())
⊕ Exclusive OR (XOR) 1⊕ 1 = −1⊕−1 = −1, −1⊕ 1 = 1⊕−1 = 1
� Hadamard product Element-wise product between tensors
~ Binary-real or Binary-binary

dot product or convolution
Equivalent to popcount(xnor()) (i.e. no multiplications) for binary
tensors

⊗ Outer product
? Dot product or convolution Denoted by ∗ in [47]
|X | Cardinal of a set X Number of elements in the set
x(l) Feature maps at layer l
.||. Concatenation
:= Definition
x(l) Element x at layer l

Table 9. Table of the mathematical operators used in the manuscript.
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