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The Miles’ theory of wave amplification by wind is extended to the case of finite

depth h and a shear flow with (constant) vorticity Ω. Vorticity is characterised

through the non-dimensional parameter ν = ΩU1/g, where g the gravitational ac-

celeration, U1 a characteristic wind velocity. The notion of ’wave age’ is generalised

to account for the effect of vorticity. Several widely used growth rates are derived

analytically from the dispersion relation of the wind/water interface, and their de-

pendence on both water depth and vorticity is derived and discussed. Vorticity is

seen to shift the maximum wave age, similar to what was previously known to be

the effect of water depth. At the same time, a novel effect arises and the growth

coefficients, at identical wave age and depth, are shown to experience a net increase

or decrease according to the shear gradient in the water flow.
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I. INTRODUCTION : WAVE GENERATION BY WIND IN WATER OF FINITE

DEPTH

How wind generates ocean waves is a formidable problem, many aspects of which are still

not understood today. It starts from the Navier-Stokes equations [1], applied to two layers

of fluid. Solving these is a classic exercise, but the presence of wind requires a succession of

subtle approximations and assumptions. In particular, the interface between water and air

requires careful thought. The pioneering works are those due to Jeffreys [2, 3] and to Miles

[4]. The theory by Jeffreys assumes that, on the lee-side of the surface wave, the undulated

water-air interface is sheltered from the air flowing over it. This kinematic scenario produces

a pressure gradient which performs work on the wave. Hence energy is transferred from the

wind to the wave (Jeffrey’s sheltering mechanism). Miles’ theory of wave generation by wind

assumes that ocean surface waves are generated by a resonance phenomenon. Resonance

appears between the wave-induced pressure gradient on the inviscid airflow and the surface

waves. This leads to a growing wave amplitude when the phase velocity of the surface wave

equals the speed of the airflow (see reference [5] for a thorough discussion). In Jeffreys’ and

Miles’ theories the viscosity is neglected both in air and in water, and furthermore water is

considered as infinitely deep and irrotational. Both theories rely on linearising the equations

of motion.

Historically the first experiments and numerical studies concerning finite depth wind-

wave growth were conducted by Thijsse [6] and Bretschneider [7]. Particularly important, in

order to understand the physics of wind-wave dynamics in finite depth, were the experiments

carried out in Lake George (Australia) by Young and Verhagen [8, 9]. For a full account of

the Young and Verhagen works see reference [10].

Recently, in reference [11], Miles’ theory was extended to water of finite depth, and

in references [12, 13] the wind-wave amplification was studied as a possible mechanism for

finite-time blow-up of solitary wind waves and steep wave events (rogue waves) in finite water

depth. In reference [14] a fully nonlinear model equation of surface wind-wave generation

has been established. There, the interaction between air and water is described from a

quasi-linear point of view, in which the water obeys the fully nonlinear Serre-Green-Naghdi

model [15–17] while, as in Miles’ theory, the air flow is kept linear and obeys the linear Euler

equation of motion.
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Net currents in the water are absent in all these approaches. In coastal waters, underlying

currents may be present, and this raises the question how the propagation of wind-driven

surface waves is affected. Such currents may range from weak to very strong, and can be

generated through various mechanisms such as tidal flow, oceanic circulation, wind action

or breaking of waves. Depending on how they are generated, the currents are often observed

to vary with depth, and thus carry an underlying vorticity. Vorticity is especially observed

in shallow water environments. For instance, linear shear due to strong currents has been

observed in the surf zone, in strong rip currents, in situ [18] or in laboratory experiments [19];

more recently, a similar depth dependence of currents was observed over coral reefs [20]. Such

background vorticity, when it is present over significant distances, for example in strong

tidal currents [21] or in wind driven currents [22], can be important and should be taken

into account for modeling the propagation of waves and their growth due to wind"

From a theoretical point of view, after the pioneering works of Benjamin [23] and Freeman

and Johnson [24], the role played by constant or variable vorticity (almost exponentially de-

creasing in depth) constitutes a classical but vast subject in fluid mechanics. Many theories,

exact or approximate, were formulated for steady periodic waves and for progressive waves,

in finite or infinite depth, under the action of vorticity [25–30]. The combined action of vor-

ticity and surface tension were studied in references [31] [32]. The modulational instability

(Benjamin-Feir instability) in finite depth under the action of vorticity was investigated in

[33].

The aim of this work is to provide a theory for the growth of surface wind waves, in water

of finite depth and in presence of constant vorticity currents. The purpose is twofold: on

one hand it intends to establish the mathematical laws able to qualitatively reproduce at

least some crucial features of the field experiments. On the other hand the intention is to

supply a theoretical framework, thus going beyond empirical laws.

To carry out this task we build upon the theory by Miles in a finite depth context, as

introduced in reference [11], which we extend in order to account for the action of a linear

shear current. The paper is organized as follows.

Section (II) lays out the mathematical framework. In subsection (IIA) we introduce the

nonlinear Euler equation governing the dynamics of surface water waves under the action

of constant vorticity. In subsection (II B) the air domain is introduced and coupled to the

water domain, leading to an air pressure which is no longer an overall constant, but instead
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FIG. 1: Sketch to illustrate the reference frame, the geometry as well as the flow

conditions in water and in air. Both water currents and wind are taken towards the right.

The example has positive vorticity, meaning that the current decreases with depth. The

system is invariant in the y direction.

varies in space and over time. Solving the linear problem at the interface we derive the

linear dispersion relation of wave amplification, in finite depth and in presence of a constant

shear in the flow field. In section (IID) we introduce dimensionless variables and scalings,

to derive various adequate growth rates which are commonly considered in the field. The

resulting linear dynamics is described analytically, in terms of explicit results, which we then

exploit numerically. Finally, section (IV) draws the conclusions to our findings.

II. MATHEMATICAL ANALYSIS

Here we lay out the equations describing the system consisting of a water domain (includ-

ing the underlying shear current which induces vorticity) and the air domain (including the

flow field due to wind), before coupling these at the interface on which a wave propagates.

In the absence of a propagating wave the situation is as follows, also represented in the

sketch in Fig. (1). We consider the system to be invariant in the y-direction. Thus water

and air particles are located in a two-dimensional Cartesian coordinate system with axes

x, z. The origin is at x = z = 0, and the horizontal domain is x ∈] − ∞,+∞[. At a

height z = 0 is the water-air interface, the domain of positive z ∈]0,∞[ corresponds to the
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(unperturbed) air, and z ∈ [−h, 0] is the (unperturbed) water domain. The bottom of the

water domain, at z = −h, is considered impermeable. Both water and air are taken to be

inviscid and incompressible, and surface tension effects at the interface are not accounted for.

We assume the water to flow in the positive x direction, the velocity varying linearly

with depth. In an earth-bound reference frame the velocities therefore interpolate between

vs ~ex at the water surface (z = 0) and vb ~ex at the bottom (z = −h), where ~ex is the unit

vector. The surface velocity vs, bottom velocity vb as well as the water depth h are taken

to be constants. In the following we will work in the reference frame in which the water

surface is static, i.e. the frame which moves at the surface velocity vs ~ex with respect to the

earth-bound reference frame. This is a natural choice, since the interface is the support for

the propagating wave, although there are some implications which we will return to later.

In the reference frame of the water surface the water flow profile due to vorticity is thus

given by
~U

(Ω)
0 (z) = Ωz ~ex for − h ≤ z ≤ 0 , (1)

where the parameter

Ω = vs − vb
h

(2)

is in fact the (y-component of the) vorticity attributed to the steady shear flow (~ω =

∇× ~U
(Ω)
0 (z) = Ω~ey = const).

For the air domain, a steady-state airflow is prescribed to represent the effect of wind.

To this end the mean horizontal velocity profile is of the form

~U(z) = U(z)~ex = U1 Û(z)~ex , (3)

where U1 is a characteristic wind speed and Û is a dimensionless function characterising the

wind profile in terms of the vertical position.

Two points require careful thought. First, different wind profiles may be considered [34].

We will later focus on the most common choice, a logarithmic wind profile, but for the time

being the calculations are general. Second, matching the flow fields in water and air is a

highly non-trivial matter, due to the presence of a turbulent layer between both media,

which develops when the wind blows over the ondulated water surface. However, it as been
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shown that one may account for this in a phenomenological way by requiring that the air

flow profile (3) match the water velocity not at the top of the water volume (z = 0), but

at a height z0 > 0. z0 is known as the roughness length. For a wave of wavelength 2π/k

propagating with a phase velocity c0 the roughness length has been shown to obey the

so-called Charnock relation [34]

z0 = ΩCH

k

(
U1

c0

)2
, (4)

where ΩCH is a phenomenological constant [35], the value of which is to be adapted to

the specific wind profile and to the choice of the characteristic wind velocity U1. In this

approach, the air flow then vanishes at the top of the roughness layer z0, rather than at the

average position of the water-air interface (z = 0), i.e. we have

U(z0) = 0 . (5)

This is a widely used approximation, first proposed in Ref. [36], and it is indeed appropriate

for the ranges of wind speed considered here [37].

Note that the empirical expression (4) for the roughness length z0 has been established in

infinite deep water and on static water [34, 36]. Here we assume that this relation extends

to our situation.

In order to analyse the propagation of a wave at the water-air interface in our system

we now establish the hydrodynamic equations in each domain, before coupling them via the

appropriate boundary conditions.

A. The water domain

As a wave propagates on the water surface, for now without accounting for the effect of

wind, the flow field is

~Uw(x, z, t) =
(
Uw(x, z, t), 0,Ww(x, z, t)

)
=
(
U

(Ω)
0 (z) + u(x, z, t), 0, w(x, z, t)

)
(6)

in the reference frame of the water surface. Here U (Ω)
0 (z) is the stationary flow field referred

to in (1), to which perturbations are added as the wave propagates. This velocity field
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satisfies the Euler equations:

Uw,x +Ww,z = 0 (7)

Uw,t + UwUw,x +WwUw,z = − 1
ρw
Px (8)

Ww,t + UwWw,x +WwWw,z = − 1
ρw
Pz − g , (9)

where P is the pressure, g is the gravitational acceleration and ρw the water density. Sub-

scripts to Uw(x, z, t), Ww(x, z, t) and P (x, z, t) denote partial derivatives.

The boundary conditions to this flow are to be imposed at z = η(x, t) and at z = −h.

They are

P = Pa, at z = η (10)

ηt + Uwηx −Ww = 0, at z = η (11)

Ww = 0, at z = −h . (12)

Here Pa(x, z, t) is the variable air pressure, and ηx and ηt are partial derivatives of η(x, t).

Thus equation (10) expresses the continuity of the pressure across the air/water interface.

We introduce the dynamic pressure P(x, z, t), relative to the hydrostatic pressure in the

undisturbed initial state, as

P(x, z, t) = P (x, z, t) + ρwgz − P0 , (13)

where P0 is a constant.

The perturbation to the free surface is η(x, t), and u(x, z, t), w(x, z, t) as well as P(x, z, t)

are those to the horizontal and vertical velocities as well as the pressure, respectively. Lin-

earizing equations (7)-(12) around the unperturbed state (1), expressed in terms of P and

the perturbations u, w and η, we have

ux + wz = 0 (14)

ut + Ωz ux + Ωw = − 1
ρw

Px (15)

wt + Ωz wx = − 1
ρw

Pz . (16)

The boundary conditions are also to be linearised, and they become

P(x, η, t) = Pa(x, η, t) + ρwgη − P0 (17)

ηt = w(0), (18)

w(−h) = 0 . (19)
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FIG. 2: Effect of vorticity on a wave propagating on the water surface. The graph shows

the multiplicative factor by which the phase velocity c0 is modified as compared to the

same system with no vorticity. The graph is based on Eq. (28), and vorticity is represented

through a dimensionless expression Ω
√

tanh(kh)/
√
kg, proportional to vorticity. By

construction, the value 1 is attained for vanishing vorticity, indicated by a circle. Negative

vorticity increases the phase velocity, whereas positive vorticity slows the wave down.

The system of linear equations (14)-(19) can be solved assuming normal mode solutions

as

P = P(z) exp (iϕ), u = U(z) exp (iϕ), w =W(z) exp (iϕ), η = η0 exp (iϕ) , (20)

with ϕ = k(x− ct), where k is the wavenumber, c the phase speed and η0 is a constant.

Using equations (20), (14), (15), (16), (17) and (19) we obtain

u(x, z, t) = 2ai exp (−kh) exp (iϕ) cosh k(z + h), (21)

w(x, z, t) = 2a exp (−kh) exp (iϕ) sinh k(z + h), (22)
1
ρw

P(x, z, t) = 1
ρw

[Pa(x, η, t)− P0] + gη − 2aic exp (−kh) exp (iϕ)
{

cosh (kh) (23)

− cosh k(z + h)}+ 2aiΩ exp (−kh) exp (iϕ){−z cosh k(z + h)

−1
k

sinh (kh) + 1
k

sinh k(z + h)
}

with some constant a. Now we calculate (1/ρw)Px from (23), and substituting into (15) we

obtain

ikgη + 2a exp (−kh) exp (iϕ)
{
kc cosh (kh) + Ω sinh (kh)

}
= −Pa,x

ρw
. (24)

From (18) and (22) we obtain

−ikηc− 2a exp (−kh) exp (iϕ) sinh(kh) = 0 . (25)
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Finally, it follows from (24) and (25), integrating over x, that

η
{
g − kc2 cosh (kh)

sinh (kh) − cΩ
}

= −Pa + P0

ρw
. (26)

For Pa = P0, Equation (26) leads to the very well known phase velocity c = c0

c0 = − Ω
2k tanh (kh)± 1

2

√
Ω2

k2 tanh2 (kh) + 4g
k

tanh (kh) , (27)

where we introduce the subscript ’0’ to refer to the reference state of a propagating wave on

the water surface in the presence of shear flow, but without air flow.

In order to clarify the discussion we choose to consider a wave propagating to the right in

the remainder of the manuscript, which amounts to selecting the positive branch of Equation

(27):

c0 = − Ω
2k tanh (kh) + 1

2

√
Ω2

k2 tanh2 (kh) + 4g
k

tanh (kh) (28)

= cfd

√1 + Ω2 tanh (kh)
4kg −

Ω
√

tanh (kh)
2
√
kg

 , (29)

where cfd is the finite depth velocity defined by cfd = (g tanh (kh)/k)1/2. This phase velocity

plays an important role when discussing the effect of wind, and we therefore illustrate its

dependence on vorticity in Fig. 2 for later reference.

In the complete problem, however, in which we must account for the wind profile, the

air pressure can no longer be taken to be constant: Pa 6= P0. In order to determine the

phase velocity c in the presence of wind, from (26), we thus need to determine the dynamic

perturbation to the air pressure Pa, and its value at the interface position z = η ultimately

enters the balance equations at the water-air interface.

B. The air domain

Let us consider the linearized governing equation of a steady air flow, with a prescribed

mean horizontal velocity U(z), as stated in (3). We are going to study perturbations to this

mean flow in the x and the z components, where the subscript a stands for air : ua(x, z, t),

wa(x, z, t), as well as the air pressure field Pa(x, z, t), are the dynamic contributions as the

wave propagates. ρa is the air density, and we define Pa(x, z, t) = Pa(x, z, t) + ρagz − P0.
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In the reference frame where there is no surface flow we have, from continuity and from the

Navier Stokes equations:

ua,x + wa,z = 0 (30)

ua,t + U(z)ua,x + Uz(z)wa = − 1
ρa

Pa,x (31)

wa,t + U(z)wa,x = − 1
ρa

Pa,z . (32)

To these equations governing the flow field we must add the appropriate boundary conditions.

The first one is the kinematic boundary condition

ηt + U(z0)ηx = wa(z0) . (33)

As discussed above, it is to be evaluated at the aerodynamic sea surface roughness z0.

Exploiting the fact that the wind flow vanishes at the roughness height, Eq. (5), the kinetic

boundary condition (33) finally reduces to

ηt = wa(z0) . (34)

Next we introduce normal mode expressions, as in (20), also for the air flow,

Pa = Pa(z) exp (iϕ) , ua = Ua(z) exp (iϕ) , wa =Wa(z) exp (iϕ) , (35)

and we add the following boundary conditions on Wa and Pa:

lim
z→+∞

(W ′a + kWa) = 0 (36)

lim
z→z0
Wa = W0 (37)

lim
z→+∞

Pa = 0 . (38)

The first condition imposes that, far from the interface, the perturbation of air flow must

decrease exponentially. The remaining conditions set the vertical component of the wind

speed in terms of the wave motion at the sea surface, and require pressure continuity across

the water-air interface.

Finally, using equations (30)-(32) and (38) we have

wa(x, z, t) =Wa exp (iϕ) (39)

ua(x, z, t) = i

k
Wa,z exp (iϕ) (40)

Pa(x, z, t) = ikρa exp (iϕ)
∫ ∞
z

[
U(z′)− c

]
Wa(z′)dz′ . (41)
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By eliminating the pressure from the Euler equations we obtain the well-known Rayleigh

equation [38], which holds ∀z \ z0 < z < +∞

[
U(z)− c

]
(Wa,zz − k2Wa)− VzzWa = 0 . (42)

This is also known as the inviscid Orr-Sommerfeld equation. It is singular at the ’critical’

or ’matched’ height zc = z0e
cκ/u∗ > z0 > 0, where U(zc) = c. We recall that this model

assumes any eddies or other non-linear phenomena to be accounted for by the roughness

height z0, and therefore the bulk of the air flow is non-turbulent.

C. Matching the flow at the interface

Recall that, in equations (39)-(42), neither the function determining the perturbation to

the air flow Wa(z) nor the phase velocity c are known: indeed, finding the phase velocity in

the presence of wind, as well as the shear flow in water, is precisely the object of our calcu-

lation. This is achieved by applying the appropriate boundary conditions at the interface.

In order to do so we have to determine the air pressure field Pa(x, η, t). We obtain

Pa(x, η, t) = P0 − ρagη + ikρa exp (iϕ)
∫ ∞
z0

[
U(z)− c

]
Wa(z)dz , (43)

where the lower bound for integration may be taken to be the constant roughness height z0

instead of z = η, since we are studying the linear problem.

Finally, using equation (34) to eliminate the term ikρa exp(iϕ) and substituting Pa given

by equation (43) into (26) we obtain what is effectively the dispersion relation of the problem,

as it fixes the phase velocity c:

g(1− ε) + c

{
sk2

W0
I1 − Ω

}
− c2

{
sk2

W0
I2 + k coth(kh)

}
= 0 . (44)

Here s = ρa/ρw and the integrals I1 and I2 are defined as

I1 =
∫ ∞
z0

UWadz, I2 =
∫ ∞
z0
Wadz . (45)

The density of air being small compared to that of water, relation (44) may be expanded as

a series in terms of s = ρa/ρw ∼ 10−3:

c = c0 + sc1 +O(s2) . (46)
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An explicit expression for the first order term c1 can be established using a perturbation

method, which consists in solving the Rayleigh equation (42) based on the zero-order phase

velocity c0. This approach, which follows [34], is pursued in the next section.

The dispersion relation can be deduced from (44), once we have evaluated the integrals

I1 and I2 given by (45): once it is known, its imaginary part carries the information on wave

growth. For this, in turn, the profileWa(z) is to be established as a solution to the Rayleigh

equation (42). Before doing this numerically, we pursue to introduce the growth coefficients

we intend to analyse.

D. Wave growth during propagation in the presence of vorticity and wind

Once the functionWa(z) is known, its imaginary part intervenes in the dispersion relation

(44), and sets the complex part to the phase velocity c. This directly yields the growth rate

γ of the wave amplitude η(x, t), defined as

γ = k=(c) , (47)

where = stands for the imaginary part.

The theoretical and numerical results for the growth rate γ are traditionally studied and

computed in terms of dimensionless parameters. To the established parameters δ, θdw (see

Young and Verhagen [8], Young and Verhagen [9] and Montalvo et al. [11]) we now add a

third parameter ν characterising vorticity. These are defined as

δ = gh

U2
1
, θdw = 1

U1

√
g

k
, ν = ΩU1

g
(48)

It is thus immediately clear that, in contrast to deep water, where the growth rate can

be characterised by as a single graph showing the growth rate as a function of wave age,

the situation is more complex here: the presence of two additional dimensionless parameters

imply that we will instead be dealing with a two-parameter family of curves.

Note that the parameters defined in (48) have direct physical meaning. The (square root

of) dimensionless parameter δ relates the phase velocity of a shallow water wave to the wind

velocity. The parameter θdw is the analogous ratio of the deep-water phase velocity and

the wind speed. Finally, ν is a measure for the importance of the velocity gradient due to

vorticity.
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The parameter θdw is often referred to as the ’wave age’, or at least a theoretical equivalent

of this observational quantity, and is therefore important for making contact with field

observations and literature. It has been put forward recently [11] that this notion can be

generalized to water of finite depth, by defining the finite depth wave age θfd as

θfd = 1
U1

√
g

k

√
tanh(kh) = θdwT

1/2 , (49)

where

T = tanh( δ

θ2
dw

) . (50)

Expression (49) is a depth dependent parameter, which is constructed to interpolate be-

tween deep water and shallow water situations: indeed, for a finite and constant θdw, we

have θfd ∼ θdw when δ → ∞ and θfd ∼ δ1/2 =
√
gh/U1 if δ → 0. Therefore θfd reduces to

the ratio of the appropriate phase velocity and the wind speed, in both limiting cases. In

the following section we will extend this concept to flow with constant vorticity.

We can now proceed to determine the dispersion relation and deduce the parameters

characterising wave growth. The following non-dimensional variables and scalings will be

used in order to non-dimensionalise the growth coefficients:

U = U1Û , Wa = W0Ŵa, z = ẑ

k
, c = U1ĉ, t = U1

g
t̂ , (51)

where ’hats’ indicate dimensionless quantities.

Using (48) and (51) in equations (27) and (44), and retaining only first order terms in s,

we obtain expressions for ĉ0 and ĉ. The zero-order terms reproduce Eq. (28), as expected.

The linear term yields

ĉ = ĉ0 + s

(
− ĉ0

2− νĉ0
+ ĉ2

0
θ2
dw[2− νĉ0] [Î1 − ĉ0Î2]

)
. (52)

which is the desired dispersion relation under the effect of wind.

Finally the growth of the amplitude η with time is given by

expγt = expγ̂t̂ (53)

with the corresponding growth rate

γ̂ = s
=(ĉ1)
θ2
dw

= s
ĉ2

0
θ4
dw[2− νĉ0]

(
=(Î1)− ĉ0=(Î2)

)
. (54)
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Hence we have established an expression for the growth rate γ̂ for a given physical situation,

i.e. a given set of parameters (δ, θdw, ν).

Our results also explore the β-Miles parameter, related by

β = 2γ̂
s
θ2
dwĉ0, (55)

where we have taken β as it is usually defined, via =(c) = (s/2)βc0(U1
c0

)2.

Using (8) in (55) we obtain

β = 2 ĉ3
0

θ2
dw[2− νĉ0]

(
=(Î1)− ĉ0=(Î2)

)
. (56)

Finally, another important parameter to be considered is the dimensionless fractional

energy increase per radian, defined as

Γ̂ = c0,g

ω0E

dE

dx
= 2γ c0,g

ω0c0
, (57)

with c0,g, c0 the group and phase velocity of the dominant (spectral peak) waves of frequency

ω0. For Ω = 0 the ratio c0,g/c0 is given by the very well known expression

c0,g

c0
= 1

2

[
1 + 2kh

sinh (2kh)

]
, for Ω = 0. (58)

Here we are interested in the generalization of (58) to the presence of vorticity, which is

given by

c0,g

c0
= 1

2

([
1 + 2kh

sinh (2kh)

]
+
[
1− 2kh

sinh (2kh)

]
×
√

Ω2T

Ω2T + 4gk

)
, (59)

for all Ω. From this equation (59) yields Γ̂, which reads

Γ̂ = θdw
T 1/2 γ̂

1 + 2δ
θ2
dw sinh ( 2δ

θ2
dw

)

+
1− 2δ

θ2
dw sinh ( 2δ

θ2
dw

)

×
√√√√ ν2θ2

fd

4 + ν2θ2
fd

 1

−νθfd

2 +
√

1 +
(
νθfd

2

)2
,

(60)

which is the dimensionless fractional energy increase per radian, accounting for the effect of

vorticity.

III. RESULTS AND DISCUSSION

In this section we exploit the results we have obtained above, based on the analytical

expressions but aided by a numerical approach when required. To this end we follow the
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approach by Beji and Nadaoka [34], which consists in numerically solving the Rayleigh

equation in order to determine the velocity profile Wa(z) in the air domain. This requires

handling the singularity of the Rayleigh equation (42), which is done by establishing an

analytical approximation valid close to the singularity, i.e. around the height zc where the

wind velocity equals the phase velocity. From this, starting values are deduced which serve

to initialise a solver for differential equations.

At this stage we now focus our analysis on a specific air flow field U(z), which is the

logarithmic wind profile with

U(z) = U1 ln( z
z0

) . (61)

This relation is commonly used to describe the vertical dependency of the horizontal mean

wind speed [39]. This can be justified based on scaling arguments and solution matching

between the near-surface air layer and the geostrophic air layer (see Tennekes [40]).

A. Accounting for vorticity in the wave age

The first point we address is the notion of a generalised wave age, which is the parameter

ĉ0 already defined via (51) as the ratio

θ = c0

U1
= ĉ0 , (62)

with the phase velocity c0 given by Eq. (28). To see how this extends the existing definition,

recall that the notion of wave age was defined originally, for deep water, as the ratio c0,dw/U1.

It thus measures the phase velocity of a wave propagating without wind as compared to

the wind speed. A similar parameter ĉ0,fd = c0,fd/U1 has been introduced in [11] as the

generalisation of the wave age to finite water depth. Setting θfd = c0,fd/U1, this characterises

wave propagation on the surface of a finite depth water body. No vorticity was considered

at this stage. In our analysis, the expression for the phase velocity as established in Eq. (28)

now suggests that the parameter defined in Eq. (62) directly generalises the notion of wave

age further, by accounting for the presence of vorticity.

With this definition, the wave age in the presence of vorticity is deduced directly from

Eq. (28) as

θ = c0/U1 = θfd

−νθfd2 +

√√√√1 +
(
νθfd

2

)2
 . (63)
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As an aside, it may be worth pointing out that the choice of reference is important here:

the ratio (62) is to be taken with velocities expressed in the reference frame of the water

surface, which we have already adopted here. Defining the wave age in this way is only

meaningful with respect to this particular reference frame. This is because the variable U1

defines the typical wind scale in the reference frame of the water surface. It cannot simply be

transformed to a different frame, as transforming constant velocity to the wind profile (61)

adds an overall constant, which is not equivalent to modifying U1. Rather, the definition

of U1 is intrinsically based on the wind speed relative to the water surface, as this is what

the Charnock relation (4) matches the wind profile to, and therefore U1. Note that this

consideration is new to the system combining waves with both wind and surface flow.

All other physical quantities concerning the growth of waves (γ and β for instance) remain

unchanged through a Galilean transformation from one reference frame to another. Rather

expectedly, calculations in the earth-bound frame are found to lead to the identical results

when the relative velocity between reference frames is added to the phase velocity.

B. Miles growth parameter β

We first discuss the effect of vorticity on the Miles growth parameter β. In Fig. 3, results

are shown for the Miles parameter β as a function of the vorticity-corrected wave age θfd,Ω.

All graphs are calculated for the same depth parameter δ = 25, but correspond to different

values of the vorticity parameter ν. In all our plots the black curve corresponds to zero

vorticity, for easy reference, and therefore the black graph of Fig. 3 reproduces the result of

Fig. 2 in reference [11].

The most remarkable feature of β(θ) in the absence of vorticity is the steep drop to zero

as the wave age approaches
√
δ = 5. This has been discussed in [11], and implies a maximal

wave age in shallow water: it is directly related to the fact that there is a maximum phase

velocity, which a propagating wave cannot exceed in finite water depth. In Fig. 3 it is clear

that this maximum wave age is modified by vorticity: it is increased for negative values of

ν, whereas it is reduced for positive values.

One way of visualising this is to plot the generalised wave age θfd,Ω, which accounts for

vorticity, as a function of the zero-vorticity wave age θfd. This is shown in Fig. 4. The

dashed black line indicates that θfd,Ω and θfd are identical for zero vorticity. The effect of
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vorticity is then quite different according to its sign. To discuss this, we first return to the

case of zero vorticity, and recall that the upper bound to the wave ages which are accessible

in water of finite depth (see [11]) is

θfd ≤ θ
(max)
fd =

√
δ =
√
gh

U1
. (64)

Consequently, the maximum possible wave age decreases with depth, and it is only for

infinitely deep water that a potentially unlimited domain of accessible wave ages is to be

considered.

This is no longer the case in the presence of positive vorticity. Indeed, for ν > 0 the graph

of the vorticity-corrected wave age asymptotically attains a plateau, the value of which is

easily seen to be 1/ν in deep water or for strong vorticity. Therefore one impact of positive

vorticity is to set a maximum wave age even for a deep water wave. For negative vorticity,

no such upper bound is set in deep water; instead, the vorticity correction increases the

wage age.

To complete the argument, we state the expression of the upper bound in the velocity-

corrected wave age. Using Eq. (63) and (64) we obtain,

θ
(max)
fd,Ω = θ

(max)
fd

−νθfd,c2 +
√

1 +
ν2θ2

fd,c

4

 =
√
δ

−ν√δ2 +
√

1 + ν2δ

4

 . (65)

Note that this correctly reduces to δ1/2 for ν = 0, as it must. From this expression it follows

directly that negative vorticity increases the maximum wave age, and hence the maximum

wave propagation speed. Therefore, negative velocity produces older seas while positive

vorticity has the opposite effect. The corresponding graph is shown in Fig. 5.

To complete the discussion of the Miles growth coefficient β, we now contrast Fig. 3

by similar plots in Fig. 6, obtained for two different values of δ. The values used for the

vorticity parameter ν are identical in all three graphs. We observe the same tendencies, with

a major difference worth pointing out. Indeed, the vorticity parameter ν has a weaker effect

at small depth: curves for identically spaced values of ν are closer one to another for δ = 4.

In comparison, the effect of vorticity is larger in greater depth, exemplified by δ = 81.

As concerns practical implications, however, one must keep in mind that an identical

vorticity parameter does not mean an identical current at the water surface. Rather, it is

the combination of vorticity and depth which sets the shear current, through the difference
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FIG. 3: The Miles’ growth coefficient β, as defined in (56) and obtained by numerically

solving the Rayleigh equation (42). All plots are for the same depth parameter δ = 25.

Each line corresponds to a given value of vorticity, according to the parameter ν indicated

in the legend. The black line, for ν = 0, reproduces the known result for wave growth in

finite depth [11]. Negative vorticity increases the growth coefficient, whereas positive

vorticity reduces it.

of surface and bottom currents. Indeed, non-dimensionalising this current by the wind speed

U1 we have (Us − Ub)/U1 = Ωh/U1 = νδ, and thus both ν and δ intervene.

Apart from this important difference, all families of curves for a given value of δ show

the same behavior, and the same enhancement for negative vorticity. More specifically, a

maximum is observed for β as soon as negative vorticity is present. This maximum increases

with increasing (negative) vorticity, a novel feature: changes in water depth cannot provoke

this effect. In Fig. 7 we analyse the shift in βmax with respect to the plateau value at zero

vorticity, plotting it as a function of ν. The shift is clearly linear for (negative) vorticities

up to ν ≤ −0.5, as shown in the inset of Fig. 7. This is followed by β saturating at around

ν ≈ 2 at a value of βmax ≈ 6.5. The implication is that there is an upper bound to the

increase of β which can be provoked by vorticity.

The increase of β is confirmed by the evolution of the amplitude growth coefficient γ̂

with vorticity. In Fig.8 we have plotted three families of curves, corresponding to the
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FIG. 4: The generalised wave age θfd,Ω, which incorporates the effect of vorticity, can be

written as a function of θfd = θfd,Ω=0, the wave age without vorticity. The mathematical

relation is given by Eq. (63). Colours represent different values of vorticity; solid lines

correspond to positive vorticity whereas dashed lines of the same colour correspond to

negative vorticity of the same negative values. Note that only in infinite depth all wave

ages are accessible: in a finite depth system the wave age has an upper bound of

θ
(max)
fd =

√
δ. This entails a maximum value θ(max)

fd,Ω also in the presence of vorticity, but this

maximum accessible wave age is reduced for positive vorticity and increased for negative

vorticity.

same values of the depth parameter (δ = 4, 25, 81) used in the previous figure. First, for

each family of curves we confirm the previous observations: negative vorticity increases the

maximum wave age, whereas positive vorticity has the opposite effect. Interestingly, this

behaviour is similar to what is observed in the absence of vorticity when the water depth is

varied (see Fig. 2 of ref. [11]). Second, we observe a global enhancement of γ̂ for negative

vorticity, which replicates the behavior of β. However, this contrasts with the effect of water

depth [11], which only displaces the maximum wave age. The enhancement of the actual

growth coefficient γ̂ due to vorticity is an entirely novel feature.
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FIG. 5: The maximum achievable value for the wave age (Eq. (65)) as a function of the

depth parameter δ, for selected vorticity values of both signs. For a static sea (ν = 0, black

curve) we have θ(max)
fd =

√
δ, as is known from [11]. For positive vorticity, the maximum

value is reduced; in turn, it is increased for negative vorticity.

C. Energy growth rate

Another commonly used way to assess the growth of waves is to represent the energy

growth rate Γ as a function of the inverse wave age 1/θ , see e.g. in [34]. This is shown in

Fig. 9, based on Eq. (60). Three choices for the depth parameter δ are juxtaposed, using

the same values as in Figs. 3, 6 and 8. The behaviour is again reminiscent of what happens

when the water depth is finite (see ref. [11]), i.e. the location of the vertical drop of the

energy growth rate is displaced, here under the effect of vorticity. For positive vorticity the

shift is towards the right, for negative vorticity it is towards the left. This again reflects

the existence of a maximum wave age, which decreases with positive vorticity but increases

with negative vorticity.

On the left side of this graph, for older seas, curves do not merge and differences are well

visible. Towards the right, i.e. for very young seas, all curves appear to merge asymptoti-

cally. However, small differences are still present between different graphs corresponding to

different vorticities, although they are hardly visible on the logarithmic scale.

An alternative view of the same quantities is therefore presented in Fig. 10, where we use
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FIG. 6: The Miles growth parameter β as a function of the wave age θfd,Ω, as in Fig. 3

but for two additional values of the depth parameter δ in order to show the effect of the

depth parameter.

a linear scale. It highlights the effect of vorticity by plotting Γ(ν), for three values of the

wave age θ (panels a-c). For each of these, graphs for several values of the depth parameters
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FIG. 7: The maximum value of Miles’ growth coefficient β as a function of (negative)

vorticity ν. We report the difference between the maximum and the plateau value at zero

vorticity. Negative vorticity increases the Miles coefficient, until it saturates. The inset

shows a zoom on the same data, for small values of vorticity, indicating that the

dependency is initially linear.

are superposed.

Each graph presents a maximum, i.e. there is a specific vorticity for which the energy

transfer is maximum. In deep water it is located at zero vorticity, but occurs at negative

vorticity in finite depth. For young seas (panel (b)), the depth does not play a significant

role, and the effect of vorticity is almost independent of the depth parameter δ. In this case

the energy transfer is maximal for zero vorticity, i.e. the presence of any shear flow will

reduce the energy transfer. Therefore, as long as the sea is not well developed, vorticity

of any sign will hinder wave growth. This changes as the sea develops, see panels (a) and

(c). For higher wave ages, the energy growth coefficient is still maximum for a specific

value of the vorticity, which is always negative in finite depth. Moreover, this value is now

clearly dependent on the depth parameter δ: the smaller the depth parameter, the more

negative the vorticity for which the energy transfer is maximum, and the higher the energy

transfer which can be achieved. Note also that, whatever the wave age, the graphs remain

asymptotically universal for large depth parameters δ: in deep water, the maximum energy
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FIG. 8: The amplitude growth coefficient γ̂, defined by Eq. (54), as a function of the wave

age θ for three values of the depth parameter. In (b) and (c) the data ranges, as well as

symbols, are identical to those indicated in (a).

transfer is always achieved in the absence of vorticity. Consequently, vorticity of any sign

will always hinder energy transfer in deep water.

IV. CONCLUSIONS AND OUTLOOK

We have presented a full theoretical treatment of wind-generated surface waves, on water

of finite depth, when the water body is subject to a shear flow of constant vorticity. This

work extends the theory of Miles to include vorticity, a topic with great practical implications

since water currents are expected to be present in oceans, and may lead to particularly strong

vorticity in near-coastal waters.

Generalising the approach by Beji and Nadaoka [34] has yielded expressions for all growth

coefficients characterising the wave growth due to wind, such as the Miles growth coefficient
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FIG. 9: The energy transfer parameter Γ, defined by Eq. (60), as a function of the inverse

wave age 1/θ. The choices for the depth and vorticity parameters δ and ν are as in Figs. 3,

6 and 8. In (b) and (c) the data ranges, as well as symbols, are identical to those indicated

in (a).

β, the amplitude growth coefficient γ and the energy growth coefficient Γ, known from

previous studies in the absence of water currents [11].

As a first result, the notion of a generalised wave age has emerged, defined in the same

spirit as in [11], which accounts for the effect of both finite depth and vorticity in the water

flow on the phase velocity of wind-generated waves. It shows that, in otherwise identical

conditions, vorticity alters the wave age according to its sign. The wave age is reduced for

positive vorticity, which implies that in the natural reference frame of the water surface the

flow velocity is directed against the wind, as sketched in Fig. 1. Negative vorticity, on the

other hand, leads to more developed seas.

Interestingly, there is an intrinsic limit to this wave age, i.e. an upper bound which

cannot be exceeded. This is already known to arise in water of finite depth, but now the
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FIG. 10

Effect of vorticity on the energy growth parameter Γ, contrasting various choices for the wave

age. Selected depth values are identical for all three panels, but note that the vertical scale is

adapted for better visibility. For all wave ages, positive vorticity leads to a dramatic decrease in

the energy growth. There always is a specific value of (negative) vorticity for which the energy

growth parameter is at a maximum. (a,c) For deep water, the maximum energy growth rate is

achieved for zero vorticity, but this maximum progressively shifts towards stronger (negative)

vorticities as the water depth is reduced. (b) The previous effect is not visible for very young

seas: all data collapse, with a maximum at zero vorticity. Therefore vorticity of any sign reduces

the wave growth in this regime.

maximum wave age is modified by the presence of vorticity. Positive vorticity reduces this

maximum value, and therefore leads to ’younger’ seas. Negative vorticity, however, makes

it possible to attain a more developed sea.

More specifically, the state towards which the sea evolves under the effect of wind is

quantified by various growth coefficients. We have determined several such coefficients, by
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numerically solving the Rayleigh equation, again following the strategy by Beji and Nadaoka

[34], which has revealed new features with respect to the case of static water.

First, we have considered the Miles growth coefficient β, related to the perturbation in

the water pressure [41]. In deep water it is known to decrease exponentially to zero beyond

the wave age corresponding to the developed sea [5, 34]. Recall the effect of a finite water

depth: the vanishing of the Miles growth coefficient is pre-empted by the aforementioned

maximum wave age, thereby reducing the wave age of the developed sea. Nevertheless, at

sufficiently small wave ages the growth coefficient is unaffected by the water depth. The

action of vorticity is now twofold.

At a first level, increasing (positive) vorticity reduces this maximum wave age, and there-

fore modifies the wave age of the developed sea; negative vorticity has the opposite effect.

In this respect a change in vorticity is similar to a change in water depth. This implies also

that a shift in maximum wave age cannot unambiguously be attributed to either finite water

depth or to the presence of shear currents, as both can compensate.

On a second level, however, vorticity also affects the value of the growth coefficient for

small wave ages: it is diminished for positive vorticity but enhanced for negative vorticity.

This effect has no counterpart due to water depth, it is entirely novel in the present context.

The growth parameter γ̂ which directly characterises the growth of the wave amplitude

also mirrors this behaviour.

Finally, the energy transfer from the wind to the wave, characterised by the coefficient Γ̂,

shows a more complex behaviour. For young seas, we have illustrated numerically that the

presence of vorticity necessarily leads to a decrease in Γ̂: irrespective of the water depth,

the energy transfer attains its maximum as vorticity approaches zero. For larger wave ages

though, this is no longer true: the maximum in the energy transfer is achieved for a negative

value of vorticity. This value furthermore depends both on wave age and water depth.
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