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Abstract

Heat exchanger behaviour is a multi-scale issue where local scale enhancement mechanisms coexist with global

scale distribution ones. The present work investigates a multi-objective shape optimization of a heat exchanger.

The proposed method is sufficiently robust to address multi-scale issues and allows industrial applications. Heat

exchanger performances are evaluated using computational fluid dynamics (CFD) simulations. A genetic algorithm

coupled with a Kriging-based metamodelling are used as optimization tools. Clustering and Self-Organizing Maps

(SOM) are used to analyse the optimization results.

A metamodel builds an approximation of a simulator response (CFD) whose evaluation cost is reduced to be

used together with genetic algorithm. An adaptive sampling is used to build cheap and precise approximations.

The present optimization method is applied to a plate heat exchanger which constitutes a representative example

of the aforementioned multi-scale aspects.

The results show that the metamodelling is a paramount element of the method, ensuring the robustness and

the versatility of the optimisation process. Additionally, it allows to build correlations of the local scale used to

determine the global performances of the heat exchanger. The clustering and the SOM highlight a finite number

of shapes, which represent a compromise among the antagonist objective functions, tailoring the method to an

industrial context.
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1. INTRODUCTION

Heat exchangers (HEX) are technological devices used to transfer thermal energy between two or more fluids. They

are widely used in many industrial fields such as energy production (nuclear, fossil or renewable power plants),

process industries, transports (automotive, aeronautics), cryogenics application or air conditioning [82]. Thus,

performances optimization of heat exchangers is a transversal subject for energy transition and an efficient use of

energy. These performances are related to the heat transfer rate and the pumping power required for the fluids

flow.

These performances are directly linked to the shape of the heat exchanger and/or of its constitutive elements.

Therefore, it seems that among the different existing ways to classify heat exchangers, the classification according to

their construction is the most suitable for shape optimization. This classification allows to distinguish between two

major types of heat exchangers1: (1) tubular heat exchangers and (2) plate heat exchangers. The former category

groups the heat exchangers for which at least one fluid flows throughout tubes. The tubes bundle is held by a shell

or fins. These heat exchangers are versatile as they can work with different type of fluids and pressure levels. The

heat exchangers of the latter category are formed by a stack of plates, usually corrugated, hence their compactness

which is an advantage in several applications. For each heat exchanger type, different passive methods2 are used

to enhance the heat transfer by adding elements either into the tube and/or over the plates [45]. The purpose of

these elements is multiple: (1) perturbing the flow and creating re-attachment points as well as recirculation zones;

(2) increasing the heat exchange surface (fins) and (3) creating secondary vortices into the flow. The shape of the

elements is therefore of major influence for the performances. These performances are also dependent on the flow

maldistribution which happens in practice because of the manifold geometry or operating conditions (fluids viscosity

for instance) [74].

The above paragraph clearly highlights the multi-scale behaviour of the heat exchanger. In order to analyse

the different (coupled) phenomena taking place in, three geometrical scales must be defined: (1) the global scale,

characterised by the heat exchanger dimensions (length, width, height) and the number of tubes and plates, allows

to evaluate global performances; (2) the channel scale, characterized by the channel length, permits to consider

flow establishment issues and (3) the local scale, characterized by the channel hydraulic diameter, is used to

investigate heat transfer enhancement, flow recirculation and boundary layers evolutions.

In the context of shape optimization, the heat exchanger performances are usually obtained through analytical

or numerical methods. Among these methods, computational fluid dynamics (CFD) is rising in importance because

1Some references ([82] for instance) add a third category named extended surface heat exchanger. In the present work, this category

is considered as a special case within the two others.
2Active methods also exist but they require an additional power input like jets or ultrasound for instance [10].
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it provides access to velocity, pressure and temperature fields [79, 4]. However, the entire heat exchanger is rarely

simulated through this way due to its high computational cost. In industrial applications, the global methods, which

determine the heat exchanger performances knowing the geometry and inlet/outlet conditions, are often preferred

for the global scale [31]. Then CFD is used to determine behaviour laws of heat exchange and drag coefficients of

the elements at the local scale, which are then applied into the former method [1, 48]. Some authors [53, 30, 56]

have also considered a porous approach to estimate the performances of the entire heat exchanger. At the local

scale, the performances are expressed through the heat transfer and the drag coefficient, while at the global scale,

the effectiveness of the heat exchanger and the total pressure drop are meaningful.

During the two last decades, shape optimization of heat exchanger has become a topic of major interest. Before

2010, optimization studies had been essentially mono-objective ones, performed by aggregating the several objectives

into a single objective function. But since the development of new algorithmn, the multi-objective optimization is

invertigate. Most studies aim to optimize the heat exchanger performances through modifying the shape of the fins

[52, 71, 72, 40, 43]. However, this shape is related to the global performance thanks to experimental correlations,

which limit drastically the exploration of new untested shapes.

At the same time, local scale shape optimizations were carried out using CFD, in order to overcome the shape

limitations induced by the experimental correlations [36, 58, 70, 86, 39, 48] . Using CFD calculations for these

studies leads to important computational cost justifying the use of metamodels, which are matematical abstraction

approximating the solver response [66] . The Kriging method [66] is widely to built the metamodels is such studies.

However, in the best knowledge of the authors most optimization studies use a designs of experiments with a priori

fixed number of observations, which can limit the accuracy of the metamodels. Only few studies use adaptive

strategy [70, 39, 48].

More recently, some studies have investigate the heat exchanger manifold shape optimization [70, 38, 75]. These

studies are based on CFD calculations alimenting metamodels for the optimisation. The classical multiple objectives

are the pressure drop and the standard deviation of mass flow rate in each channel. Nevertheless, although relevant,

none of these studies jointly consider the manifold impact on the heat exchanger effectiveness and pressure drop.

As the previous paragraph points out, there are many studies on shape optimization at local or global scales,

but very few investigate the impact of local shape variations on the overall heat exchanger performances. Ha-

jabdollahi et al. [26] determined the local performances (Colburn number and friction factor) of triangular fins

using CFD simulations. Then, a model of a plate-fin heat exchanger is built using a global method (ε-NTU) to

evaluate the global performance. The coupling is achieved by using two artificial neural networks-based metamod-

els. The metamodels behaviour is validate against experimental results. Finally, the multi-objective optimisation

(maximize the effectiveness and minimize the pressure drop) of the entire heat exchanger is performed by varying

the triangular fins shape. Abdelaziz et al. [1] and Yin and Ooka [87] used also similar approaches to investigate
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local shape optimization impact on overall performances. More recently, Mastrippolito et al. [48] have proposed

a multi-objective optimization aiming to maximize the effectiveness while minimizing the pressure drop of a plate

heat exchanger. The plates are mounted with rib-roughened plates. The heat exchanger is modelled by means of

a multiscale approach. Kriging-based metamodels alimented by CFD are used to forward local performances to a

global ε-NTU method. Then NSGA-II is used to determine the optimal solutions. Contrary to most studies, the

design of experiment is not only built with a finite number of observations, but also through adaptive sampling,

which produces accurate and cheaper metamodels by selecting only appropriate observations [22].

Considering the previous state of art, some limitations can be highlighted concerning the multi-objective shape

optimization of heat exchanger: (1) the physical phenomena involved in a heat exchanger operation are highly multi-

scale (local, global, manifold) but they are very rarely taken into account together in the context of optimization;

(2) Kriging-based metamodels are used, but the advantages of the probabilistic formalism of the method, allowing

adaptive sampling for instance, are rarely exploited; (3) most of the studies limit the analysis of the multi-objective

optimization results to the Pareto front and they do not describe the population distribution in the parameter space

related to it .

Therefore, the aim of this paper is to provide a multi-objective shape optimization method dealing with both local

and global scales using a CFD solver and Kriging metamodels. Indeed, the two scales have to be taken into account

conjointly to handle their own specificities. Moreover, to do so without increasing drastically the computational

cost, adaptive sampling strategies are used, benefiting from the aerodynamic community experience [33, 22, 41, 76]

with a aim to extand their use to the heat exchanger community . The multi-objective optimization is carried out

using the classical genetic algorithm NSGA-II of [15] and the results are post-processed using appropriate methods

in order to analyse not only the Pareto front but also the shape parameters.

The first part of this paper is dedicated to review the optimization tools background (Kriging, genetic algorithm

and post-processing method). The second part presents the heat exchanger CFD modelling by describing the

different scales and the multi-scale approach. The third part details and analyses the construction of the metamodels

of the local scale. Finally, the heat exchanger multi-scale and multi-objective optimization problem is introduced,

solved and analysed in the last part.

2. OPTIMIZATION TOOLS

2.1 Multi-objective problem

Solving a multi-objective optimization problem (MOP) consists in finding the vector of parameters which minimizes

each component of a vector of objective functions. It may be written as follows [14, pp. 13]:

min
p∈D

y(p) (1)
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with

• the vector 3 of Nobj objective y(p) = [yi(p)]1≤i≤Nobj
∈ RNobj ,

• the line vector of Nd parameters p = [pi]
T
1≤i≤Nd

∈ D

The problem is defined into two different spaces, the parameter space D and the objective space F defined as [46]:

D =
{
p
∣∣∣ g(p) ≤ 0; n(p) = 0; p(L) ≤ p ≤ p(U)

}
(2)

F = {y(p) | p ∈ D} (3)

where p(L) and p(U) are the lower and upper limit of the parameter, g(p) is the vector of inequality constraints

and n(p) is the vector of equality constraints.

The solution of this multi-objective problem is rarely unique and the multiple solutions form the best compromise

between the several objectives, called the Pareto front in the objective space and the Pareto set in the parameter

space.

In order to find the solution, the literature reports many tools and methods. However, the same term is

sometimes used to describe different methods, or to gather several tools, which can lead to misunderstandings. The

present paper proposes a clear classification of the different methods used into three groups :

• the motors of optimization which aim at finding the minimum of a single (or several) objective function

using its value and its derivatives (if necessary). At least two categories can be distinguished: classical and

meta-heuristic methods. The formers are essentially related to mono-objective problems. The most used

are for instance: Newton method, Simplex method or conjugate gradient [13]. The meta-heuristic methods

were developed to extend the range of approachable problems, in particular to multi-objective ones. They are

based on a stochastic exploration of the parameter space. Genetic algorithms, whose popularity has constantly

grown over the last few decades, belong to this category [14].

• the conditioners which transform the initial vector of objectives into a more suitable one for the motor. The

most famous conditioner is the aggregate method [51] which creates an unique objective function through a

weighted sum. These tools are optionals and closely related to the motor used.

• the fuels for optimization which give to the motor the value of the objective and its derivatives (if neces-

sary) used to perform the minimization. Fuels can be classified into three groups (direct, gross and refined)

depending on the nature of the information available. It is called direct when analytical expressions of the

objectives are available. When only the value of the objective is known and no analytical expression exists,

3By default and without any further details, the vectors are column vectors.
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the fuel is gross (CFD solvers are typical examples). When the information coming from gross fuel is treated

by a mathematical and/or a physical process, the term ”refined fuel” is employed. This is the case of the

metamodels (or surrogate models), for instance.

In the present paper, the used motor is a multi-objective genetic algorithm. Thus, the conditioner is not

mandatory and the identity operator is chosen. A CFD solver is used as gross fuel and it is refined through

Kriging-based metamodels. The choice of these tools is presented thereafter.

2.2 Motor of optimization: NSGA-II

Genetic algorithms are based on the Darwin’s theory of evolution. At each generation, the population of individuals

is more and more adapted to its environment. These algorithms mimic the evolution process consisting in changing

of the individual’s genes through reproduction, crossover and spontaneous mutation.

Over the variety of algorithms available into the literature [24], the NSGA-II proposed by Deb et al. [15] was

preferred. Indeed, it is employed in numerous studies in heat and fluid flow [72, 26, 78, 9, 48] due to its robustness

and its capability to properly describe the Pareto front. The main particularities of this genetic algorithm are

[15]: (1) the use of a probabilistic operator for the reproduction (Simulated Binary Crossover) and the mutation

(polynomial mutation); (2) the selection step performed by means of a tournament and a crowding distance operator,

which preserves the diversity of the individuals on the Pareto front.

A limitation of the genetic algorithms is the large number of individuals and generations needed to obtain

properly described and converged Pareto set and front. If, as in the present work, the gross fuel is a CFD solver, the

computational cost may be prohibitive for industrial applications as pointed out by Hilbert et al. [28]. Thus, the

use of a set of metamodels as refined fuel is mandatory to make this optimization method suitable for an industrial

context. The aim is to replace the costly CFD solver by a cheaper approximation, in the present work, a set of

Kriging-based metamodels.

2.3 Refined fuel for optimization: Kriging metamodels

Kriging is a geostatistical interpolation method which was extended by Sacks et al. [68] to the field of determinist

function approximation under the name of Design and Analysis of Computer Experiments (DACE). It is a versatile

method, allowing adaptive sampling and being able to estimate the likelihood of the approximation [66]. The

universal Kriging is used in the present paper. A metamodel is built for an unique objective, so there are as many

metamodels as objectives in the MOP. The result obtained thanks to the CFD solver is hereinafter called response.
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2.3.1 Universal Kriging theory

The Kriging method treats the deterministic response y given by the CFD solver as a realization of the random

Gaussian process {Y (p)}p∈D defined as the sum of a deterministic part and a stochastic one. For a given vector of

parameters p ∈ D, the approximation is written as:

Y (p) = v(p) + Z(p) (4)

The deterministic trend v : p ∈ D → v(p) ∈ R is a weighted sum of the Nb known basis functions vi :

v(p) =

Nb∑
i=1

βi vi(p) (5)

The centered stationary random Gaussian process {Z(p)}p∈D has zero mean and a stationary covariance kernel

expressed as :

K
(
p(1),p(2)

)
= σ2R

(
p(1),p(2),θ

)
(6)

being σ the Gaussian process variance, R the spatial correlation function and θ ∈ RNd the vector of characteristic

length-scales [66]. The components of the length-scales vector have the same units as the corresponding ones of

the vector of parameters p. The correlation function R is obtained as the tensorial product of stationary mono-

dimensional function depending on the Euclidean distance between two parameters [66] :

R
(
p(1),p(2),θ

)
=

Nd∏
k=1

R̃
(
p
(1)
k − p

(2)
k , θk

)
(7)

with p
(·)
k and θk, the kth component of the vectors p and θ.

Building the Kriging metamodel consists in estimating the following unknowns: β, σ and θ. To do so, a design

of experiments (DOE) is necessary. For a unique response y, a DOE of No observations is composed by a matrix of

parameters P and the corresponding vector of responses y, defined as:

P =
[
p(i)
]
1≤i≤No

∈ DNo (8)

y =
[
y
(
p(i)
)]

1≤i≤No

∈ RNo (9)

where p(i) is the ith vector of parameters in the DOE and y
(
p(i)
)

is the CFD solver response associated. From this

DOE, the Kriging approximation is given by the Kriging mean, expressed as [66, 8]:

mK(p) = v(p)
T
β̂ + r(p)

T
R−1

(
y − V β̂

)
(10)

The mean squared error (MSE) is the second order moment, expressed:

s2K(p) = σ̂2
(

1− r(p)
T
R−1r(p)

+(v(p)
T − r(p)

T
R−1V )T (V TR−1V )−1(v(p)

T − r(p)
T
R−1V )

)
(11)
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Table 1: Comparison between metamodels predictions and CFD simulations for the five centres.

Symbol Equation Description

v(p) [vi(p)]1≤i≤Nb
Basis functions vector

V
[
vj
(
p(i)
)]

1≤i≤No, 1≤j≤Nb
Experimental matrix

r(p)
[
R
(
p,p(i),θ

)]
1≤i≤No

Correlation vector between a given vector of parameters p ∈ D
and the vectors of parameters of the DOE P

R
[
R
(
p(i),p(j),θ

)]
1≤i≤No, 1≤j≤No

Correlation matrix between the vectors of

parameters of the DOE P

The notation used in Eqs. (10) and (11) are summarized on Tab. 1. The predicted error variance σ̂2 (which is

an estimation of σ2), the vector of generalized least square estimates of the trend coefficient β̂ (estimation of β

and the vector of characteristic length-scales θ are unknowns to be estimated. They are determined thanks to the

maximum likelihood estimation method. The analytical expressions for β̂ and σ̂2 are [57, 48]:

β̂ =
(
V TR−1V

)−1
V TR−1y (12)

σ̂2 =
1

No

(
y − V β̂

)T
R−1

(
y − V β̂

)
(13)

The vector of characteristic length-scales is obtained by minimizing the opposite of the log-likelihood function Park

and Baek [57].

The Kriging approximation is illustrated in Fig. 1 for a sine function. The 95% confidence interval is computed

from the mean squared error, and large areas depict unlikely approximation. This is the case for the unobserved

region p ∈ [0, π/2].

2.3.2 Nugget effect

By construction, the Kriging mean given by Eqn. (10) interpolates the observations of the DOE and the mean

squared error given by Eqn. (11) is zero at these observations:

∀p ∈ P , mK(p) = y(p) (14)

s2K(p) = 0 (15)

This behaviour assumes that the CFD solver response is determinist, that is tantamount to say that for the same

vector of parameters at the input, the solver return always the same response. However, this is not always the case.

Indeed, the response is susceptible to variate due to convergence issues. Moreover, some ”jumps” of the response

may appear [54, pp.23] because of numerical instabilities or due to the use of physical models outside their field of
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−π −π/2 0 π/2 π
p

−2

−1

0

1

2

y
(p

)

sin(2p)

mK(p)

Observations

±1.96sK(p)

Figure 1: The Kriging mean (solid line) is an approximation of the true function (dashed line) built from five observations (red dots).

The means squared error allows to build the 95% confidence interval (grey areas).

validity for certain vectors of parameters. To take into account those jumps, nugget effect is added to the Kriging

metamodel by the way of a constant variance τ2 appended to the covariance kernel:

K
(
p(1),p(2)

)
= σ2R

(
p(1),p(2),θ

)
+ τ2δ(p(1),p(2)) (16)

where δ(·, ·) is the Kronecker symbol. Adding this effect leads to a modification in the estimations of the parameters

β, σ2 and θ and introduces the new unknown parameter τ2. The estimators β̂ and σ̂2 become:

β̂ =
(
V TR−1τ V

)−1
V TR−1τ y (17)

σ̂2 =
1

No

(
y − V β̂

)T
R−1τ

(
y − V β̂

)
(18)

where Rτ is the modified correlation matrix:

Rτ =
σ2

σ2
τ

R+
τ2

σ2
τ

1No
(19)

with the total variance defined as σ2
τ = σ2 + τ2 and 1No

being the identity matrix of size No × No. The log-

likelihood function is also modified. By solving the minimization problem of the opposite log-likelihood, the vector

of characteristic length-scale θ and the nugget effect variance τ2 are obtained. It should be noted that as the nugget

effect adds a constant variance directly to the covariance kernel, the Kriging mean is still interpolating the DOE

observations.
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2.3.3 Adaptive sampling

Sampling is a critical step in the building of metamodels. The number of observations and their position in the

parameter space highly influence the quality of the approximation [63]. This is clearly highlighted in Fig. 1. Latin

Hypercube Sampling (LHS) is one of the most used techniques to create design of experiments because of its

versatility and its capability to generate non-redundant observations with a good space filling [84]. Moreover, many

studies have proposed to optimize the position of the observations to increase the space filling [12]. However, even

paying a close attention to this step, the optimum can be missed if there is no observations close to its position or

can be biased if the space is not sufficiently described in its neighbourhood. Also, to ensure a good space filling,

the number of observations needed is empirically estimate as No ∼ 10Nd [12]. In studies with numerous parameters

and based on CFD solvers, it might be very difficult to follow this rule.

To overcome these issues and to built cheaper and more accurate metamodels, adaptive sampling methods are

used [22]. Starting from an initial coarse DOE, new observations are iteratively added to it in order to improve: (1)

the current optimal area which is related to the exploitation of the promising area; (2) the global accuracy of the

metamodel, by performing an exploration of the parameter space. To achieve one or both of these targets, several

infill criteria had been developed. They quantify the benefit of adding a new observation and allow to choose it

adequately regarding the required target. The EGO algorithm introduced by Jones et al. [32] is a major reference

for adaptive sampling. It is based on the expected improvement criteria which represents a compromise between

exploration and exploitation.

Thanks to Kriging method formalism, a lot of different infill criteria were developed with their own advantages

and drawbacks. In the present work, not only one but several criteria are used. The main idea is to benefit

from the advantages and try to mitigate the drawbacks, as proposed by Liu et al. [42]. The multi-points expected

improvement (q-EI), the maximum mean squared error (MMSE), the integrated mean squared error (IMSE), the

expected hypervolume improvement (EHI) and the expected excursion volume (EEV) are used in this work and are

presented thereafter.

Multi-points Expected improvement (q-EI). The expected improvement criterion has been proposed by

Jones et al. [32]. It takes advantages of the probabilist formulation of the Kriging to calculate the expected

improvement, which quantify for p ∈ D the probable achieved improvement of the approximation if this observation

is added to the DOE. The improvement function is defined as:

I(p) = max(min(y)− Y (p) , 0) (20)
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where y is given by Eqn. (9) and Y (p) is a single realization of the random process defined in Eqn. (4). The

expected improvement is the expectation of this function:

EI(p) = E [I(p)|Y (P ) = y] (21)

= (min(y)−mK(p))FN (0,1)

(
min(y)−mK(p)

sK(p)

)
+ sK(p) fN (0,1)

(
min(y)−mK(p)

sK(p)

)
(22)

where FN (0,1) (·) and fN (0,1) (·) are the cumulative distribution function and the probability density function of the

standard normal distribution. The compromise between exploitation (first term) and exploration (second term) is

clearly shown in the Eqn. (22). This criterion is zero at the observations of the DOE and strictly positive elsewhere

as shown in Fig. 2(a). Its value increases with s2K(·) and decreases with mK(·). It has been widely used in several

studies [73, 54]. It also provides a helpful quantification to stop the DOE enrichment.

But, this criterion is sequential. This means that it provides only a single observation to be added to the DOE.

When CFD solvers are used to determine the response, sequential approaches are not suitable due to the important

calculation time. Therefore, it is usually preferred to run several simulations at the same time. Batch infill criterion

was developed in this way [25]. A set of q observations P q ∈ Dq is determined as:

P q =
[
p(i)
]
1≤i≤q

(23)

with q ≥ 2. Ginsbourger et al. [25] have proposed a multi-points expected improvement (q-EI). Giving P q and the

vector of the realization Y (P q), the q-EI is defined as the expectation of a joint improvement function:

q-EI (P q) = E [max (min(y)−min (Y (P q)) , 0) |Y (P ) = y] (24)

The set of observation P ′q added to the DOE is determined in order to maximize this criterion:

P ′q = arg max
P q∈Dq

q-EI (P q) (25)

The q-EI yields an analytical expression only for q = 2. In other cases, an heuristic strategy called Constant Liar

is used. It is based on the use of a liar to avoid interrogating the CFD solver. Once an observation is added to the

DOE, the liar is applied as response. It is set to the current known minimum of y. This criterion gives a valuable

information about the joint probability of improving the optimum, but it depends on the number of observations q

to add. A condition can also be developed to stop the adaptive sampling.

Maximum Mean Squared Error (MMSE). One of the main advantages of Kriging metamodels is their

capability to estimate the prediction likelihood through the computation of the mean squared error s2K(p). The

main idea of the maximum mean squared error criterion is to add to the DOE the observation which maximises it

[62]:

p ′ = arg max
p∈D

s2K(p) (26)

11



−π −π/2 0 π/2 π
p

0.0

0.5
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E
I

(p
)
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Figure 2: EI (a) and MMSE (b) infill criteria plots for the sine function of Fig. 1. The DOE observations position is indicated by the

red dashed lines and the p ′ position by the solid blue line.

If an infinity of observation are added through this exploration criterion, the resulting metamodel will have the

better accuracy as defined by the root mean squared error (RMSE) [73]. However, as s2K(p) = 0,∀p ∈ P , the MSE

is strongly multimodal, as shown in Fig. 2(b), and the maximization problem defined in Eqn. (26) is difficult and

costly. Additionally, this criterion provides a local information of the approximation accuracy and leads usually

to add observations at the boundaries of the parameter space. This criterion is also a sequential one. In order

to benefit from batch simulations, a Constant Liar method can be applied to this criteria with a liar equal to the

prediction value [48]. Regarding the adaptive sampling, MMSE is able to quantify the maximal uncertainty of the

approximation that helps at stopping the DOE enrichment.

Integrated Mean Squared Error (IMSE). In order to overcome the local aspect of the MMSE criterion while

benefiting from the exploration property, the IMSE criterion was proposed [67, 62]. It is defined as:

IMSE =

∫
D
s2K(p) dp (27)

It measures an average accuracy of the metamodel while the MMSE criterion measures the risk of maximal error

of the metamodel prediction. The observation p ′ added to the DOE is the one which minimizes the IMSE once

added:

p ′ = arg min
p∈D

∫
D
s2K(p| {P ,p ′}) dp (28)

where s2K(p| {P ,p ′}) is the MSE of the metamodel built thanks to the DOE P supplemented with the new

observation p ′. This criterion does not focus on the actual benefit of adding an observation, but on a global

reduction of the uncertainty. It is easily extended to a batch formulation [11]. The set of observations P ′q, once
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Figure 3: Bi-objective EHI illustration: (a) The hypervolume (grey area) is calculated between the non-dominated DOE observations

(in black) and the reference point yref in red. (b) Contour plot of the improvement function. The non-dominated DOE observations

are in black and the reference point is yref = {1.25, 1.25}.

added to the DOE, will minimizes the IMSE and is given by:

P ′q = arg min
P q∈Dq

∫
D
s2K
(
p|
{
P ,P ′q

})
dp (29)

Solving directly this optimization problem is numerically expensive. Thus an heuristic strategy like the Constant

Liar one is often preferred.

The numerical cost of this criterion is an issue when the number of dimensions of the parameter space D is

significantly large [62].

Expected Hypervolume Improvement (EHI). With the development of multi-objective motors of optimiza-

tion able to generate a Pareto front, new exploitation criteria were introduced in order to enrich the DOE by taking

into account the compromise between the different objectives. The sequential criterion EHI proposed by [20] is one

of them. It can be interpreted as an extension of the expected improvement to multi-objective problems [80]. The

improvement function is modified such as [20, 19]:

IH(p) =

0 if PY � Y(p) or yref � Y(p)

H
(
Y(p) ∪ PY , y

ref
)
−H

(
PY , y

ref
)

else (30)

where H
(
PY ,y

ref
)

is the measure of the hypervolume between the non-dominated observations of the DOE PY

(assumed to be the better representation of the Pareto front), and a reference point yref [20]. In two-dimensional
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spaces it is equivalent to the area, as visible in Fig. 3(a). The improvement is calculated in the objective space and

it is illustrated in Fig. 3(b). The maximal improvement is achieved for the furthest area from the DOE observations.

The EHI is the expectation of this function knowing the DOE:

EHI(p) = E [IH(p) |Y(P ) = Y ] (31)

where Y(P ) is the vector of the realizations of the random processes approximating y(p):

Y(p) = [Yi(p)]1≤i≤Nobj
(32)

The new observation added to the DOE that will maximize this expectation is given by:

p ′ = arg max
p∈D

EHI(p) (33)

When Nobj > 2, the EHI cannot be estimated analytically and an heuristic algorithm is used, involving a significant

numerical cost [80].

Expected Excursion Volume (EEV). The majority of the exploitation criteria are based on adding new

observations at the probable position of the optimum. Villemonteix et al. [85] have tried to express the problem in

a different way: which observations are relevant to increase the knowledge about this optimum ? Thus, they have

proposed a criterion measuring the uncertainty of the optimum position (for a mono-objective problem): the lower

the value is, the better the optimum is located. Based on the same idea Picheny [61] has proposed to quantify

this uncertainty through an excursion volume. For a multi-objective problem, it is calculated as the integral of the

probability that the vector of objectives y(p) is non-dominated by the non-dominated observations of the DOE PY :

ev(p) =

∫
D
P [y(p) � PY |Y(P ) = Y ] dp (34)

If ev(p) is small, PY is probably close to the ”true” Pareto front. The infill criteria is based on the reduction

volume benefit provided by the new observation p ′ added to the DOE written as [61]:

EEV(p ′) = E
[∫
D
P [y(p) � {PY ∪ Y(p ′)} | {Y(P ) = Y ,Y(p ′) = Y n+1}] dp

]
(35)

with Y n+1 ∼ GP
(
mK(p ′) , s2K(p ′)

)
being the Gaussian process realization associated to the new observation,

defined by solving the following minimization problem:

p ′ = arg min
p∈D

EEV (p) (36)

In the same way that the IMSE criterion, the numerical cost is significant when the number of dimensions of the

parameter space D is large. However, it has the intrinsic advantage of being independent of the scale differences

between the objectives [61].
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Stop condition The adaptive sampling is used in practice to built accurate metamodels with a limited number

of observations. In industrial cases, this limit is imposed by both the calculation resources available and the time

dedicated to the study. The choice of a relevant stop condition is still an open question [62].

As mentioned, the q-EI and MMSE criteria give information allowing the definition of a stop condition. Inspired

by the EI condition exposed by Huang et al. [29], the present work suggests to use the following condition for q-EI:

1

|max(y)−min(y)|
q-EI(P ′q)

q
≤ δq-EI (37)

When the left hand side of Eqn. (37) is smaller than the tolerance δq-EI, the numerical cost of finding new observations

is too high in regards to the potential benefits. For the MMSE, the classical condition is expressed as [48]:

s2K(p ′)

|max(y)−min(y)| < δMMSE (38)

where p ′ is the last observation added by the Constant Liar.

The information provided by the IMSE, EHI and EEV criteria are not relevant to build a stopping condition.

When they are used, a maximal number of observations is prescribed.

2.4 Analysis tools

Two different analysis tools are used in the present work. The first one aims at highlighting a finite number of

shapes, relevant for industrial purposes. The second one is used to visualize data generated by the optimization

process.

2.4.1 Clustering

When a genetic algorithm is used as a motor of optimization, the number of optimal solutions is equal to the number

of individuals in the population. Thus, it would be difficult in an industrialization process to select a unique optimal

shape over several hundreds. As proposed by Kim et al. [35], clustering techniques may be used to extract a limited

number of shapes from the optimal solutions. The main idea of these methods is to classify the population into

distinct groups, each of them containing homogeneous individuals. Therefore, the group is represented by a center

of the group, generalizing the main characteristics of the grouped individuals.

There exists numerous methods to do so. Kim et al. [35] proposed the K-means clustering which is easily

implementable. Indeed, homogeneity between individuals is measured thanks to the Euclidean distance between an

individual and the center of the group, defined as the barycentre of the grouped individuals. However, this measure

can create groups which are not ”visually” correct. Moreover as the number of employed groups has to be set by

the user beforehand, there is a risk of over-partitioning the population.

Because of these limitations, Gaussian Mixture model is preferred in the present work [7, Chap.9]. This method

estimates the distribution of individuals thanks to a linear combination of several simple Gaussian distributions,
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called components. Each component represents a single group and is defined by a mean (the center of the group),

a covariance matrix (measuring dispersion around the centre) and a mixing coefficient. These three parameters are

usually determined through the maximization of the likelihood of the repartition of the individuals between each

component 4. To do so, the expectation-maximization (EM) algorithm is widely used. Two steps are repeated until

convergence: (E) calculation of the conditional expectation of the likelihood function and (M) maximization of this

function to determine the components parameters. In addition, Variational Inference [7, Chap. 10] is used in order

to avoid the over-partitioning and the emergence of singularities [7, pp 481].

2.4.2 Self-Organizing Maps

Another difficulty when analysing the optimization results is the large number of dimensions of the problem. When

it is greater than three, standard plots can no longer be used because it leads to the loss of information [83].

The Self-Organizing Maps (SOM), proposed by Kohonen [37], have demonstrated their relevance in analysing the

results of large dimension problems [78]. The method is based on an artificial neural network which organizes the

individuals and groups them together by similarity so that two neighbour individuals are fairly similar. Data are

represented by a set of maps with a constant topology. This set can be read as geographic maps: each map is

carrying an information but the same individual is rigorously at the same position on every map.

The neural network is organised according to a square mesh. The number of neurons composing this mesh is of

major importance for the results accuracy. If it is smaller than the population size, averaging effect is causing the

same neuron to represent several individuals. In contrary, if too many neurons are used, the values of supernumerary

ones are obtained through interpolation. So in practice, the number of neurons has to be close to the population

size in order to be representative.

The main advantage of SOM is its ability to present all the results at the same time. The analysis is simplified

and the interdependence between parameters and objectives can be easily highlighted. The identification of critical

parameters is also possible [48].

2.5 Summary of the method

The different tools involved in the present optimization method had been presented. The articulation between them

is shown in Fig. 4. Two main steps are considered. The first one builds the Kriging metamodels based on a CFD

solver. To do so, latin hypercube sampling (LHS) is used conjointly with an adaptive sampling based on several

infill criteria. The second step actually performs the optimization by using the NSGA-II algorithm as motor of

optimization and the metamodels as refined fuels. Finally, the results are analysed by using SOM and clustering.

These tools have been implemented in different ways. The NSGA-II algorithm is an in-house C++ software,

4It is the same general idea as the one used to determine the Kriging parameters.
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Figure 4: Flow chart of the present optimization method

allowing the use of external fuels thanks to system calls. The sampling and Kriging methods are implemented in

R language [64] through several packages: DiceKriging and DiceOptim for the Kriging [66], DiceDesign for the

LHS [17] and GPareto for the multi-objective infill criteria [6]. The analysis tools had been coded using Python

language [23], employing the packages scikit-learn for the clustering [60] and sompy for the SOM [55].

3. HEAT EXCHANGER MODELLING

This section describes the air/water cross-flow plate heat exchanger (CPHX) considered in the present optimization

study. It is schematized in Fig. 5. Symmetric ribs are periodically placed on each hot channel wall to enhance

the heat transfer. A symmetric diffuser is used as manifold for the hot side, while the cold side is supposed

well distributed. This heat exchanger is intended to be representative of the multi-scale issues highlighted in the

introduction.

The effect of the local rib shape and the distribution between each channel are conjointly taken into account in

the thermo-hydraulic performances of the heat exchanger.

Thus, the multi-scale modelling is based on two different scales: (1) the local one used to analyse the flow and

heat transfer around the ribs and (2) the global one which gives the heat exchanger performances and takes into

account maldistribution issues. For both scales, modelling is based on computational fluid dynamic (CFD) using

the open-source code Code Saturne version 5.1 [21]. The local scale simulations allow to build two correlations for

the Nusselt number and the head losses coefficient based on the ribs shape and flow characteristics. They are then

used into the global scale simulation to reproduce the ribs influence on the flow and heat transfer into the active

part of the CPHX without meshing them into the channels.
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The main characteristics of the heat exchanger as well as the setup of the two scales and the coupling between

them is presented in the following.

3.1 Heat exchanger characteristics

The hot stream is air flowing at the mass flow rate ṁh, temperature Ti,h and pressure Ph. The cooling water

flows perpendicularly at the mass flow rate ṁc, temperature Ti,c and pressure Pc. The flows characteristics are

summarized in Tab. 2.

Table 2: Flows characteristics of the CPHX.

Hot side: Air Cold side: Water

Mass flow rate kg.s−1 ṁh = 0.56 ṁc = 2.86

Inlet temperature K Ti,h = 553.15 Ti,c = 353.15

Outlet pressure Pa Ph = 3 · 105 Pc = 1 · 105

The active part of the CPHX is constituted by a stack of plates forming 13 cold and 12 hot channels of height

H = 0.007 m, width and length LE = WE = 0.42 m. The plate thickness is ep = 0.001 m. The total height of

the CPHX is thus HE = 0.201 m. The cold channels are smooth while the hot ones are periodically mounted with

opposite and staggered trapezoidal ribs, as shown in Fig. 6. Their shape is defined by the height (hrib), base width

(E) and top width (e). The angle ψ depends on the three other parameters and it will be used in the results

analysis. Two consecutive ribs are spaced with a constant pitch noted by L = 3H.

The cold side is assumed to be well distributed, thus the manifold is omitted from Fig. 5 and from the simulation

. The manifold of the hot side is composed of three parts. The inlet orifice has a height of Hin = 0.3HE and a

length of Lin = 0.5Hin. It is followed by the diffuser which goes from a height of Hin to a height of HE over a

length of LD. The manifold ends with a part of height equal to HE and a length of B = 0.3HE connecting the

diffuser and the active part.

The ranges of the three local (hrib, e, E) and global (LD) geometrical parameters is indicated in Sec. 3.2.

3.2 Local scale setup

In order to investigate the influence of the local rib shape, a two-dimensional simulation is carried out. It aims to

determine the effect of the rib shape (height hrib, top width e and bas width E) and the Reynolds number on the

Nusselt number and the head losses coefficient in order to built the two metamodels. The metamodels construction

is discussed in Sec. 4.
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Figure 5: Sketch (not at scale) of the cross-flow plate heat exchanger. The diffuser and the active part are visible. The hot channels

are represented in white and the cold ones in blue. WE , HE and LE stand (respectively) for the width, height and length of the active

part. Hin is the height of the manifold entrance. Lin, LD and B are the length of the different parts of the manifold. The cold side

manifold is not considered in the simulation.

 
Calculation
domain

Figure 6: Sketch (not at scale) of the ribs shape, with a naive description of the flow (velocity profiles and recirculation areas). ep

stands for the thickness of the plate. hrib, e and E are the height, top width and base width, respectively. The periodic calculation

domain is highlighted by the red dashed line.

3.2.1 Geometry

As the ribs arrangement is periodic, only a single pattern is considered as indicated by the red dashed line in Fig. 6.

Both the fluid (air) and solid (steel) domains are taken into account. Indeed, the half thickness (ep/2) of the plate

and the ribs form part of the calculation domain. The ribs shape parameters variations, normalized by the canal

heigh, are :

L/H = 3 (39)

ep/2H =
1

14
(40)

hrib/H ∈ [0.05, 0.3] (41)

e/2H ∈
[
0.05

L

4H
, 0.6

L

4H

]
(42)

E/2H ∈
[
0.9

e

2H
, 0.7

L

4H

]
(43)
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The last relation Eqn. (43), used to prevent unmanufacturable shapes, highlights the dependence of the base width

lower bound with the top width. However, it is more advantageous from a mathematical point of view to work with

independent parameters. Thus, a change of variable is performed to replace E by Ẽ, defined as:

Ẽ =
0.9 e

2H − E
2H

0.9 e
2H − 0.7 L

4H

∈ [0; 1] (44)

3.2.2 Flow and physical properties

The flow configuration is modelled by using the incompressible Reynolds Averaged Navier-Stokes (RANS) equations

for two-dimensional unsteady air flow and heat transfer.

The Reynolds stresses are modelled using the wall resolved BL-v2/k model [5]. It takes into account the

turbulence anisotropy in the wall normal direction through a transport equation for the quantity v2, known to be of

major influence in heat transfer problems [5, 44]. Thus, this model is recommended for problems with recirculation

areas such as ribs. The turbulent heat fluxes are modelled using a simple gradient diffusion hypothesis (SGDH).

The turbulent heat fluxes are estimated through a Fourier law based on a turbulent thermal diffusivity and the

temperature gradient [16]. The diffusivity is defined as the ratio of the turbulent viscosity and a turbulent Prandtl

number set to 1.

The calculation is performed in similarities of Reynolds and Prandtl numbers. Therefore the physical properties

are normalized accordingly, and they are assumed independent of temperature variations. The bulk velocity, the

density and the heat capacity of the fluid are chosen equal to one. The viscosity and the thermal conductivity are

thus derived from the expressions of the Reynolds and Prandtl numbers. The thermal conductivity and density

of the solid respect the same ratio compared to the fluid as the real properties. In order to build the correlations

with respect to the flow characteristics, the Reynolds number, based on the hydraulic diameter DH = 2H, will vary

between 3 000 and 13 000. Tab. 3 summarizes all this information.

3.2.3 Boundary conditions

Imposed flux

Periodicity condition

Thermal coupling
fluid/solid

Imposed flux

Periodicity condition

Figure 7: Boundary conditions applied to the local calculation domain. The solid (steel) is in grey and the fluid (air) in white.

The boundary conditions are outlined in Fig. 7. A constant heat flux density (ϕ = 1 W.m−2) is imposed on
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Table 3: Flow characteristic and physical properties.

Quantity Symbol Units Value

Fluid (Air)

Reynolds number ReDH
[−] [3 000; 13 000]

Prandtl number Pr [−] 0.7

Bulk velocity Uref m.s−1 1

Density ρh kg.m−3 1

Viscosity µh Pa.s
ρ Uref2H

ReDH

Specific heat capacity cp,h J.kg−1.K−1 1

Thermal conductivity λh W.m−1.K−1
cp,hµh
Pr

Solid (Steel)

Density ρs kg.m−3 1

Specific heat capacity cp,s J.kg−1.K−1 0.48 cp,h

Thermal conductivity λs W.m−1.K−1 371.3 λh

both lower and upper boundaries (red lines). The solid and fluids domains are thermally coupled (black lines).As

a periodic pattern is considered, a streamwise (~ex) periodicity condition is required (green lines). Because for this

configuration the fully developed periodic regime is reached after five patterns only [65] and because the number of

ribs in each channel is far greater than five, the periodicity hypothesis is relevant. This condition involves the use

of source terms for the pressure and temperature fields in order to take into account the non-periodic evolution of

both quantities [59]. Finally, symmetry conditions are applied to each faces in the ~ez-direction.

As this simulation aims to determine the heat transfer coefficient, either the heat flux or the wall temperature

have to be imposed. As the pattern dimension is small enough regarding the heat exchanger length, one can assume

the temperature variation is linear. Thus, the heat flux conditions has been chosen.

3.2.4 Numerical settings

Although the simulation aims to reach a steady state, an unsteady temporal scheme is used. The time step is

constant and uniform. It is set to ∆t = 0.005s to ensure that the Courant-Friedrichs-Lewy (CFL) condition is below

10. The linear systems for the pressure, velocity and turbulent quantities are solved using a Jacobi method. On the
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other hand, the linear system related to the temperature is solved with a bi-conjugate gradient stabilized method

(Bi-CGStab2) [77]. Indeed, as a consequence of the monolithic coupling the diffusion matrix for the temperature is

unsymmetric and this method is well suited to increase the numerical stability. The convective terms for velocity

and temperature are discretized by a centered spatial scheme. To increase the numerical stability, the convective

terms of the turbulent quantities are discretized by a first order upwind scheme. The pressure-velocity coupling is

solved using a SIMPLEC algorithm. The pressure source term is treated implicitly like a force opposed to the flow

directly into the momentum equation.

3.2.5 Post processing: Nusselt number and head losses coefficient

The Nusselt number and the head losses coefficient have to be computed from the results of the simulations. As

the simulation was carried out in two-dimensions with a unit width in the ~ez-direction, the surfaces are assimilated

to a length or a height. The mean Nusselt number over the pattern is then calculated as:

Nu =
ϕDH

λh
(
T̄w − 1

2

(
T̄i + T̄o

)) (45)

with ϕ the imposed heat flux density, T̄w the mean surface temperature evaluated on the external walls (see red

lines in Fig. 7) and calculated as:

T̄w =
T̄w,bot + T̄w,top

2
(46)

=
1

2L

∫ L

0

[
Tw(x, y = 0) + Tw(x, y = ep +H)

]
dx (47)

T̄i and T̄o are the mean bulk temperature at the inlet and outlet of the pattern (green lines Fig. 7), calculated

as:

T̄i =

∫ ep/2+H
ep/2

ρhux(x = 0, y)T (x = 0, y)dy∫ ep/2+H
ep/2

ρhux(x = 0, y)dy
(48)

T̄o =

∫ ep/2+H
ep/2

ρhux(x = L, y)T (x = L, y)dy∫ ep/2+H
ep/2

ρhux(x = L, y)dy
(49)

Note that, as the temperature difference in Eqn. (45) is calculated between the solid boundaries and the bulk

flow, the obtained Nusselt number takes into account the conductive contribution of the solid.

The head losses coefficient is calculated as:

Cf =
∆Pi,o

0.5ρhUref
2

DH

L
(50)

where ∆Pi,o is the pressure variation between the inlet and outlet of the pattern and Uref is the bulk velocity

calculated as:

Uref =
1

H

∫ ep/2+H

ep/2

ux(x = 0, y)dy (51)
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Figure 8: Rib mesh illustration.

The Nusselt number is normalized by Nu0, extracted from the Dittus-Boelter correlation [3, pp. 544]:

Nu0 = 0.023Re0.8DH
Pr1/3 (52)

and the head losses coefficient by Cf0, extracted from the Blasius correlation [82, pp. 307]:

Cf0 = 0.3164Re−0.25DH
(53)

3.2.6 Mesh

The mesh is unstructured with about 150 000 cells mixing hexahedral and prismatic elements as shown in Fig. 8.

A boundary layer mesh is used to satisfy the y+ ≤ 1 condition for the first fluid cell near the wall, required by the

turbulence model. The prisms are located in high deformation areas due to the change of the ribs shape parameters.

In order to modify the ribs shape during the correlations construction process, a parametrized geometry and an

automatic meshing strategy have been employed. The ANSYS R© Design Modeler and Meshing 5 tools have been

used to do so.

Obviously, carrying out mesh sensitivity studies for all the shapes explored during this process is not feasible

due to the amount of possible combinations. Thus one mesh sensitivity analysis was performed to validate the

meshing strategy used for all the shapes. As near wall phenomena are of major influence in this case, particular

attention has been paid to the mesh structure in this area. The maximal value of y+ has been used as indicator of

the quality, verifying that it remains below 2.

Verification and validation of this configuration exists in the literature. The same solver and mesh density as

Keshmiri et al. [34] is used in the present paper.

5Version 18.3
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3.3 Global scale setup

The global scale is investigate through a three-dimensional simulation, in order to capture distribution and thermal

phenomena, and the coupling between both. The present multi-scale modelling is inspired by a well-known porous

approach [53, 56]. However in the present work, in contrast to other previous works using non specific experimental

correlations, the head losses and thermal coefficient are based on the numerical correlations from the local scale.

3.3.1 Geometry and mesh

The main features of the geometry have been already presented in Sec. 3.1 and Fig. 5. A symmetry plane is assumed

in the ~ey direction to limit the simulation to the half of the heat exchanger, i.e. six hot channels and six and half

cold ones. The diffuser length may vary in the range:

LD/Hin = [2; 5] (54)

The hot side, the solid plates and the cold side are taken into account and simulated.

The multi-scale approach required a specific mesh, shown in Fig. 10. Indeed, the ribs are not meshed in each

channel and their impact on the thermo-hydraulic behaviour is modelled by the correlations of the Nusselt number

and the head losses coefficient. However, they are based on bulk quantities (velocity and temperature) as expressed

in Eqs. (45) and (50). To be consistent with the information given by them , only one cell in the height of the

channel is used to discretize it. Thus the quantities at the cell center are representative of the bulk behaviour. The

distribution part is visible on the left side of Fig. 10. The mesh is formed by hexahedral cells and a boundary layer

mesh is used near the walls. The active part is also constituted by a majority of hexahedral cells. As these two parts

form an unique computational domain, and to avoid a mesh quality degradation, a transitional area composed by

prisms is used, as shown in Fig. 10. Finally, the steel plates are meshed with hexahedral cells, using three elements

in the thickness.

A mesh sensitivity study has been carried out for a diffuser length equal to LD = 3.5Hin in order to evaluate

the mesh influence on the mass flow distribution between each channel. The quantity of interest is the absolute

mass flow difference on each channel regarding the finer mesh :

εi,j =
|ṁi,j − ṁ8,j |

ṁ8,j
(55)

with i ∈ [1, 8] the number of mesh and j ∈ [1, 6] the number of channels. also the maximum value of y+ is also

analysed. The results are shown on Fig. 9. A mesh with 3 700 000 cells was found sufficient to see an insignificant

variation of the mass flow distribution with respect to the finer mesh used (7 000 000 cells). The y+max value is close

to 3 a sufficiently low value to ensure a good prediction of the near-wall flow by the turbulence model.

The meshing strategy for this configuration is not robust enough to automatize the meshing procedure. Moreover,

the computational time is important for this large mesh. Additionally, restarting the calculation on the same mesh
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Figure 9: Mesh sensitivity analysis. The εi,j evolution is reported on the left axis (coloured lines) and the y+max on the right axis

(dashed black line) respect to the number of cells.The red dashed line indicates the selected mesh.

is also a necessary issue for efficiency purpose. Therefore, to be able to investigate the different diffuser lengths

LD, a mesh morphing method based on radial basis functions (RBF) is employed since it produces high quality

deformed mesh suitable for CFD applications [2, 47]. Knowing the displacement of a set of control points, the

method propagates this displacement to the rest of the mesh, without requiring any mesh connectivity information.

The control points are located at the boundaries of the mesh. Thus, the variation of the diffuser length causes a

displacement of the control points and a corresponding deformation of the mesh.

3.3.2 Flow and physical properties

The configuration is modelled by the incompressible RANS equations. The energy equation is solved in both fluid

and solid domains in the three conditions. The Reynolds stresses are modelled by the k−ω SST model [50]. Indeed

the study of El-Behery and Hamed [18] has shown that the model is able to estimate the diffuser recirculation

appropriately, also showing numerical robustness. The physical properties are assumed independent of temperature

variations. They are taken at temperature Ti,h and pressure Ph for the hot air and Ti,c and Pc for the cold water.

The properties of stainless steel are used for the solid plates. However, as the local scale Nusselt number takes into

account the conductivity in half of the plate thickness, the thermal conductivity is multiplied by two to comply

the global thermal resistance. To reinforce the numerical stability of the simulation, the density of the cold water

and the solid are set equal to the air density. As a steady state is pursued, this modification is not influencing the
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Figure 10: Global scale mesh at the inlet. Hot channels are represent in red and cold one are represented in blue.

thermal behaviour of the heat exchanger. The velocity of the water at the inlet is adjusted to meet the required

mass flow and Reynolds number. The properties values are presented in the Tab. 4, expressed with respect to the

hot fluid properties.

3.3.3 Boundary and volume conditions

The boundary conditions are highlighted in Fig. 11. Only half heat exchanger is considered and a symmetry

condition (in green) is used. An inlet air mass flow rate equal to ṁh = 0.262 kg.s−1 at temperature Ti,h = 553.15 K

is imposed on the hot side. A similar condition is applied for the cold side with a water mass flow rate equal to

ṁc = 1.43 kg.s−1 at temperature Ti,c = 353.15 K. At the outlets, zero Neumann condition for the velocity and the

temperature is applied, whereas a pressure of Ph = 3 · 105 Pa is imposed on the hot side and Pc = 1 · 105 Pa on the

cold one.

The interface between the fluids domain and the solid domain allows a thermal coupling between them (orange

lines on Fig. 11). The heat exchange coefficient which is generally computed from the flow conditions is overwritten

using the Nusselt number correlation computed from the local scale for the hot side For each channels, the Reynolds

number is evaluated at the middle (fully developed flow). The rib shape being imposed, the Nusselt number is thus

computed using the local metamodel (Nu = f(ReDH
,p)). The convective heat transfer coefficient is calculated and

imposed at the face interface into the code. The code uses this value to compute the flux at the interface. Finally,

the heat coefficient is varying for each channel but is constant into the channel. The same method is used for the

cold side, but using the Gnielinski correlation to determine the Nusselt number [3, pp. 545].

The other walls (grey and black) are adiabatic.

The head losses in the active part are computed using an additional source term for the pressure gradient:

~∇P = −1

2
ρh

Cf
DH
|~u|~u (56)
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Table 4: Physical properties for the global scale simulation.

Quantity Symbol Units Value

Hot air at 553.15 K and 3 · 105 Pa

Density ρh kg.m−3 1.89

Viscosity µh Pa.s 2.9 · 10−5

Specific heat capacity cp,h J.kg−1.K−1 1077

Prandtl number Pr [−] 0.7

Thermal conductivity λh W.m−1.K−1 cp,hµh/Pr = 0.045

Cold water at 353.15 K and 1 · 105 Pa

Density ρc kg.m−3 ρh

Viscosity µc Pa.s 30µh

Specific heat capacity cp,c J.kg−1.K−1 4 cp,h

Thermal conductivity λc W.m−1.K−1 14 λh

Stainless steel

Density ρs kg.m−3 ρh

Specific heat capacity cp,s J.kg−1.K−1 0.48 cp,h

Thermal conductivity λs W.m−1.K−1 742 λh

where ~u is the velocity vector and |~u| is its magnitude, Cf is the head losses coefficient, ρh is the density and

DH = 2H is the hydraulic diameter. The head losses coefficient is obtained from the local scale correlation for the

hot side and from the Pethukhov correlation [3, pp. 522] for the cold side.

3.3.4 Numerical parameters and coupling implementation

Even if a steady solution is sought, a time marching scheme is used to ensure the simulation stability. The time

step is constant and uniform, with a value of ∆t = 0.0004 s ensuring that the CFL and Fourier numbers remain

below 10. The number of time steps is fixed to 80 000 to reach the steady state. The linear solvers employed are

the same as presented in Sec. 3.2.4, as well as the gradient calculation method and the pressure-velocity coupling

algorithm. All the convective terms are discretized by means of a first order upwind scheme.

As the mesh is large, all the simulation are performed using restart from a previous converged solution. The

correlations for the Nusselt number and the head losses coefficient are built using Kriging metamodels. During the

simulation, a communication step is added to extract the information from the metamodels. At each time step, the
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Figure 11: Boundary conditions applied to the global calculation domain. The surrounded details highlight the conditions at the

fluid/solid interface and at the distribution/active limits.

Reynolds number in every channel is computed, sent to the metamodels which give back the coefficient values. They

are used to overwrite the heat exchange coefficient at the coupled interface and to compute the pressure gradient

source term following Eqn. (56).

3.3.5 Performances post-processing

The CPHX performances are expressed through the effectiveness ε and the pressure drop ∆P . The distribution

standard deviation of the mass flow between channels Υ is also an interesting quantity to measure the influence of

the manifold.

The effectiveness is the ratio between the actual heat transfer rate and the maximum heat transfer rate:

ε =
Φ

Φmax
(57)

with the maximal heat transfer rate:

Φmax = min(ṁhcp,h, ṁccp,c)
(
T̄i,h − T̄i,c

)
(58)

and the heat transfer rate computed at the hot side:

Φ = ṁhcp,h
(
T̄o,h − T̄i,h

)
(59)

where T̄i,h and T̄i,c are the mean bulk inlet temperature of the hot and cold side and T̄o,h is the mean bulk outlet
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temperature of the hot side. These temperatures are computed through an oriented surface S as:

T̄ =

∫
S
ρ~uT · ~dS∫
S
ρ~u · ~dS

(60)

The pressure drop is calculated as the total pressure difference between the inlet (i) and the outlet (o) :

∆P = (P̄i − P̄o) +
1

2

(∫
Si
ρ|~u|~u · ~dSi
Si

+

∫
So
ρ|~u|~u · ~dSo
So

)
(61)

where Si and So are the inlet and outlet surfaces with their corresponding normals pointing out of the domain.

The distribution standard deviation for the hot side is calculated as [70, 38]:

Υ =

√√√√ 1

Nch,h

Nch,h∑
k=1

(
ṁh,k −

ṁh

Nch,h

)2

(62)

where Nch,h is the number of hot channels, ṁh,k is the mass flowing into the k-th channel and ṁh is the total mass

flow on the hot side.

4. LOCAL SCALE CORRELATIONS

As previously said, the local scale simulations aim to build correlations of the thermo-hydraulic behaviour inside

the active part for different rib shapes (hrib/H, e/2H, Ẽ) and flow conditions (ReDH
). These correlations are based

on Kriging metamodels. The problem is stated as a minimization one. Therefore, the performances are expressed

as −Nu/Nu0 and Cf/Cf0.

4.1 Adaptive sampling

In order to build cheap and accurate metamodels, the adaptive sampling strategy presented in Fig. 12 is used. The

two infill criteria are the MMSE and the q-EI. The former, which allows exploration of the objective space, is

particularly interesting when metamodels are used as correlations as it increases the prediction accuracy over the

whole space. For its part, the q-EI criterion adds observations in the probable optimum neighbourhood. Indeed,

in order to ensure robustness of the optimization process the optimum neighbour area of each objective have to be

explored. This will lead to a better description of the final Pareto front.

The initial design of experiments P is obtained through an optimized LHS [12] based on 40 observations. Then,

the two DOE are infilled independently of each other in order to avoid numerical instability caused by over-sampling

[48] . The observations are evaluated by the simulation setting up as described in Sec. 3.2. Next, the performances

are post-processed and the two metamodels are built. At this point, the two infill criteria are computed and at each

iteration, 6 observations are provided, 2 by the MMSE criteria (noted P ′2) and 4 by the q-EI (noted P ′4). The stop

conditions are defined by Eqs. (37) and (38) with the tolerance set to δq-EI = 0.1% and δMMSE = 3%, respectively.
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Figure 12: Adaptive sampling flowchart for the correlations building.

These values are similar to those usually chosen in the literature [69]. If the value provided by the criterion is below

the tolerance, no observation is added. If both criteria give an empty set of observations, the sampling is finished.

Otherwise, the observations are added to the DOE and a new metamodel is built.

4.2 Metamodels settings

The Matérn ν = 5/2 function is used as mono-dimensional covariance function in Eqn. (7), to stabilize the estimation

of the Kriging parameters. It is expressed as:

R̃
(
p(1) − p(2), θ

)
=

(
1 +

√
5|p(1) − p(2)|

θ
+

5
(
p(1) − p(2)

)2
3θ2

)
exp

(
−
√

5|p(1) − p(2)|
θ

)
(63)

The trend v(·) in Eqn. (5) is set as an unknown constant. A nugget effect is added to avoid potential perturbation

in the simulations response. The minimization of the opposite log-likelihood function is based on the GENOUD

algorithm [49].

4.3 Metamodels analysis

Fig. 13 shows the evolution of the infill criteria values (see Eqs. (37) and (38)) and the number of observations in

each DOE during the sampling. The Nusselt number metamodel is built using 62 observations, while the head losses

coefficient one is built using 138. For both performances, the MMSE value decreases monotonously until it reaches

the tolerance at the eighth iteration. That indicates the end of the sampling process for the Nusselt number. On
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(a) MMSE criterion (b) q-EI criterion (c) Observations into each DOE

Figure 13: Criteria and number of observations evolution respect to the number of sampling iterations. Nusselt number information

are in black, head losses coefficient one in green. The red dashed line figures the tolerance.

the other hand, the evolution of the q-EI values is quite different. The tolerance is rapidly reached for the Nusselt

number. For the head losses coefficient, the decrease of the criteria value is slow and the tolerance is never achieved.

Therefore, the sampling was arbitrary stopped at the 22nd iteration, the benefit in terms of criterion value being

not significant during the three last iterations. The evolution of the number of observations in each metamodel

highlights the end of the sampling for the Nusselt number after 8 iterations (Fig. 13(c)). The change of trend of

the ratio Cf/Cf0 is due to the MMSE infill stop (P ′2 = ∅).
By analysing the Kriging mean response surface of the two metamodels, the q-EI criteria behaviour may be

explained. Fig. 14 shows the contour plot of both performances at ReDH
= 8 000 and Ẽ = 0. The minimum area (in

blue) for the value −Nu/Nu0 is limited. Moreover, the gradient values are large in its surrounding and the variation

is monotonous. Thus, the q-EI criterion easily locates this area and the sampling process is fast. In contrary, the

minimum area for Cf/Cf0 is broader with small gradients. Therefore, at each iteration, the q-EI criterion keeps

finding new observations which are probably close to the minimum. This is clearly highlighted by the position of

the observations, marked by the black points on Fig. 14(b). Indeed, almost 70% of the observations added during

the last 12 iterations are located in the minimum area of the head losses coefficient. One can reasonably says

that the stop condition will be reached when the entire area will be sampled. However, increasing the number of

observations may degrade the metamodels accuracy due to over-sampling [48] . This effect is visible in Fig. 13(a):

the MMSE criterion value increases for Cf/Cf0 during the last three iterations.

To verify the metamodels accuracy, a cross-validation [17] has been performed. The relative quality indicators

(RMSE) are below 2% for both metamodels. Moreover, the variation of the characteristic length-scale and trend

values resulting of the validation process are negligible. Several trends has been investigated a posteriori, without
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Figure 14: Performances contour plot at ReDH
= 8 000 and Ẽ = 0 . Nusselt number is on the left (a) and head losses coefficient on the

right (b). The points highlight the observation added by the q-EI during the last 12 iterations. The minimum area (in blue) is broader

for the head losses coefficient.

significant improvements of the metamodels accuracy. Finally, the nugget effect influence is analysed by checking

the value of the estimated additional variance τ2. For both metamodels, the τ2 value is around 10−6% of the

performances ranges. Thus, the impact of adding nugget effect on the metamodels approximation is negligible.

However, the nugget effect improves the robustness of the method, allowing an other degree of freedom to build the

interpolation.

4.4 Flow analysis and correlations check-out

The Fig. 15 shows the temperature difference contours and the streamlines of three different ribs shape of the DOE.

The Reynolds number describing to the flow is ReDH
= 8 000. The shapes are representative of the ribs effect on the

flow. The shape on Fig. 15(a) is characterized by a small height and an important base width (Ẽ). The rib pattern

is then slightly different of a flat plate. The flow highlighted by the streamlines is also similar as the flat plate one.

Only small flow recirculation is visible downstream the ribs. The temperature is stratified, and the heat transfer

rate is low. This shape leads to a low heat losses coefficient and low Nusselt Number. The shape on Fig. 15(b) is

characterized by a medium height and widths. These trapezoidal rib leads to a more important flow recirculation

downstream. This increase the fluid mixing and therefore the heat transfer rate. Finally, the rib on Fig. 15(c) is

characterized by a maximal height (hrib/H = 0.3) and important width. The flow blockage is in this case important,

leading to an important flow mixing and heat transfer rate. The sharp angle of the rib at leading edge causes a

recirculation upstream. Also a recirculation on the top of the rib is highlighted by the streamlines.This is due to
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(a) hrib/H = 0.0755, e/2H = 0.0414, Ẽ = 1, ReDH
= 8 000 (b) hrib/H = 0.151, e/2H = 0.1691, Ẽ = 0.213, ReDH

= 8 000
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= 8 000

Figure 15: Contour of the difference of temperature (respect to the wall temperature) and streamlines for three different ribs shape of

the DOE.

the important blockage ratio [65]. This shape leads to an important head losses coefficient and important Nusselt

number.

Fig. 16 shows the evolution of the normalized Nusselt number (Nu/Nu0) and normalized head losses coefficient

(Cf/Cf0) for two different ribs shapes over the Reynolds number range. As the Reynolds number increases, the

relative heat transfer rate decreases whilst the relative head losses coefficient increases. Thus, for large Reynolds

number, using ribs instead of a smooth channel is less beneficial in terms of thermo-hydraulics performances. For

significant height, the flow blockage is more important. Thus the recirculation areas are more noticeable and lead

to an increase of Nu/Nu0 and Cf/Cf0. The observed behaviours are similar to those presented in previous studies

[27, 81], allowing the validation of the physical meaning of the built correlations.

5. MULTI-SCALE OPTIMIZATION

As mentioned in the introduction, most of the studies of the literature are focussed on either the local scale or the

global scale. However, the fact of considering both scales in the same optimization process is relevant regarding the
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Figure 16: Normalized Nusselt number (a) and normalized head losses coefficient (b) against Reynolds number for ribs height equal to

hrib/H = 0.3 (solid line) and hrib/H = 0.15 (dashed line) keeping constant the other parameters (e/2H = 0.05 et ψ = 90 deg).

paramount influence of the maldistribution issues on the heat exchanger performances.

5.1 Optimization problem statement

The multi-objective shape optimization of the CPHX performances is addressed in the current section. The scale

coupling is taken into account by using the local ribs shape parameters (hrib/H, e/2H and Ẽ) and the diffuser

length (LD) as parameters for the optimization. The hot and cold mass flows are kept constant as reported in

Sec. 3.3.3 Thus, the minimization problem is expressed as:



min
p∈R4

− ε(p)

min
p∈R4

∆Pech(p)

subject to hrib/H ∈ [0.05, 0.3]

e/2H ∈ [0.0375; 0.45]

Ẽ ∈ [0; 1]

LD/Hin ∈ [2; 5]

(64)

(65)

(66)

(67)

(68)

(69)

with the vector of parameters p = (hrib, e, Ẽ, LD) ∈ R4. The effectivenessε is given by the Eqn. (57). The pressure

drop objective ∆Pech is calculated as the sum of the hot side pressure drop ∆Ph, depending on p and the constant
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Figure 17: Two steps optimization process flowchart.

cold side one ∆Pc:

∆Pech(p) = ∆Ph(p) + ∆Pc (70)

The distribution standard deviation (Eqn. (62)) is not used as an objective for the optimization problem. However

it will complement the analysis of the results.

The multi-scale modelling (Sec. 3.3) allows to determine the performances of the CPHX for the different vectors

of parameters. However, the simulations are computationally expensive and time consuming. Therefore, the fact

of using directly the CFD simulation as fuel for the optimization is complicated within an industrial context. Thus

Kriging based metamodels are used as refined fuel. The two step optimization process presented on Fig. 17 is used

to optimize the CPHX. The subsequent sections will detail this process.

5.2 Step 1: Metamodels building

Three metamodels are built: one for the effectiveness, one for the pressure drop and one for the distribution standard

deviation. As the optimization is based only on the two former performances, the adaptive sampling strategy is

based on these two objectives. The metamodel for the distribution is built after the sampling.

5.2.1 Settings

The EHI, EEV and IMSE infill criteria are used. This combination allows to take benefit of their respective

advantages:

• EHI and EEV are multi-objective exploitation criteria resulting in an increase of the Pareto front description

and a better location of the optimum. The EHI reference point is set to yref = (0, 4 000).
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• IMSE criterion allows for exploration of the parameter space and increases the global accuracy of the approx-

imation, which is useful to avoid local optima.

This step starts by creating a coarse DOE P through an optimized LHS of 37 observations. At each iteration,

4 observations (P ′4) are added to the DOE: two by IMSE6, one by EHI and one by EEV. The enrichment of the

DOE is limited by a maximal number of simulations initially set to 80.

To setup the method, the Matérn ν = 5/2 function is used as mono-dimensional covariance function as it

stabilizes the estimation of the Kriging parameters. The trend v(·) is treated as an unknown constant. The nugget

effect is not applied as the number of observations in the DOE is not large enough. The GENOUD algorithm is

used to minimize the opposite log-likelihood function and to determine the Kriging parameters.

5.2.2 Metamodelling convergence and analysis

The information computed by the infill criteria is not appropriate to analyse the convergence of the adaptive

sampling. Thus, the hypervolume is used as indicator. When the hypervolume calculated thanks to the DOE

observations is stable, the Pareto front is assumed to be well described and the metamodels approximations are

accurate [61]. Fig. 18(a) shows the evolution of the indicator during the sampling. After an increase of the

hypervolume, a stable value is reached for the iterations 7 to 9. At the tenth iteration, the value increase again.

This is due to the discovery of a new part of the Pareto front by the infill criteria. When the sampling stop after

12 iterations, the asymptotic behaviour is not reached. To confirm this trend, more iterations would be necessary,

but they have not been done in order to reflect the industrial constraints limitatiing the total number of CFD

computations to 80.

Fig. 18(b) shows the 76 observations according to the criterion that added it in the objective space . The crosses

(+) mark the non-dominated observations of the DOE. The initial observations (�) obtained through LHS provide

a space filling of the parameter space leading to a proper distribution of the observations in the objective space. It

can be noticed that the objective space seems to be tight: for the same ∆Pech the effectiveness variation is small.

The IMSE criterion (◦) leads to a good spreading of the observations, due to its intrinsic exploratory nature. This

criterion tends also to fill in the gaps, as shown for −ε < −0.5. The two exploitation criteria highlight different

behaviour. The observations obtained through EHI (♦) are concentrated around −ε = −0.28 and ∆Pech = 250 Pa.

On the contrary, the observations given by the EEV (�) are distributed along the front. This behaviour is due to

the objective scale difference. The EEV criteria formulation make it independent of this difference while the EHI

definition is highly impacted by this scale difference because it is based on the hypervolume measure [20]. Therefore,

as ∆Pech ∝ 1 000 ε, the criterion favours the area with low pressure drop, leading to the best expected improve-

ment as shown by large gradient area in Fig. 18(c). The observation added by the EEV criteria at −ε = −0.53

6One for each objective
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Figure 18: Adaptive sampling results - (a) Hypervolume indicator evolution against the number of iterations (iteration 0 represent

the initial LHS) -(b) Observations repartition into the objective space - (c) Contour plot of the hypervolume improvement function

Eqn. (30), with non-dominated observations as black dots.

and ∆Pech = 3500 Pa is triggering the sudden increase of the hypervolume at the iteration 10. This criterion is

particularly efficient in terms of exploitation, since each added observation is non-dominated and probably belongs
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Figure 19: Optimization results - (a) Individuals distribution over generations for the parameter e/2H - (b) Pareto front where the open

symbols represent the cluster centres performances predicted by the metamodels, while filled symbols are the performances calculated

by CFD simulations. The non-dominated observations are indicated by red crosses. The Pareto front obtained by the NSGA-II is

indicated by the grey line.

to the Pareto Front. The left part of the objective space (−ε ≤ −0.5) seems to be under-sampled, confirming that

the enrichment is not complete.

The three metamodels have been finally built based on the DOE obtained through the adaptive sampling.

For all of them, the relative quality indicators computed from the cross-validation are below 3%. Therefore, the

metamodels are considered sufficiently accurate to successfully perform the optimization.

5.3 Step 2: Optimization results

The NSGA-II optimization has been carried out using 900 individuals over 200 generations. In order to assess the

results, the convergence of this optimization has to be studied. Usually, this is verified by the stability of the Pareto

front over the generations in the objective space [78]. However, as the shape optimization is being investigated in

the present work, analysing the convergence of the optimal shapes is mandatory [48]. This is done by looking at

the distribution of the Pareto front individuals into several classes of the parameters values over the generations.

Fig. 19(a) shows this distribution for the rib top width (e/2H). As can be seen, the class repartition does not change

after the 50th generation. The 95% confident bounds (grey areas) are less than 5% of the mean value (dashed line).

Thus the solution given by the NSGA-II is assumed stabilized.
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The optimization results are shown in Fig. 19(b). The Pareto front (grey line) is close to the non-dominated

observations of the DOE (red crosses). It clearly reveals the antagonistic behaviour of each objective: increasing the

effectiveness causes an increase of the pressure drop. Actually, the increase of ε is usually achieved by generating

recirculations which in turn increase the pressure losses. The clustering of the individuals highlights five centres of

group for five different shapes. Their performances predicted by the metamodels are indicated by the open symbols

in Fig. 19(b). Extra CFD simulations have been performeda posteriori to qualify the metamodels approximation

for these centres. The obtained performances are shown as filled symbols in Fig. 19(b). Tab. 5 summarizes

the information for each centre: parameters values, CFD performances and differences between the metamodels

predictions and the CFD simulations. The difference for the effectiveness is small, with a mean value lower than

1%. The maximum value is reached for the centre M, located into the under-sampled zone of the parameter space.

The difference is greater for the pressure drop, probably due to the large variation range of this objective.

Table 5: Comparison between metamodels predictions and CFD simulations for the five centres.

Parameters CFD performances Difference metamodels/simulations [%]

Center hrib/H e/2H Ẽ LD/Hin −ε [−] ∆Pech [Pa] Υ [%] −ε ∆Pech Mean Standard deviation

♦ 0.1219 0.2014 0.006 4.2195 -0.32 331 3.5 0.5 10 −ε

� 0.2072 0.0666 0.99 4.5664 -0.376 473 1.8 0.63 5.9 0.88 0.75

◦ 0.2678 0.1028 0.99 2.0000 -0.46 1108 2.6 1.0 0.9

� 0.2999 0.1612 0.63 2.0000 -0.52 2220 1.8 0.24 5.5 ∆Pech

M 0.2778 0.0534 0 4.5098 -0.54 3516 0.1 2.3 6.7 5.9 3.0

The five optimal shapes obtained by clustering are shown in Fig. 20. Fig. 20(a) represents the diffuser shape

together with the mean velocity field. The recirculation area is indicated by the low-speed area (in blue). Fig. 20(b)

shows the five ribs shapes, coloured by groups as in Fig. 21.

In order to analyse simultaneously all the information, the Self-Organizing Maps of Fig. 21 are used. In that

figure, the four parameters, the two objectives, the standard deviation of the distribution and the five groups

obtained by the clustering are represented. The Ẽ parameter has been replaced by the angle ψ, more meaningful

(see Fig. 6. The two objective maps highlight the previously mentioned antagonistic behaviour, since each is the

opposite of the other. The most influential parameter is the rib height (hrib/H): when it is large (centres M, � and

◦) the effectiveness and the pressure drop are important. The visible transition from the blue group (M) to the red

and purple ones (� and ◦) is due to a change in the diffuser length (LD/Hin) from its maximum to its minimum

value. The other visible transition in the maps is due to the angle (ψ) variation between 90 deg (group M) and

120 deg (group ◦). The rib shapes leading to the smaller pressure drop are only slightly different from a flat plate.

Indeed, the group denoted by the centre ♦ is characterized by a minimal height and an large rib top width (e/2H)
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Figure 20: Optimal shapes obtained by clustering - (a) diffuser and mean velocity - (b) ribs shape.

as visible in Fig. 20. The group � is formed by ribs of small top width and large angles. Looking at these shapes, it

is possible to correlate the global optima to the local optima. Indeed the low pressure shape (centre �) is similar to

the low Cf shape highlighted in Fig. 14(b) on the left area (dark blue). Moreover, the high efficiency shape (centre

M) characterized by important height and small widths is similar to the high Nusselt number shape highlighted in

Fig. 14(a).

The distribution standard deviation map highlights the mass flow rate homogeneity among channels of the

CPHX. In practice, engineers prefer large diffuser lengths because they are more likely to lead to good distributions.

This assumption may be confirmed by analysing the Υ and LD/Hin maps. The centre M is characterised by maximal

diffuser length (LD/Hin) and minimal value of Υ. Note that some Υ values presented on the map are negative due

to the metamodel approximation. However, the CFD results presented in Tab. 5 shows a low value, suggesting that

the metamodel provides a good trend if not of exact values. A dedicated adaptive sampling would be necessary

here to increase the prediction accuracy or Υ.

A special attention should be given to the centres � and � which yield the same distribution standard deviation

(Υ = 1.8%). However, as shown in Fig. 20(a), the heat exchanger geometry is quite different. The centre � has a

short diffuser, leading to a huge recirculation. This recirculation zone may create a blockage as well as an under-
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Figure 21: Self-Organizing Maps: the three parameters of the ribs shape (top row); the diffuser length parameter and the two objectives

(middle row); the groups generated by the clustering step and the distribution standard deviation (bottom row).

distribution of the lower channels. Nevertheless, as the local rib shape is characterized by a maximal height, the

pressure drop in the active part is important. This phenomenon equilibrates the mass flow rate among channels,

like a porous media would do. On the contrary, the local shape of the centre � does not lead to a large pressure drop

and the homogenous distribution is the consequence of the long diffuser. Obvisouly, the obtained total pressure

drop for the center � is higher than the � one, as shown by the ∆Pech map on Fig. 21.

This constitutes a valuable finding for the design of heat exchangers revealing that local and global shapes have

a coupled influence on the heat exchanger performances.
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6. CONCLUSION

The present work has demonstrated that the proposed optimization strategy is relevant for heat exchanger design.

The use of CFD simulations allows to overcome the limitations of the experimental correlations. Additionally,

metamodels associated with a genetic algorithm enable to apply this strategy to an industrial context with limited

numerical and/or time resources. Results have shown the importance of considering conjointly the local and global

shapes for the optimization. This has been pointed out by the distribution analyses.

The Kriging metamodelling step is a key element of the present method. It reduces the numerical cost of the

optimization and allows to build the correlations used in the multi-scale modelling. Moreover it ensures stability and

robustness of the method thanks to nugget effects. This greatly increases the usability of the method in combination

with CFD approach. The adaptive sampling strategy is essential to reduce the number of simulations required to

build the design of experiment. Furthermore, by combining different infill criteria it is possible to overcome their

limitations. This has been the case in the present work for the EHI criterion which is sensitive to the objectives

scale.

The clustering limits the number of results to investigate and the Self-Organizing Maps allow to easily correlate

the variations of the objectives with the parameters. This is of paramount interest for industrial purpose in order

to limit the work remaining after the optimization process and to lay a solid foundation on how each parameter

impacts the outcomes.
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