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INTRODUCTION

Heat exchangers (HEX) are widely used in many industrial applications as power engineering, chemical industry, transport and spatial. Heat transfer enhancement and heat exchangers design are still investigated in order to improve energy efficiency. Periodic ribs or fins are a common way to achieve an efficient heat transfer enhancement [START_REF] Thulukkanam | Heat exchanger design handbook[END_REF][START_REF] Wang | Experimental investigation of local heat transfer in a square duct with various-shaped ribs[END_REF]. Several numerical and experimental studies have shown that the shape of such obstacles has a strong influence on the aerothermal behavior [START_REF] Wang | Experimental investigation of local heat transfer in a square duct with various-shaped ribs[END_REF][START_REF] Rau | The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel[END_REF][START_REF] Kim | Optimal design of transverse ribs in tubes for thermal performance enhancement[END_REF].

Heat exchangers optimization is growing in interest over the past decade. Various studies are interested by the optimization of HEX performances using correlations and integral methods coupled to a genetic algorithm (GA). Selbas et al. [START_REF] Selbas | A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view[END_REF] use a mono-objective GA to improve the heat transfer area of a shell and tubes HEX. Guo et al. [START_REF] Guo | Multi-objective optimization of heat exchanger design by entropy generation minimization[END_REF] apply a multi-objective genetic algorithm (NSGA-II) to minimize the entropy production of a shell and tubes HEX. Sanaye and Hajabdollahi [START_REF] Sanaye | Multi-objective optimization of shell and tube heat exchangers[END_REF] optimize the effectiveness and cost of a shell and tubes HEX using NSGA-II and NTU method. A drawback of such methods is the use of correlations which drives the optimum search. Thus, computational fluid dynamics (CFD) simulations were used to quantify the aerothermal behavior of nonconventional shapes in HEX and to perform optimization [START_REF] Foli | Optimization of micro heat exchanger: CFD, analytical approach and multiobjective evolutionary algorithms[END_REF][START_REF] Lee | Optimization of novel heat exchanger design for the application to low temperature lift heat pump[END_REF][START_REF] Saleh | Chevron plate heat exchanger optimization using efficient approximationassisted multi-objective optimization techniques[END_REF][START_REF] Wen | Optimization investigation on configuration parameters of serrated fin in plate-fin heat exchanger using genetic algorithm[END_REF][START_REF] Liu | Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic algorithm[END_REF]. The optimization purpose is to maximize the performances of a unique HEX channel expressed using Nusselt number, total pressure losses [START_REF] Saleh | Chevron plate heat exchanger optimization using efficient approximationassisted multi-objective optimization techniques[END_REF][START_REF] Wen | Optimization investigation on configuration parameters of serrated fin in plate-fin heat exchanger using genetic algorithm[END_REF][START_REF] Liu | Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic algorithm[END_REF], the effectiveness or the total heat flux [START_REF] Foli | Optimization of micro heat exchanger: CFD, analytical approach and multiobjective evolutionary algorithms[END_REF][START_REF] Lee | Optimization of novel heat exchanger design for the application to low temperature lift heat pump[END_REF]. These approaches can precisely evaluate the influence of the shape variation of the obstacles but the performances analysis of the whole HEX is not addressed. Only few studies concern the HEX optimization with a multiscale approach coupling CFD and integral method [START_REF] Hajabdollahi | CFD modeling and multi-objective optimization of compact heat exchanger using CAN method[END_REF][START_REF] Yin | Shape optimization of water-to-water platefin heat exchanger using computational fluid dynamics and genetic algorithm[END_REF]. CFD simulations of the obstacles are used to build correlations for the Nusselt number and the pressure loss coefficient. These correlations are employed in a NTU method to evaluate the HEX performances. The HEX optimization is thus performed using a GA. However when CFD simulations are used conjointly to a GA, numerous time consuming simulations are needed. To deal with this issue, metamodels (or surrogated models) are used [START_REF] Simpson | Kriging models for global approximation in simulation-based multidisciplinary design optimization[END_REF]. The underlying idea is to build an approximation of a costly simulation response using a limited number of observations. This cheaper approximation can then be used by the GA. Several metamodelization methods exist as artificial neural networks [START_REF] Hajabdollahi | CFD modeling and multi-objective optimization of compact heat exchanger using CAN method[END_REF], response surface modelling [START_REF] Yin | Shape optimization of water-to-water platefin heat exchanger using computational fluid dynamics and genetic algorithm[END_REF] and kriging models [START_REF] Saleh | Chevron plate heat exchanger optimization using efficient approximationassisted multi-objective optimization techniques[END_REF][START_REF] Wen | Optimization investigation on configuration parameters of serrated fin in plate-fin heat exchanger using genetic algorithm[END_REF]. As mentioned in [START_REF] Simpson | Kriging models for global approximation in simulation-based multidisciplinary design optimization[END_REF], kriging is well suited to build accurate metamodels of complex physics responses. As the optimization results depend on the metamodel quality, adaptive sampling is used to improve the interpolation accuracy [START_REF] Saleh | Chevron plate heat exchanger optimization using efficient approximationassisted multi-objective optimization techniques[END_REF][START_REF] Wen | Optimization investigation on configuration parameters of serrated fin in plate-fin heat exchanger using genetic algorithm[END_REF][START_REF] Sasena | Exploration of metamodeling sampling criteria for constrained global optimization[END_REF][START_REF] Ribaud | Robustness criterion for the optimization scheme based on kriging metamodel[END_REF][START_REF] Liu | Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[END_REF]. The metamodel is iteratively improved by adding new observations to it. For instance, Saleh et al. [START_REF] Saleh | Chevron plate heat exchanger optimization using efficient approximationassisted multi-objective optimization techniques[END_REF] and Wen et al. [START_REF] Wen | Optimization investigation on configuration parameters of serrated fin in plate-fin heat exchanger using genetic algorithm[END_REF] add observations from the region near to the current optimum until the metamodel relative mean square error is greater than a tolerance. However, this method may lead to converge on local optimum and stay trapped here [START_REF] Liu | Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[END_REF]. This work proposes a multi-objective HEX optimization based on a multiscale approach and a genetic algorithm. CFD simulations are used to build correlations for the Nusselt number and head loss coefficient. These correlations are used into a NTU method as presented on Section 1. The correlations are obtained by kriging and adaptive sampling based on maximum mean square error (MMSE) and expected improvement (EI). The optimization tools are introduced on Section 2. Results and analysis are presented on Section 3.

THERMAL MODELLING

This section will present the models used to calculate the performances of a crossflow plate heat exchanger (CPHX) with unmixed fluids. CPHX are constituted by a stack of plates as shown in Figure 1(a). Periodic ribs are placed on each hot channel to enhance heat transfer. Their shape has a major influence on the heat transfer. The chosen rib has a trapezoidal symmetric shape as shown Figure 1(b). It is defined by its height (ℎ 𝑟𝑖𝑏 ), base width (𝐸) and top width (𝑒). The canal height (𝐻 ) and the rib-pitch (𝐿 = 3𝐻 ) remain constant. The rib angle (𝛼) is only used for the analysis.

The NTU method [START_REF] Thulukkanam | Heat exchanger design handbook[END_REF] is employed to compute the effectiveness 𝜀 . The total pressure losses Δ𝑃 𝑡𝑜𝑡 are calculated taking into account both cold and hot channels [START_REF] Thulukkanam | Heat exchanger design handbook[END_REF]. The rib influence on the CPHX performances is quantified through the Nusselt number 𝑁𝑢 and the head loss coefficient 𝐶 𝑓 .

Heat exchanger modelling

The hot stream with 0.56 𝑘𝑔. 𝑠 -1 mass flow rate (𝑚̇𝑎) is air incoming at temperature and pressure of 553.15 𝐾 and 300 𝑘𝑃𝑎. The cold stream with 2.86 𝑘𝑔. 𝑠 -1 mass flow rate 𝑚̇𝑤 ) is water incoming at temperature and pressure of 353.15 𝐾 and 100 𝑘𝑃𝑎 . The CPHX has 13 hot channels (𝑁 𝑎 ) and 12 cold ones (𝑁 𝑤 ). 𝐻 is set to 7 𝑚𝑚 and the plate thickness to 1 𝑚𝑚 . 20 ribs are mounted on each hot channels. The CPHX dimensions are 𝐻 𝐸 = 0.20 𝑚 and 𝑊 𝐸 = 𝐿 𝐸 = 0.402 𝑚. The NTU method is presented on Algorithm 1. The Reynolds number 𝑅𝑒 𝐷 𝐻 is based on the hydraulic diameter of a plane channel, 𝐷 𝐻 = 2𝐻. Dittus-Boelter and Blasius correlations (Algorithm 1line 4) and the effectiveness formula of a crossflow unmixed plate heat exchanger (Algorithm 1line 9) are from [START_REF] Thulukkanam | Heat exchanger design handbook[END_REF].

Numerical modelling of a periodic rib

Code_Saturne software [19] is used to solve the governing equations for two-dimensional unsteady air flow and heat transfer on the rib channel. The 𝐵𝐿 -𝑣 2 ̅̅̅ /𝑘 model is used to predict the turbulence [START_REF] Billard | A robust k-$\varepsilon -\vd$/k elliptic blending turbulence model applied to near-wall, separated and buoyant flows[END_REF]. This wall resolved model takes into account the turbulence anisotropy ( 𝑣 2 ̅̅̅ ) in the wall normal direction. Thus, it is recommended in heat transfer problems with recirculation areas such as ribs [START_REF] Billard | A robust k-$\varepsilon -\vd$/k elliptic blending turbulence model applied to near-wall, separated and buoyant flows[END_REF][START_REF] Keshmiri | Assessment of advanced RANS models against large eddy simulation and experimental data in the investigation of ribbed passages with passive heat transfer[END_REF]. The boundary conditions are visible Figure 2. The fluid and solid domains are thermally coupled (blue lines) using a monolithic formulation. An imposed flux density 𝑞̇ is applied on the plates (red lines). The flow is assumed spatially developed, thus a streamwise periodic condition is applied (green lines).

The mesh is an unstructured grid with about 100 000 cells mixing hexahedral and prismatic elements (see Figure 2). A boundary layer mesh is used to satisfy the 𝑦 + ≤ 1 condition for the first cell near the wall, required by the model.

The Nusselt number is calculated at the surface 2𝐿𝑊 𝐸 as:

𝑁𝑢 = 𝑄 𝐷 𝐻 𝜆 𝑎 2 𝐿 𝑊 𝐸 (𝑇 𝑤𝑎𝑙𝑙 -0.5(𝑇 𝑖𝑛 + 𝑇 𝑜𝑢𝑡 )) (1) 
with 𝑇 𝑤𝑎𝑙𝑙 and 𝑄 the mean surface temperature and total heat flux at the bottom ant top walls (red), 𝑇 𝑖𝑛 and 𝑇 𝑜𝑢𝑡 the bulk temperature at the inlet and outlet (green). The solid conduction into the plate is embedded on 𝑁𝑢. The head loss coefficient is calculated as: with Δ𝑃 𝑖𝑛,𝑜𝑢𝑡 the pressure drop between inlet and outlet and 𝑈 𝑑𝑒𝑏 the bulk velocity.

𝐶 𝑓 = Δ𝑃 𝑖𝑛,𝑜𝑢𝑡 0.5 𝜌 𝑎 𝑈 𝑑𝑒𝑏 2 𝐷 𝐻 𝐿 (2) 

OPTIMIZATION METHOD

The aim of this study is to maximize the CPHX effectiveness 𝜀 while minimizing the total pressure losses Δ𝑃 𝑡𝑜𝑡 by varying the rib shape. Formally, the bi-objective problem is written as: maximize 𝜀(𝒑) 

where 𝒑 is the vector of parameters and D = {ℎ 𝑟𝑖𝑏 , 𝑒, 𝐸 | 𝐸𝑞𝑠. (6 -9)} ⊂ ℝ 3 is the constrained parameters space. The constraint Eq. ( 9) avoids not manufacturable shapes. ℱ = {𝜀, Δ𝑃 𝑡𝑜𝑡 } is the objective space. The solution of the problem is one or several lines in ℱ , called the Pareto front, and represents the best compromise between both objectives. The method used to solve the above problem is presented on Figure 3.

Motor of optimization -NSGA-II

Motors of optimization are used to solve optimization problems. For mono-objective problems, gradient based or direct search methods are well used [START_REF] Soulat | Efficient optimisation procedure for design problems in fluid mechanics[END_REF]. For multiobjectives ones, meta-heuristic methods as genetic algorithms (GA) are preferred [START_REF] Soulat | Efficient optimisation procedure for design problems in fluid mechanics[END_REF]. In this study, the genetic algorithm NSGA-II is used [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF]. This GA is employed in numerous studies for various domains [START_REF] Lee | Optimization of novel heat exchanger design for the application to low temperature lift heat pump[END_REF][START_REF] Hajabdollahi | CFD modeling and multi-objective optimization of compact heat exchanger using CAN method[END_REF][START_REF] Soulat | Efficient optimisation procedure for design problems in fluid mechanics[END_REF][START_REF] Buisson | Optimal design of an automotive fan using the Turb'Opty meta-model[END_REF] due to its robustness and its capability to well describe the Pareto front. Based on Darwinism principles, GAs simulate the evolution of a set of individuals gathering into a population, over several generations. An individual is characterized by a vector of parameters (genes) and the values of the objective functions associated (phenotype). The basic steps of a genetic algorithm are:

-Evaluation: for a given vector of parameters, the objectives function are evaluated. Usually this operations is realized by an external program: the NTU method in this study. -Selection: the fittest individuals are selected.

NSGA-II performs this selection using the Pareto dominance relationship [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF]. -Reproduction: the combination of the genes of the selected individuals (parents) leads to news ones (offsprings). -Mutation: the genes of some random individuals are modified to explore new solutions. By repeating these steps at each generation, the best individuals breed and bring closer to the Pareto front.

In order to ensure the exploration of the entire parameters space D, the population size is set to 900 individuals over 200 generations in this study. This leads to 18000 evaluations through the NTU method and as much CFD simulations to estimate 𝑁𝑢 and 𝐶 𝑓 , as shown Figure 3 -Step 2. In the state, the numerical resources needed limit the use of the method in an industrial design process. The use of metamodels is thus mandatory [START_REF] Saleh | Chevron plate heat exchanger optimization using efficient approximationassisted multi-objective optimization techniques[END_REF] to reduce the cost of evaluating the Nusselt number and the head loss coefficient.

In order to build versatile metamodels, the rib performances are evaluated on the whole parameters space D and for a

Reynolds number varying from 3000 to 13000. The extended parameters space is then:

D 𝑒 = {D ∪ 𝑅𝑒 𝐷 𝐻 ∈ [3000; 13000]} ⊂ ℝ 4 (10) 
Rib performances are normalized using Dittus-Boelter 𝑁𝑢 0 and Blasius 𝐶 𝑓0 correlations for smooth channels [START_REF] Thulukkanam | Heat exchanger design handbook[END_REF].

Minimization is considered for metamodeling, thus the opposite of the Nusselt number is employed. As presented thereafter, metamodels are built using kriging models.

Metamodeling -Kriging theory

Kriging is a geostatistical interpolation method extended by Sacks et al. [START_REF] Sacks | Design and analysis of computer experiments[END_REF] to the design and analysis of computer experiments. There are several variants of the kriging models [START_REF] Roustant | DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization[END_REF] and the universal kriging is used in this study. Kriging treats the deterministic response 𝑦(𝒑) ∈ {-𝑁𝑢 𝑁𝑢 0 ⁄ , 𝐶 𝑓 𝐶 𝑓0 ⁄ } as a realization of a random process 𝑌(𝒑) defined as:

𝑌(𝒑) = ∑ 𝛽 𝑖 𝑑 𝑖 (𝒑) 𝑛 𝑝 𝑖=1 + 𝑍(𝒑) (11) 
where 𝑑 𝑖 (. ) are linearly independent known functions (trends) and 𝑍(. ) is a stationary random Gaussian process. 𝑍(. ) has a mean zero and a stationary covariance kernel defined as:

𝐶𝑜𝑣 (𝑍(𝒑 (1) ), 𝑍(𝒑 (2) )) = 𝜎 2 𝑅(𝒑 (1) , 𝒑 (2) )

𝜎 2 is the process variance and 𝑅(. ) is the spatial correlation function which depends on the Euclidean distance between two vectors of parameters 𝒑 (1) and 𝒑 (2) . Using the Matérn 1 with 𝑝 1 = ℎ 𝑟𝑖𝑏 , 𝑝 2 = 𝑒, 𝑝 3 = 𝐸 and 𝑝 4 = 𝑅𝑒 𝐷 𝐻 5/2 covariance kernel, the correlation function for 𝒑 ∈ D 𝑒 is:

𝑅(𝒑 (1) , 𝒑 (2) 

) = ∏ (1 + √5 |𝑝 𝑘 (1) -𝑝 𝑘 (2) | 𝜃 𝑘 + 4 𝑘=1 5|𝑝 𝑘 (1) -𝑝 𝑘 (2) | 2 3𝜃 𝑘 2 ) exp ( -√5|𝑝 𝑘 (1) -𝑝 𝑘 (2) | 𝜃 𝑘 ) (13) 
where 𝜃 𝑘 is the characteristic length-scales along each parameters 1 . In this study, the trend is defined using 𝑛 𝑝 = 5 linear functions:

∑ 𝛽 𝑖 𝑑 𝑖 (𝒑) 

𝒀 = 𝑦(𝑷) = [ 𝑦(𝒑 (𝑖) )] 1≤ 𝑖≤𝑛 𝑜 (16) 
Under these hypothesis, the best linear unbiased predictor for 𝑌(𝒑) knowing 𝒀, is defined by the kriging mean 𝑚 𝐾 as [START_REF] Roustant | DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization[END_REF]:

𝑚 𝐾 (𝒑) = 𝒅(𝒑) 𝑇 𝜷 + 𝒓(𝒑) 𝑇 𝑹 -1 (𝒀 -𝑫𝜷) (17) 
where:

𝒅(𝒑) = [𝑑 𝑖 1≤𝑖≤𝑛 𝑝 (18) 
is the vector of basis functions,

𝑫 = [𝑑 𝑗 (𝒑 (𝑖) )] 1≤ 𝑖≤𝑛 𝑜 ,1≤𝑗≤𝑛 𝑝 (19) 
is the experimental matrix, 𝜷 = [𝛽 𝑗 ] 1≤𝑗≤𝑛 𝑝 [START_REF] Billard | A robust k-$\varepsilon -\vd$/k elliptic blending turbulence model applied to near-wall, separated and buoyant flows[END_REF] is the vector of generalized least square estimates of 𝛽,

𝒓(𝒑) = [𝑅(𝒑, 𝒑 (𝑖) )] 1≤𝑖≤𝑛 𝑜 (21) 
is the vector of covariance and

𝑹 = [𝑅(𝒑 (𝑖) , 𝒑 (𝑗) )] 1≤ 𝑖≤𝑛 𝑜 ,1≤𝑗≤𝑛 𝑜 (22) 
is the covariance matrix. The kriging parameters 𝜷, 𝜎 2 and 𝜽 = [𝜃 𝑘 ] 1≤𝑘≤4 are estimated so as to maximize the likelihood function defined as [START_REF] Martínez-Frutos | Kriging-based infill sampling criterion for constraint handling in multi-objective optimization[END_REF]:

𝐿𝑛(𝜷, 𝜎 2 , 𝜽) = - 1 2 (𝑛 𝑜 (ln(𝜎 2 ) + ln(2𝜋) + 1) + ln(|𝑹|)) (23) 
𝜷 and 𝜎 2 are given in closed form as:

𝜷 = (𝑫 𝑇 𝑹 -1 𝑫) -1 𝑫 𝑇 𝑹 -1 𝒀 (24) 
𝜎 2 = 1 𝑛 𝑜 (𝒀 -𝑫𝜷) 𝑇 𝑹 -1 (𝒀 -𝑫𝜷) (25) 
and

𝜽 = argmax 𝜽 𝐿𝑛(𝜷, 𝜎 2 , 𝜽) (26) 
Finally, the determinist response 𝑦(𝒑) ∈ {-𝑁𝑢 𝑁𝑢 0 ⁄ , 𝐶 𝑓 𝐶 𝑓0 ⁄ } is given by:

𝑦(𝒑) = 𝑚 𝐾 (𝒑) (27) 
Moreover, the kriging model gives an estimation of the accuracy of the prediction at an untried vector of parameters 𝒑 through the mean square error 𝑠 𝐾 2 , given as:

𝑠 𝐾 2 (𝒑) = 𝜎 2 ( 1 - [𝒅(𝒑) 𝑇 𝒓(𝒑) 𝑇 ] [ 0 𝑫 𝑇 𝑫 𝑹 ] -1 [ 𝒅(𝒑) 𝒓(𝒑) ]) (28) 

Metamodeling -Adaptive sampling

For the purpose building cheaper and accurate metamodels, adaptive sampling is used [START_REF] Sasena | Exploration of metamodeling sampling criteria for constrained global optimization[END_REF][START_REF] Ribaud | Robustness criterion for the optimization scheme based on kriging metamodel[END_REF]. Starting from an initial coarse DOE, new vectors of parameters 𝒑 (𝑛𝑒𝑤) are iteratively added to the metamodel in order to improve the current optimal area (exploitation) or the global accuracy (exploration). In this study maximum mean square error (MMSE) and multipoint expected improvement (q-EI) criteria are used [START_REF] Roustant | DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization[END_REF] to improve both exploration and exploitation. In this study, metamodels are used to build correlations, thus they have to be accurate in the whole parameters space D 𝑒 . Moreover, optimum values in Nusselt number and head loss coefficient are correlated to the CPHX performances optimum. Thus it is interesting to build accurate metamodels also in the optimum area. The basic idea of expected improvement (EI) is to add to the metamodel the vector of parameters 𝒑 (𝑛𝑒𝑤) which leads to an improvement of the current minimum of 𝑚 𝐾 (𝒑). Thus the q-EI criterion adds to the DOE 𝑷 a set of vectors 𝑷 (𝑛𝑒𝑤) = [𝒑 (𝑖) ] 1≤𝑖≤𝑞 which maximizes the improvement [START_REF] Roustant | DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization[END_REF]:

𝑷 (𝑛𝑒𝑤) = argmax 𝑷∈ D 𝑒 𝑞 𝔼 [min(𝒀) -min (𝑚 𝐾 (𝑷 (𝑛𝑒𝑤) ))] (29) 
with 𝔼[. ] the mathematical expectation. Using q-EI instead of the standard EI allows parallel evaluations of the response 𝑦, which is very interesting for costly simulations like CFD ones [START_REF] Roustant | DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization[END_REF].

The MMSE criterion adds to the metamodel the vector of parameters which maximizes the mean square error:

𝒑 (𝑛𝑒𝑤) = argmax 𝒑∈D 𝑒 𝑠 𝐾 2 (𝒑) (30) 
In contrary to q-EI, MMSE is sequential. To permit parallel evaluations, a Kriging Believer like method [START_REF] Ginsbourger | Kriging is well-suited to parallelize optimization[END_REF] is applied using MMSE.

Step 1 in Figure 3 shows the adaptive sampling of the metamodels. First, the initial DOE 𝑷 is obtained using an optimized Latin Hypercube Sampling (LHS) based on the centered 𝐿 2 discrepancy criteria and performed with the Enhanced Stochastic Evolutionary algorithm [START_REF] Damblin | Numerical studies of spacefilling designs: optimization of Latin Hypercube Samples and subprojection properties[END_REF]. Then, the CFD chain evaluates 𝑁𝑢 and 𝐶 𝑓 and the two metamodels are built using Eq. ( 17). Thus using Eqs. (29-30), a set 𝑷 (𝑛𝑒𝑤) = [𝒑 (𝑖) ] 1≤𝑖≤𝑞 of vectors of parameters is selected to improve each metamodels. These new vectors of parameters are evaluated by the CFD chain and the kriging is computed again. As this process is iterative, stopping conditions are necessary for both criteria. According to Huang [START_REF] Huang | Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models[END_REF], the chosen conditions are not concerned by magnitudes issues due to their normalization by the variation range of the known observations: ≤ 𝛿 𝐸𝐼 [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF] When the two relative tolerances are achieved, the adaptive sampling stop and the metamodels are used into the Step 2.

Shape modifications

The shape modifications were performed using a parametrized CAO and a robust re-meshing strategy.

Data analysis

The use of a meta-heuristic method as motor of optimization produces an amount of data which is difficult to analyze using conventional methods. In our case, it is not possible to represent the variations of one objective function over the three parameters using 3D plot. Moreover, it is difficult to analyze each shape of the 900 individuals forming the Pareto front.

In order to highlight representative shapes among the Pareto Front, a clustering method is used. Therefore, the solutions are gathered into clusters defined by their centers. The kmeans clustering proposed by Lee and Kim [START_REF] Lee | Optimization of zigzag flow channels of a printed circuit heat exchanger for nuclear power plant application[END_REF] was found inefficient in this study. Thus, Gaussian mixture based clustering is employed [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF].

The results are also visualized using Self-Organizing Maps (SOM) [START_REF] Soulat | Efficient optimisation procedure for design problems in fluid mechanics[END_REF]. SOM are artificial neural networks trained using unsupervised learning. Data are represented as a set of maps, each one carrying an information. SOM can be read as geographic maps: the color changes with the information, but one point is rigorously at the same position on every maps. The interdependence between parameters and objectives can be easily observed such as the optimal shapes and performances.

Results

Adaptive sampling convergence

The initial DOE is obtained by an optimized LHS with 𝑛 𝑜 = 40 observations. At each iteration, six vectors of parameters are added to this DOE, two by using MMSE and four by using q-EI. The tolerances are set to 𝛿 𝑆𝐷 = 3% and 𝛿 𝐸𝐼 = 0.4% . The Nusselt number metamodel is based on 48 observations and the pressure loss coefficient one is built using 139 observations. Figure 4 shows the convergence of the two stopping conditions for both metamodels. As shown Figure 4 condition 𝑅𝑆𝐷 is reached in 10 iterations for both metamodels. As mentioned by Sasena [START_REF] Sasena | Exploration of metamodeling sampling criteria for constrained global optimization[END_REF], the MMSE criterion gives only a local information about the minimum of likelihood of the metamodel. Thus numerous observations are necessary to obtain a global accurate metamodel. Moreover, it was found that the majority of observations added by MMSE are located at the boundaries of the parameters space D 𝑒 . It would be interesting of using the integrated mean square error (IMSE) [START_REF] Picheny | Adaptive designs of experiments for accurate approximation of a target region[END_REF] criterion instead of the MMSE to add vectors of parameters which improve the global and not only local metamodel accuracy. Figure 4(b) shows that the condition on the q-EI is reached in 4 iterations for 𝑁𝑢 /𝑁𝑢 0 but is not achieved for 𝐶 𝑓 /𝐶 𝑓0 . The adaptive sampling was thus stopped arbitrarily as the 𝑅𝑆𝐷 was attained and no major improvement was found in the last iterations for 𝑅𝐸𝐼.

Figure 5 shows the kriging response surface of the normalized opposite Nusselt number and the normalized head loss coefficient over the height and top width of the rib, for 𝑅𝑒 𝐷 𝐻 = 8000 and for two values of 𝐸/2𝐻. As shown Figure 5(a), the surface slope around the minimum of (-𝑁𝑢 /𝑁𝑢 0 ) is important. So the q-EI criterion locates this area efficiently. On the contrary, as highlighted on Figure 5(b), the minimum area for the head loss coefficient is extended (around ℎ/𝐻 ∈ [0.05, ; 0.1] ) with a minor surface slope. Thereby, q-EI cannot easily converged and adding more points may increase the noise and degrade the interpolation accuracy.

As noticed by these results, the definition of stopping criteria is an open and complex problem [START_REF] Picheny | Adaptive designs of experiments for accurate approximation of a target region[END_REF]. Another approach is to define a budget (in terms of number of simulations or available calculation time) which limits the number of possible observations for the metamodels construction [START_REF] Ribaud | Robustness criterion for the optimization scheme based on kriging metamodel[END_REF].

NSGA-II convergence

The convergence of the Step 2 is also addressed. A common way to verify this convergence is to look the stability of the Pareto front over the generations [START_REF] Soulat | Efficient optimisation procedure for design problems in fluid mechanics[END_REF]. However, the variations of the parameters distribution on D is also interesting to ensure the convergence of the optimal shapes. This is verified by considering the distribution of the individuals of the Pareto front into several classes of the parameters values, over the generations. Figure 6 shows the individuals distribution into five classes of the top width of the rib. As seen, the distribution does not change after the 30 th generation. The 95% confident bounds (grey) are less than 2% of the mean value (dashed line). Thus the NSGA-II is considered well converged.

Analysis of the optimization

The Pareto front on Figure 8 

CONCLUSION

The multi-objective shape optimization of a CPHX was studied. The CPHX performances 𝜀 and Δ𝑃 𝑡𝑜𝑡 are calculated by coupling a NUT method to CFD calculations through the use of metamodels. There are based on kriging with adaptive sampling. Infill criteria are the maximum mean square error and the multi-points expected improvement. NSGA-II is then used to find the Pareto Front. The metamodel convergence is analyzed through the evolution of the infill criteria stopping condition. Results show a limit of using expected improvement for 𝐶 𝑓 . Using the IMSE criterion instead of the MMSE one may improve the global metamodel accuracy with less observations. The individuals clustering and the SOM highlight a finite number of optimal shapes, which are representative of the entire population. Some shapes are not interesting from the thermal point of view and may be penalized during the GA process. 

NOMENCLATURE

Figure 1 :

 1 Figure 1: Schematics of the heat exchanger -(a) Crossflow plate heat exchanger (CPHX) with unmixed fluids -(b) Trapezoidal rib shape parameters.

Figure 2 :

 2 Figure 2: Numerical Calculation domain, mesh and boundary conditions

  ℎ 𝑟𝑖𝑏 / 𝐻 ∈ [0.05; 0.3] (6) 𝑒/ 2𝐻 ∈ [0.0375; 0.45] (7) 𝐸/ 2𝐻 ∈ [0.03375; 0.525] (8) 𝐸 ≥ 0.9𝑒

Figure 3 :

 3 Figure 3: Flowchart of the optimization process. Step1 is the adaptive sampling building of the metamodels. The Step 2 is the optimization of the CPHX performed with the NSGA-II, NTU method and the correlations of 𝑁𝑢 and 𝐶 𝑓 .

  (𝒀)-min(𝑚 𝐾 (𝑷 (𝑛𝑒𝑤) ))] max(𝒀)-min(𝒀)

Figure 4 :

 4 Figure 4: Convergence history of adaptive sampling conditions for 𝑁𝑢 /𝑁𝑢 0 (black) and 𝐶 𝑓 /𝐶 𝑓0 (green) -(a) 𝑅𝑆𝐷 -(b) 𝑅𝐸𝐼.

Figure 5 :

 5 Figure 5: Response surfaces for 𝑁𝑢 /𝑁𝑢 0 (a) and 𝐶 𝑓 /𝐶 𝑓0 (b) over ℎ 𝑟𝑖𝑏 /𝐻 and 𝑒/2𝐻 . 𝑅𝑒 𝐷 𝐻 is set to 8000. Two rib base widths are considered: 𝐸 = 0.9𝑒 (blue) and 𝐸/2𝐻 = 0.525 (red)

  (a) shows an important correlation between the objectives. The individual distribution of the Pareto front over ℎ 𝑟𝑖𝑏 /𝐻, 𝑒/2𝐻 and 𝛼 is visible Figure8(b). The clustering on the parameters space gives 6 centers and their performances are reported on Figure8(a) as closed red symbols. CFD simulations were performed to qualify the metamodel interpolation on these centers. The performances of these re-converged points appear as open symbols on Figure8(a) with the associated temperature variation fields. The difference between CFDbased and metamodel-based performances is from 0.6% to 8% for the effectiveness and from 8% to 15% for the total pressure drop. The difference is bigger for Δ𝑃 𝑡𝑜𝑡 due to difficulty of building an accurate metamodel for 𝐶 𝑓 because of the area of quasi null slope (see Section 3.1.). Looking at the parameters space, shapes associated to the center ◊ seem dubious and produce a discontinuity on the Pareto front. The CFD simulation confirms that the metamodel over estimates the Nusselt number for this center and therefore the effectiveness. SOM on Figure7highlight the interdependences between the objectives and the parameters. As shown, a majority of individuals of the Pareto front have a rib height maximal.

Figure 6 :

 6 Figure 6: Evolution of the distribution of the individuals into five classes over the number of generations. Dashed lines represent the mean distribution and grey areas are the 95 %confident bounds.

Figure 7 :Figure 8 :

 78 Figure 7: Self-Organizing Maps of the Pareto front individuals: the three parameters (top), the two objectives and the clusters (bottom). The clusters centers are represented as open symbols.

  𝛽 2 𝑝 1 + 𝛽 3 𝑝 2 + 𝛽 4 𝑝 3 + 𝛽 5 𝑝 4[START_REF] Yin | Shape optimization of water-to-water platefin heat exchanger using computational fluid dynamics and genetic algorithm[END_REF] In order to build the metamodel, a design of experiments (DOE) 𝑷 is necessary to estimate the kriging parameters. Thus 𝑛 𝑜 observations of the function 𝑦 are performed for distinct vectors of parameters 𝒑 (𝑖) :
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