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ABSTRACT 

This work considers the shape optimization of a crossflow 

plate heat exchanger air/water. The two objectives are to 

maximize the effectiveness while minimizing the total 

pressure drop. The shape variation concerns a trapezoidal rib 

mounted on the hot channels plates. A multiscale approach 

is presented, coupling CFD simulations and a NTU method. 

The optimization method is based on a genetic algorithm and 

kriging metamodels with adaptive sampling. Infill criteria 

are the maximum mean square error (MMSE) and multi-

points expected improvement (q-EI). A clustering of the 

Pareto front individuals highlights a finite number of optimal 

shapes. 
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INTRODUCTION 

Heat exchangers (HEX) are widely used in many industrial 

applications as power engineering, chemical industry, 

transport and spatial. Heat transfer enhancement and heat 

exchangers design are still investigated in order to improve 

energy efficiency. Periodic ribs or fins are a common way to 

achieve an efficient heat transfer enhancement [1,2]. Several 

numerical and experimental studies have shown that the 

shape of such obstacles has a strong influence on the aero-

thermal behavior [2–4]. 

Heat exchangers optimization is growing in interest over the 

past decade. Various studies are interested by the 

optimization of HEX performances using correlations and 

integral methods coupled to a genetic algorithm (GA). 

Selbas et al. [5] use a mono-objective GA to improve the 

heat transfer area of a shell and tubes HEX. Guo et al. [6] 

apply a multi-objective genetic algorithm (NSGA-II) to 

minimize the entropy production of a shell and tubes HEX. 

Sanaye and Hajabdollahi [7] optimize the effectiveness and 

cost of a shell and tubes HEX using NSGA-II and NTU 

method. A drawback of such methods is the use of 

correlations which drives the optimum search.  

Thus, computational fluid dynamics (CFD) simulations were 

used to quantify the aerothermal behavior of non-

conventional shapes in HEX and to perform optimization [8–

12]. The optimization purpose is to maximize the 

performances of a unique HEX channel expressed using 

Nusselt number, total pressure losses [10–12], the 

effectiveness or the total heat flux [8,9]. These approaches 

can precisely evaluate the influence of the shape variation of 

the obstacles but the performances analysis of the whole 

HEX is not addressed. 

Only  few studies concern the HEX optimization with a 

multiscale approach coupling CFD and integral method 

[13,14]. CFD simulations of the obstacles are used to build 

correlations for the Nusselt number and the pressure loss 

coefficient. These correlations are employed in a NTU 

method to evaluate the HEX performances. The HEX 

optimization is thus performed using a GA. 

However when CFD simulations are used conjointly to a 

GA, numerous time consuming simulations are needed. To 
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deal with this issue, metamodels (or surrogated models) are 

used [15]. The underlying idea is to build an approximation 

of a costly simulation response using a limited number of 

observations. This cheaper approximation can then be used 

by the GA. Several metamodelization methods exist as 

artificial neural networks [13], response surface modelling 

[14] and kriging models [10,11]. As mentioned in [15], 

kriging is well suited to build accurate metamodels of 

complex physics responses. As the optimization results 

depend on the metamodel quality, adaptive sampling is used 

to improve the interpolation accuracy [10,11,16–18]. The 

metamodel is iteratively improved by adding new 

observations to it. For instance, Saleh et al. [10] and Wen et 

al. [11] add observations from the region near to the current 

optimum until the metamodel relative mean square error is 

greater than a tolerance. However, this method may lead to 

converge on local optimum and stay trapped here [18]. 

This work proposes a multi-objective HEX optimization 

based on a multiscale approach and a genetic algorithm. 

CFD simulations are used to build correlations for the 

Nusselt number and head loss coefficient. These correlations 

are used into a NTU method as presented on Section 1. The 

correlations are obtained by kriging and adaptive sampling 

based on maximum mean square error (MMSE) and expected 

improvement (EI). The optimization tools are introduced on 

Section 2. Results and analysis are presented on Section 3. 

1 THERMAL MODELLING 

This section will present the models used to calculate the 

performances of a crossflow plate heat exchanger (CPHX) 

with unmixed fluids. CPHX are constituted by a stack of 

plates as shown in Figure 1(a). Periodic ribs are placed on 

each hot channel to enhance heat transfer. Their shape has a 

major influence on the heat transfer. The chosen rib has a 

trapezoidal symmetric shape as shown Figure 1(b). It is 

defined by its height (ℎ𝑟𝑖𝑏), base width (𝐸) and top width (𝑒). 

The canal height (𝐻 ) and the rib-pitch (𝐿 = 3𝐻 ) remain 

constant. The rib angle (𝛼) is only used for the analysis.  

 

The NTU method [1] is employed to compute the 

effectiveness 𝜀 . The total pressure losses Δ𝑃𝑡𝑜𝑡  are 

calculated taking into account both cold and hot channels 

[1]. The rib influence on the CPHX performances is 

quantified through the Nusselt number 𝑁𝑢 and the head loss 

coefficient 𝐶𝑓. 

 

1.1 Heat exchanger modelling 

The hot stream with 0.56 𝑘𝑔. 𝑠−1 mass flow rate (𝑚̇𝑎) is air 

incoming at temperature and pressure of 553.15 𝐾  and 

300 𝑘𝑃𝑎. The cold stream with 2.86 𝑘𝑔. 𝑠−1 mass flow rate 

𝑚̇𝑤 ) is water incoming at temperature and pressure of 

353.15 𝐾  and 100 𝑘𝑃𝑎 . The CPHX has 13 hot channels 

(𝑁𝑎) and 12 cold ones (𝑁𝑤). 𝐻 is set to 7 𝑚𝑚 and the plate 

thickness to 1 𝑚𝑚 . 20  ribs are mounted on each hot 

channels. The CPHX dimensions are 𝐻𝐸 = 0.20 𝑚  and 

𝑊𝐸 = 𝐿𝐸 = 0.402 𝑚. 

The NTU method is presented on Algorithm 1. The 

Reynolds number 𝑅𝑒𝐷𝐻
 is based on the hydraulic diameter 

of a plane channel, 𝐷𝐻 = 2𝐻. 

Dittus-Boelter and Blasius correlations (Algorithm 1 – line 

4) and the effectiveness formula of a crossflow unmixed 

plate heat exchanger (Algorithm 1 – line 9) are from [1]. 

1.2 Numerical modelling of a periodic rib 

Code_Saturne software [19] is used to solve the  governing 

equations for two-dimensional unsteady air flow and heat 

Figure 1: Schematics of the heat exchanger – (a) Crossflow plate 

heat exchanger (CPHX) with unmixed fluids – (b) Trapezoidal 

rib shape parameters. 
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transfer on the rib channel. The 𝐵𝐿 − 𝑣2̅̅ ̅/𝑘  model is used to 

predict the turbulence [20]. This wall resolved model takes 

into account the turbulence anisotropy ( 𝑣2̅̅ ̅ ) in the wall 

normal direction. Thus, it is recommended in heat transfer 

problems with recirculation areas such as ribs [20,21]. The 

boundary conditions are visible Figure 2. The fluid and solid 

domains are thermally coupled (blue lines) using a 

monolithic formulation. An imposed flux density 𝑞̇  is 

applied on the plates (red lines). The flow is assumed 

spatially developed, thus a streamwise periodic condition is 

applied (green lines). 

The mesh is an unstructured grid with about 100 000 cells 

mixing hexahedral and prismatic elements (see Figure 2). A 

boundary layer mesh is used to satisfy the 𝑦+ ≤ 1 condition 

for the first cell near the wall, required by the model. 

 

The Nusselt number is calculated at the surface 2𝐿𝑊𝐸 as: 

 

𝑁𝑢 =
𝑄 𝐷𝐻

𝜆𝑎 2 𝐿 𝑊𝐸(𝑇𝑤𝑎𝑙𝑙 − 0.5(𝑇𝑖𝑛 + 𝑇𝑜𝑢𝑡))
 (1)  

 

with 𝑇𝑤𝑎𝑙𝑙  and 𝑄  the mean surface temperature and total 

heat flux at the bottom ant top walls (red), 𝑇𝑖𝑛 and 𝑇𝑜𝑢𝑡  the 

bulk temperature at the inlet and outlet (green). The solid 

conduction into the plate is embedded on 𝑁𝑢. The head loss 

coefficient is calculated as: 

 

𝐶𝑓 =
Δ𝑃𝑖𝑛,𝑜𝑢𝑡

0.5 𝜌𝑎𝑈𝑑𝑒𝑏
2

𝐷𝐻

𝐿
 (2)  

Figure 2: Numerical Calculation domain, mesh and boundary 

conditions 

Algorithm 1: CPHX effectiveness and total pressure 

losses calculation [1] 
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with Δ𝑃𝑖𝑛,𝑜𝑢𝑡  the pressure drop between inlet and outlet and 

𝑈𝑑𝑒𝑏  the bulk velocity.  

2 OPTIMIZATION METHOD 

The aim of this study is to maximize the CPHX effectiveness 

𝜀  while minimizing the total pressure losses Δ𝑃𝑡𝑜𝑡  by 

varying the rib shape. Formally, the bi-objective problem is 

written as: 

maximize  𝜀(𝒑) (3)  

minimize Δ𝑃𝑡𝑜𝑡(𝒑) (4)  

with 𝒑 ∈  D  (5)  

subject to ℎ𝑟𝑖𝑏/ 𝐻 ∈  [0.05; 0.3]  (6)  

 𝑒/ 2𝐻 ∈  [0.0375; 0.45] (7)  

 𝐸/ 2𝐻 ∈  [0.03375; 0.525] (8)  

 𝐸 ≥ 0.9𝑒 (9)  

 

where 𝒑   is the vector of parameters and D =

{ℎ𝑟𝑖𝑏, 𝑒, 𝐸 |  𝐸𝑞𝑠. (6 − 9)} ⊂  ℝ3  is the constrained 

parameters space. The constraint Eq. (9) avoids not 

manufacturable shapes.  ℱ = {𝜀, Δ𝑃𝑡𝑜𝑡}  is the objective 

space. The solution of the problem is one or several lines in 

ℱ , called the Pareto front, and represents the best 

compromise between both objectives. The method used to 

solve the above problem is presented on Figure 3. 

2.1 Motor of optimization – NSGA-II 

Motors of optimization are used to solve optimization 

problems. For mono-objective problems, gradient based or 

direct search methods are well used [22]. For multi-

objectives ones, meta-heuristic methods as genetic 

algorithms (GA) are preferred [22]. In this study, the genetic 

algorithm NSGA-II is used [23]. This GA is employed in 

numerous studies for various domains [9,13,22,24] due to its 

robustness and its capability to well describe the Pareto 

front. 

Based on Darwinism principles, GAs simulate the evolution 

of a set of individuals gathering into a population, over 

several generations. An individual is characterized by a 

vector of parameters (genes) and the values of the objective 

functions associated (phenotype). The basic steps of a 

genetic algorithm are: 

- Evaluation: for a given vector of parameters, the 

objectives function are evaluated. Usually this 

operations is realized by an external program: the 

NTU method in this study. 

- Selection: the fittest individuals are selected. 

NSGA-II performs this selection using the Pareto 

dominance relationship [23]. 

- Reproduction: the combination of the genes of the 

selected individuals (parents) leads to news ones 

(offsprings). 

- Mutation: the genes of some random individuals 

are modified to explore new solutions. 

Figure 3: Flowchart of the optimization process. Step1 is the adaptive sampling building of the metamodels. The Step 2 is the 

optimization of the CPHX performed with the NSGA-II, NTU method and the correlations of 𝑁𝑢 and 𝐶𝑓. 
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By repeating these steps at each generation, the best 

individuals breed and bring closer to the Pareto front. 

 

In order to ensure the exploration of the entire parameters 

space D, the population size is set to 900 individuals over 

200 generations in this study. This leads to 18000 

evaluations through the NTU method and as much CFD 

simulations to estimate 𝑁𝑢 and 𝐶𝑓, as shown Figure 3 – Step 

2. In the state, the numerical resources needed limit the use 

of the method in an industrial design process. The use of 

metamodels is thus mandatory [10] to reduce the cost of 

evaluating the Nusselt number and the head loss coefficient.  

In order to build versatile metamodels, the rib performances 

are evaluated on the whole parameters space D and for a 

Reynolds number varying from 3000 to 13000. The 

extended parameters space is then: 

D𝑒 = {D ∪ 𝑅𝑒𝐷𝐻
∈ [3000; 13000]} ⊂  ℝ4 (10)  

Rib performances are normalized using Dittus-Boelter 𝑁𝑢0 

and Blasius 𝐶𝑓0  correlations for smooth channels [1]. 

Minimization is considered for metamodeling, thus the 

opposite of the Nusselt number is employed. As presented 

thereafter, metamodels are built using kriging models. 

2.2 Metamodeling – Kriging theory 

Kriging is a geostatistical interpolation method extended by 

Sacks et al. [25] to the design and analysis of computer 

experiments. There are several variants of the kriging 

models [26] and the universal kriging is used in this study.  

Kriging treats the deterministic response 𝑦(𝒑) ∈

{− 𝑁𝑢 𝑁𝑢0⁄ , 𝐶𝑓 𝐶𝑓0⁄ } as a realization of a random process 

𝑌(𝒑) defined as: 

𝑌(𝒑) = ∑ 𝛽𝑖𝑑𝑖(𝒑)

𝑛𝑝

𝑖=1

+ 𝑍(𝒑) (11)  

where 𝑑𝑖(. )  are linearly independent known functions 

(trends) and 𝑍(. ) is a stationary random Gaussian process. 

𝑍(. ) has a mean zero and  a stationary covariance  kernel 

defined as:  

𝐶𝑜𝑣 (𝑍(𝒑(1)), 𝑍(𝒑(2))) =  𝜎2𝑅(𝒑(1), 𝒑(2)) (12)  

𝜎2 is the process variance and 𝑅(. ) is the spatial correlation 

function which depends on the Euclidean distance between 

two vectors of parameters 𝒑(1) and 𝒑(2). Using the Matérn 

                                                                 
1 with  𝑝1 = ℎ𝑟𝑖𝑏 , 𝑝2 = 𝑒,  𝑝3 = 𝐸 and 𝑝4 = 𝑅𝑒𝐷𝐻

 

5/2 covariance kernel, the correlation function for 𝒑 ∈ D𝑒 

is: 

𝑅(𝒑(1), 𝒑(2)) =  ∏ (1 +
√5 |𝑝𝑘

(1)
−𝑝𝑘

(2)
|

𝜃𝑘
+4

𝑘=1

   
5|𝑝𝑘

(1)
−𝑝𝑘

(2)
|
2

3𝜃𝑘
  2 ) exp ( 

−√5|𝑝𝑘
(1)

−𝑝𝑘
(2)

|

𝜃𝑘
)    

(13)  

where 𝜃𝑘  is the characteristic length-scales along each 

parameters1. In this study, the trend is defined using 𝑛𝑝 = 5 

linear functions: 

∑ 𝛽𝑖𝑑𝑖(𝒑)

5

𝑖=1

= 𝛽1 +  𝛽2𝑝1 + 𝛽3𝑝2 + 𝛽4𝑝3 + 𝛽5𝑝4 (14)  

 

In order to build the metamodel, a design of experiments 

(DOE) 𝑷 is necessary to estimate the kriging parameters. 

Thus 𝑛𝑜  observations of the function 𝑦  are performed for 

distinct vectors of parameters 𝒑(𝑖): 

𝑷 = [ 𝒑(𝑖)]
1≤ 𝑖≤𝑛𝑜

 (15)  

𝒀 = 𝑦(𝑷) = [ 𝑦(𝒑(𝑖))]
1≤ 𝑖≤𝑛𝑜

 (16)  

Under these hypothesis, the best linear unbiased predictor  

for 𝑌(𝒑) knowing 𝒀, is defined by the kriging mean 𝑚𝐾  as 

[26]: 

𝑚𝐾 (𝒑) = 𝒅(𝒑)𝑇𝜷 + 𝒓(𝒑)𝑇𝑹−1(𝒀 − 𝑫𝜷) (17)  

where: 

𝒅(𝒑) = [𝑑𝑖(𝒑)]1≤𝑖≤𝑛𝑝
 (18)  

is the vector of basis functions,  

𝑫 = [𝑑𝑗(𝒑(𝑖))]
1≤ 𝑖≤𝑛𝑜,1≤𝑗≤𝑛𝑝

 (19)  

is the experimental matrix,   

𝜷 = [𝛽𝑗]
1≤𝑗≤𝑛𝑝

 (20)  

is the vector of generalized least square estimates of 𝛽, 

𝒓(𝒑) = [𝑅(𝒑, 𝒑(𝑖))]
1≤𝑖≤𝑛𝑜

 (21)  

is the vector of covariance and 

𝑹 = [𝑅(𝒑(𝑖), 𝒑(𝑗))]
1≤ 𝑖≤𝑛𝑜,1≤𝑗≤𝑛𝑜

 (22)  

 is the covariance matrix.  

The kriging parameters 𝜷,  𝜎2  and 𝜽 = [𝜃𝑘]1≤𝑘≤4  are 

estimated so as to maximize the likelihood function defined 

as [27]:  
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𝐿𝑛(𝜷,  𝜎2, 𝜽) =  −
1

2
 (𝑛𝑜 (ln(𝜎2) + ln(2𝜋) + 1) 

+ ln(|𝑹|)) 

(23)  

𝜷 and 𝜎2 are given in closed form as: 

𝜷 =  (𝑫𝑇𝑹−1𝑫)−1𝑫𝑇𝑹−1𝒀 (24)  

𝜎2 =
1

𝑛𝑜

(𝒀 − 𝑫𝜷)𝑇𝑹−1(𝒀 − 𝑫𝜷)  (25)  

and  

𝜽 = argmax
𝜽

 𝐿𝑛(𝜷,  𝜎2, 𝜽) (26)  

 

Finally, the determinist response 𝑦(𝒑) ∈

 {− 𝑁𝑢 𝑁𝑢0⁄ , 𝐶𝑓 𝐶𝑓0⁄ }  is given by: 

𝑦(𝒑) = 𝑚𝐾(𝒑) (27)  

Moreover, the kriging model gives an estimation of the 

accuracy of the prediction at an untried vector of parameters 

𝒑 through the mean square error 𝑠𝐾
2 , given as: 

𝑠𝐾
2 (𝒑) =  𝜎2 ( 1 −

[𝒅(𝒑)𝑇 𝒓(𝒑)𝑇] [0 𝑫𝑇

𝑫 𝑹
]

−1

[
𝒅(𝒑)

𝒓(𝒑)
])   

(28)  

2.3 Metamodeling - Adaptive sampling 

For the purpose of building cheaper and accurate 

metamodels, adaptive sampling is used [16,17]. Starting 

from an initial coarse DOE, new vectors of parameters 

𝒑(𝑛𝑒𝑤)  are iteratively added to the metamodel in order to 

improve the current optimal area (exploitation) or the global 

accuracy (exploration). In this study maximum mean square 

error (MMSE) and multipoint expected improvement (q-EI) 

criteria are used [26] to improve both exploration and 

exploitation. In this study, metamodels are used to build 

correlations, thus they have to be accurate in the whole 

parameters space D𝑒. Moreover, optimum values in Nusselt 

number and head loss coefficient are correlated to the CPHX 

performances optimum. Thus it is interesting to build 

accurate metamodels also in the optimum area. 

The basic idea of expected improvement (EI) is to add to the 

metamodel the vector of parameters 𝒑(𝑛𝑒𝑤) which leads to 

an improvement of the current minimum of 𝑚𝐾(𝒑). Thus the 

q-EI criterion adds to the DOE 𝑷 a set of vectors 𝑷(𝑛𝑒𝑤) =

[𝒑(𝑖)]
1≤𝑖≤𝑞

 which maximizes the improvement [26]: 

𝑷(𝑛𝑒𝑤) = argmax
𝑷∈ D𝑒

𝑞
 𝔼 [min(𝒀) − min (𝑚𝐾(𝑷(𝑛𝑒𝑤)))] (29)  

with 𝔼[. ] the mathematical expectation. Using q-EI instead 

of the standard EI allows parallel evaluations of the response 

𝑦, which is very interesting for costly simulations like CFD 

ones [26]. 

The MMSE criterion adds to the metamodel the vector of 

parameters which maximizes the mean square error: 

𝒑(𝑛𝑒𝑤) = argmax
𝒑∈D𝑒

 𝑠𝐾
2 (𝒑) (30)  

In contrary to q-EI, MMSE is sequential. To permit parallel 

evaluations, a Kriging Believer like method [28] is applied 

using MMSE. 

 

Step 1 in Figure 3 shows the adaptive sampling of the 

metamodels. First, the initial DOE 𝑷 is obtained using an 

optimized Latin Hypercube Sampling (LHS) based on the 

centered 𝐿2  discrepancy criteria and performed with the 

Enhanced Stochastic Evolutionary algorithm [29]. Then, the 

CFD chain evaluates 𝑁𝑢 and 𝐶𝑓 and the two metamodels are 

built using Eq. (17). Thus using Eqs. (29-30), a set 𝑷(𝑛𝑒𝑤) =

[𝒑(𝑖)]
1≤𝑖≤𝑞

 of vectors of parameters is selected to improve 

each metamodels. These new vectors of parameters are 

evaluated by the CFD chain and the kriging is computed 

again. As this process is iterative, stopping conditions are 

necessary for both criteria. According to Huang [30], the 

chosen conditions are not concerned by magnitudes issues 

due to their normalization by the variation range of the 

known observations: 

𝑅𝑆𝐷 =
max
𝒑∈D𝑒

𝑠𝐾
2 (𝒑)

max(𝒀)−min(𝒀)
≤ 𝛿𝑆𝐷  (31)  

  

𝑅𝐸𝐼 =

max
𝑷∈D𝑒

𝑞
 𝐸[min(𝒀)−min(𝑚𝐾(𝑷(𝑛𝑒𝑤)))]

max(𝒀)−min(𝒀)
≤ 𝛿𝐸𝐼  

(32)  

 

When the two relative tolerances are achieved, the adaptive 

sampling stop and the metamodels are used into the Step 2. 

2.4 Shape modifications 

The shape modifications were performed using a 

parametrized CAO and a robust re-meshing strategy. 

2.5 Data analysis 

The use of a meta-heuristic method as motor of optimization 

produces an amount of data which is difficult to analyze 

using conventional methods. In our case, it is not possible to 

represent the variations of one objective function over the 

three parameters using 3D plot. Moreover, it is difficult to  
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(a) 

 
(b) 

Figure 4: Convergence history of adaptive sampling conditions 

for 𝑁𝑢 /𝑁𝑢0 (black) and 𝐶𝑓 /𝐶𝑓0 (green) - (a) 𝑅𝑆𝐷 - (b) 𝑅𝐸𝐼.  

analyze each shape of the 900 individuals forming the Pareto 

front. 

In order to highlight representative shapes among the Pareto 

Front, a clustering method is used. Therefore, the solutions 

are gathered into clusters defined by their centers. The k-

means clustering proposed  by Lee and Kim [31] was found 

inefficient in this study. Thus, Gaussian mixture based 

clustering is employed [32]. 

The results are also visualized using Self-Organizing Maps 

(SOM) [22]. SOM are artificial neural networks trained 

using unsupervised learning. Data are represented as a set of 

maps, each one carrying an information. SOM can be read 

as geographic maps: the color changes with the information, 

but one point is rigorously at the same position on every 

maps. The interdependence between parameters and 

objectives can be easily observed such as the optimal shapes 

and performances. 

3 Results 

3.1 Adaptive sampling convergence 

The initial DOE is obtained by an optimized LHS with 𝑛𝑜 =

40 observations. At each iteration, six vectors of parameters 

are added to this DOE, two by using MMSE and four by 

using q-EI. The tolerances are set to 𝛿𝑆𝐷 = 3% and 𝛿𝐸𝐼 =

0.4% . The Nusselt number metamodel is based on 48 

observations and the pressure loss coefficient one is built 

using 139 observations. 

Figure 4 shows the convergence of the two stopping 

conditions for both metamodels. As shown Figure 4(a), the 

(a) 

(b) 

Figure 5: Response surfaces for 𝑁𝑢 /𝑁𝑢0  (a) and 𝐶𝑓 /𝐶𝑓0  (b) 

over ℎ𝑟𝑖𝑏/𝐻  and 𝑒/2𝐻 . 𝑅𝑒𝐷𝐻
 is set to 8000. Two rib base 

widths are considered: 𝐸 = 0.9𝑒  (blue) and 𝐸/2𝐻 =  0.525 

(red) 
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condition 𝑅𝑆𝐷  is reached in 10 iterations for both 

metamodels. As mentioned by Sasena [16], the MMSE 

criterion gives only a local information about the minimum 

of likelihood of the metamodel. Thus numerous observations 

are necessary to obtain a global accurate metamodel. 

Moreover, it was found that the majority of observations 

added by MMSE are located at the boundaries of the 

parameters space D𝑒 . It would be interesting of using the 

integrated mean square error (IMSE) [33] criterion instead of 

the MMSE to add vectors of parameters which improve the 

global and not only local metamodel accuracy. 

Figure 4(b) shows that the condition on the q-EI is reached 

in 4 iterations for 𝑁𝑢 /𝑁𝑢0 but is not achieved for 𝐶𝑓 /𝐶𝑓0. 

The adaptive sampling was thus stopped arbitrarily as the 

𝑅𝑆𝐷 was attained and no major improvement was found in 

the last iterations for 𝑅𝐸𝐼. 

Figure 5 shows the kriging response surface of the 

normalized opposite Nusselt number and the normalized 

head loss coefficient over the height and top width of the rib, 

for 𝑅𝑒𝐷𝐻
= 8000 and for two values of 𝐸/2𝐻.  

As shown Figure 5(a), the surface slope around the minimum 

of (− 𝑁𝑢 /𝑁𝑢0) is important. So the q-EI criterion locates 

this area efficiently. On the contrary, as highlighted on 

Figure 5(b), the minimum area for the head loss coefficient 

is extended (around ℎ/𝐻 ∈ [0.05, ; 0.1] ) with a minor 

surface slope. Thereby, q-EI cannot easily converged and 

adding more points may increase the noise and degrade the 

interpolation accuracy. 

As noticed by these results, the definition of stopping criteria 

is an open and complex problem [33]. Another approach is 

to define a budget (in terms of number of simulations or 

available calculation time) which limits the number of 

possible observations for the metamodels construction [17]. 

3.2 NSGA-II convergence 

The convergence of the Step 2 is also addressed. A common 

way to verify this convergence is to look the stability of the 

Pareto front over the generations [22]. However, the 

variations of the parameters distribution on D is also 

interesting to ensure the convergence of the optimal shapes. 

This is verified by considering the distribution of the 

individuals of the Pareto front into several classes of the 

parameters values, over the generations. Figure 6 shows the 

individuals distribution into five classes of the top width of 

the rib. As seen, the distribution does not change after the 

30th generation. The 95% confident bounds (grey) are less 

than 2% of the mean value (dashed line). Thus the NSGA-II 

is considered well converged. 

3.3 Analysis of the optimization 

The Pareto front on Figure 8(a) shows an important 

correlation between the objectives. The individual 

distribution of the Pareto front over ℎ𝑟𝑖𝑏/𝐻, 𝑒/2𝐻 and 𝛼 is 

visible Figure 8(b). The clustering on the parameters space 

gives 6 centers and their performances are reported on 

Figure 8(a) as closed red symbols. CFD simulations were 

performed to qualify the metamodel interpolation on these 

centers. The performances of these re-converged points 

appear as open symbols on Figure 8(a) with the associated 

temperature variation fields. The difference between CFD-

based and metamodel-based performances is from 0.6% to 

8% for the effectiveness and from 8% to 15% for the total 

pressure drop. The difference is bigger for Δ𝑃𝑡𝑜𝑡  due to 

difficulty of building an accurate metamodel for 𝐶𝑓 because 

of the area of quasi null slope (see Section 3.1.). Looking at 

the parameters space, shapes associated to the center ◊ seem 

dubious and produce a discontinuity on the Pareto front. The 

CFD simulation confirms that the metamodel over estimates 

the Nusselt number for this center and therefore the 

effectiveness. 

SOM on Figure 7 highlight the interdependences between 

the objectives and the parameters. As shown, a majority of 

individuals of the Pareto front have a rib height maximal. 

Figure 6: Evolution of the distribution of the individuals into 

five classes over the number of generations. Dashed lines 

represent the mean distribution and grey areas are the 95 

%confident bounds. 
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This leads to an important recirculation area behind the rib 

which increases 𝑁𝑢 and 𝐶𝑓 and therefore 𝜀 and Δ𝑃𝑡𝑜𝑡 . When 

𝛼 increases (from ◇ to ▽) the pressure losses decrease. The 

recirculation area is less important such as the temperature 

homogenization. Thus the Nusselt number and effectiveness 

decrease. When the rib height is smaller and for significant 

𝛼 (◊ and ○), the temperature stratification deteriorates the 

heat transfer. Triangular and trapezoidal shapes (□, ▽ and △

) may be an interesting compromise, particularly the △ one. 

In fact, after this point, there is a change on the Pareto front 

slope, leading to a rapid increase of the pressure losses for a 

slightly effectiveness improvement. These results highlight 

the major influence of the rib height ℎ𝑟𝑖𝑏 on the heat transfer 

and pressure drop as reported by Kim et al. [4]. 

Figure 7: Self-Organizing Maps of the Pareto front individuals: the three parameters (top), the two objectives and the clusters (bottom). 

The clusters centers are represented as open symbols. 

(a) (b) 

Figure 8: Optimization results – (a) The Pareto front and clusters centers achieved using the method. The closed red symbols 

represent the cluster center performances predicted by the metamodel. The open symbols are the cluster centers performances 

calculated from CFD simulations and the temperature variations are superimposed. – (b) Population distribution on D colored 

by clusters. Open symbols are the centers. 
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CONCLUSION 

The multi-objective shape optimization of a CPHX was 

studied. The CPHX performances 𝜀 and Δ𝑃𝑡𝑜𝑡  are calculated 

by coupling a NUT method to CFD calculations through the 

use of metamodels. There are based on kriging with adaptive 

sampling. Infill criteria are the maximum mean square error 

and the multi-points expected improvement. NSGA-II is 

then used to find the Pareto Front.  

The metamodel convergence is analyzed through the 

evolution of the infill criteria stopping condition. Results 

show a limit of using expected improvement for 𝐶𝑓. Using 

the IMSE criterion instead of the MMSE one may improve 

the global metamodel accuracy with less observations. 

The individuals clustering and the SOM highlight a finite 

number of optimal shapes, which are representative of the 

entire population. Some shapes are not interesting from the 

thermal point of view and may be penalized during the GA 

process. 

NOMENCLATURE 

Roman symbols 
 

𝐶  heat capacity flow rate ∈ ℝ   [𝑊. 𝐾−1]  
𝐶∗  heat capacity ratio ∈ ℝ   [−]  
𝐶𝑓  head loss coefficient ∈ ℝ  [−]  

𝐶𝑓0  head loss coefficient, Blasius ∈ ℝ  [−]  

𝐶𝑜𝑣  process covariance ∈ ℝ   

𝑐𝑝  specific heat ∈ ℝ  [𝐽. 𝑘𝑔−1. 𝐾−1]  

D   parameters space ⊂ ℝ3   

D𝑒   extended parameters space ⊂ ℝ4   

𝑫  experimental matrix ∈ ℝ𝑛𝑜×𝑛𝑝   

𝒅  vector of basis functions ∈ ℝ𝑛𝑝   

𝐷𝐻  hydraulic diameter ∈ ℝ  [𝑚𝑚]  
𝑑𝑖(. )  linear trend functions 𝐷𝑒 → ℝ    

𝐸  rib base width ∈ ℝ  [𝑚𝑚]  
𝑒  rib top width ∈ ℝ  [𝑚𝑚]  
ℱ  objectives space ⊂ ℝ2   

𝐻  canal height ∈ ℝ  [𝑚𝑚]  
𝐻𝐸  heat exchanger height ∈ ℝ  [𝑚]  
ℎ𝑟𝑖𝑏  rib height ∈ ℝ  [𝑚𝑚]  
𝐼  Bessel function   

𝐾  overall heat transfer coefficient ∈ ℝ  [𝐾. 𝑚2𝑊−1]  
𝐿  rib-pitch ∈ ℝ  [𝑚𝑚]  
𝐿𝐸  heat exchanger length ∈ ℝ  [𝑚]  
𝐿𝑛  likelihood function   

𝑚̇  mass flow rate ∈ ℝ  [𝑘𝑔. 𝑠−1]  
𝑚𝐾  kriging mean ∈ ℝ   

𝑁   number of  ∈ ℕ  [−]  
𝑁𝑇𝑈  number of transfer units ∈ ℝ  [−]  
𝑁𝑢  Nusselt number ∈ ℝ  [−]  

𝑁𝑢0  Nusselt number Dittus-Boelter ∈ ℝ  [−]  
𝑛𝑜  number of observations ∈ ℕ  [−]  
𝑛𝑝  number of linear functions ∈ ℕ  [−]  

𝑷  set of vector of parameters ∈ D𝑒
  𝑛𝑜     

𝑃  pressure ∈ ℝ  [𝑘𝑃𝑎]  
𝑃𝑟  Prandtl number ∈ ℝ  [−]  
𝒑  vector of parameters ∈ D𝑒

     

𝑄  total heat flux ∈ ℝ  [𝑊]  
𝑞̇  heat flux density ∈ ℝ  [𝑊. 𝑚−2]  
𝑞  number of new observations ∈ ℕ  [−]  
𝒓(𝒑)  vector of covariance ∈ ℝ𝑛𝑜    

𝑹  covariance matrix ∈ ℝ𝑛𝑜×𝑛𝑜   

𝑅(. )  spatial correlation function D𝑒
  2 → ℝ    

𝑅𝐸𝐼  stopping condition for q-EI ∈ ℝ   

𝑅𝑆𝐷  stopping condition for MMSE ∈ ℝ   

𝑅𝑒𝐷𝐻
  Reynolds number ∈ ℝ  [−]  

𝑆𝑡𝑜𝑡  total heat transfer surface ∈ ℝ  [𝑚2]  
𝑠𝐾

2    mean square error ∈ ℝ   

𝑇  temperature  ∈ ℝ  [𝐾]  
𝑈𝑑𝑒𝑏  bulk velocity ∈ ℝ  [𝑚. 𝑠−1]  
𝑊𝐸  heat exchanger width ∈ ℝ  [𝑚]  
𝒀  set of known observations ∈ ℝ𝑛𝑜   

𝑌  random variable ∈ ℝ   

𝑦(. )  realization of the random variable ∈ ℱ   

𝑍  random process   

Greek symbols 

𝛼  rib angle ∈ ℝ  [𝑑𝑒𝑔]  
𝜷  vector of estimates of 𝛽 ∈ ℝ𝑛𝑝   

𝛽  weights  ∈ ℝ   

Δ𝑃𝑡𝑜𝑡  total pressure drop ∈ ℝ  [𝑘𝑃𝑎]  
𝛿𝐸𝐼  relative tolerance for q-EI ∈ ℝ   

𝛿𝑆𝐷  relative tolerance for MMSE ∈ ℝ   

𝜀  effectiveness ∈ ℝ  [−]  
𝜆  conductivity ∈ ℝ  [𝑊. 𝑚−1. 𝐾−1]  
𝜇  viscosity ∈ ℝ  [𝑃𝑎. 𝑠]  
𝜌  density ∈ ℝ  [𝑘𝑔. 𝑚−3]  
𝜎2  process variance ∈ ℝ   

𝜽  vector of characteristic lengths ∈ ℝ4   

𝜃  characteristic lengths ∈ ℝ   

Subscript and Superscript 
(𝑖)  ith vector of parameters    

(𝑛𝑒𝑤)  new set of vector of parameters   

𝑎  air   

𝑖𝑛  inlet   

𝑜𝑢𝑡  outlet   

𝑟𝑒𝑓  reference   

𝑤  water   

𝑤𝑎𝑙𝑙  at the wall   

Others 


−1

  inverse operator   


𝑇

  transpose operator   

𝔼[.]  mathematical expectation   
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