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ABSTRACT

Temperate kelp forests contribute significantlyrtarine primary productivity and
fuel many benthic and pelagic food chains. A |lgsggportion of biomass is exported
from kelp forests as detritus into recipient mamgesystems, potentially contributing
to Blue Carbon sequestration. The degradationisfaityanic material is slow and
recent research has revealed the preservationobdgmthetic functions over time.
However, the physiological correlates of detritaddkdown inLaminariaspp. have
not yet been studied. The warming climate threatemeshuffle the species
composition of kelp forests and perturb the dynamicthese highly productive
ecosystems. The present study compares the physialoesponse of degrading
detritus from two competing North East Atlantic sjes; the native Boreélaminaria
hyperboreaand the thermally tolerant Boreal-LusitanlarochroleucaDetrital
fragment degradation was measured by a mesocoseniment across a gradient of
spectral attenuation (a proxy for depth) to in\gst the changes in physiological
performance under different environmental condgiddegradation of fragments was
guantified over 108 days by measuring the biomasgluction and respiration (by
respirometry) and efficiency of Photosystem Il @&M fluorometry). Data indicated
that whilst degrading, the photosynthetic perforogaof the species responded
differently to simulated depths, but fragments athbspecies continued to produce
oxygen for up to 56 days and sustained positiveonetary production. This study
reveals the potential for ostensibly detrital kielontribute to Blue Carbon fixation
through sustained primary production which showdddaztored into Blue Carbon

management. Furthermore, the physiological respohkelp detritus is likely
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dependent upon the range of habitats to whichakmorted. In the context of climate
change, shifts in species composition of kelp fisraad their detritus are likely to

have wide-reaching effects upon the cycling of nrganatter in benthic ecosystems.

Keywords: Climate change; Detritus; North East Atlantic; Ogggoroduction; PAM

fluorescence; Respiration; Trophic transfer

1. INTRODUCTION

Within the temperate to sub-polar regions of thabg| kelps are of paramount importance to
marine ecosystem functioning. They contribute ®ftinctional integrity of coastal
ecosystems as habitat forming species (HFS) viahiagenic structure, through wave
energy dissipation and via cycling of carbon (Ciwist al. 2003; Laffoley & Grimsditch,
2009; Teagleet al. 2017). As highly productive primary producers,deefix carbon dioxide

to produce organic matter via photosynthesis (Bhars al. 2008). The accumulated biomass
is eventually released or eroded and exportedtaisugen a variety of forms into recipient
benthic ecosystems (Duggiasal. 1989; Krumhansl and Scheibling 2012; Pessarroébna
al. 2018a) . This transfer of carbon helps to susidjacent food webs. The breakdown of
detrital material by erosion and grazing activitgyades a source of particulate organic
matter (POM) available to filter-feeding invertetes (Renaueét al. 2015; de Bettigniest

al. 2020a; Vilaset al.2020) which in turn can play a major role in natisig carbon fluxes

along the sediment-water interface (Quebal. 2019; Pederseet al. 2020).

A significant proportion of primary production fromarine primary autotrophs is exported as

detritus rather than entering the consumer food (Meoreet al. 2004). In a global context,
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as much as 82% of annual kelp biomass may be &naadfas detrital subsidies (Krumhansl|
and Scheibling 2012; de Bettigniessal. 2013). Knowing the fate of such detritus is
fundamental in understanding the dynamics, convigcaind functioning of coastal
ecosystems (Polist al. 1997). Indeed, detritus enhances both primarysacdndary
production (Poliet al. 1997; Marczalet al. 2007) whilst contributing to the structure and
stability of food webs in recipient ecosystems (Elet al. 2002). Furthermore, accumulation
of detritus can physically modify the habitat sture (Arroyo and Bonsdorff 2016).

However, the influences upon recipient ecosystamsl@pendent upon the timing, frequency

and residence time of the detrital deposition (Yangl.2008).

Macroalgae represent an as yet under-estimatedtmator to the oceanic carbon cycle and
in particular to carbon sequestration and long-tstonage. Their contribution to global
carbon assimilation and sequestration is curremdtyconsidered by the IPCC (Ciaal.
2013) , and whilst the Global Carbon Project (G@ehtifies coastal habitats as carbon
stocks (Friedlingsteiet al.2019), their full contribution to the global maginarbon sink
remains neglected. Unlike seagrasses or phytolanktiacroalgae are not routinely
considered as contributors to the ‘Blue Carbon’daidMcLeod et al. 2011; Howa#dd al.
2017). Marine macrophytes collectively fix aroun8 Gt C yr’ (of which macroalgae
contribute ~1.5 Gt C yt) (Duarteet al. 2013; Duarte and Krause-Jensen 2017; Krause-
Jensen and Duarte 2016) in contrast to the ~88 @t" of phytoplankton production
(Buitenhuiset al. 2013; Middelburg 2019). However, the lability dfypoplankton carbon

and the high rate of remineralisation through comgiion and degradation mean that only in
the region of 0.23 Gt C yt (0.4%) of phytoplankton production becomes seguesdtinto
carbon stores or sinks, whilst the lower rate afstonption and refractory chemical nature of

macroalgal detritus mean that ~0.17 Gt C'y.1.4%) is sequestered. Thus, including
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seagrasses, marine macrophytes potentially cotérdbbaomparable mass to direct global

carbon sequestration to that of phytoplankton.

Species of the order Laminariales are particulianlyortant contributors to coastal primary
production (Kirk 1994) and form key constituentssbllow subtidal kelp forests across four
continents (Steneakt al. 2002; Teaglet al.2017). Along North East Atlantic coastlines, the
stipitate canopy-formingaminaria hyperbore@ominates shallow subtidal rocky
ecosystems (Smale and Moore 2017). Detrital pracludty L. hyperboreas unique because
the majority of the previous-season’s post-meristengrowth (the ‘growth collar’) is shed,
often intact, between March and May (Bartstlal. 2008); the release of this pulse of
biomass contributes significantly to the total des production (Pessarrodoatal.2018a).

L. hyperboreas detritus is a trophic resource connecting habudtich becomes increasingly
accessible to consumers as it degrades (Nordegtalg?003) and is an especially
important dietary subsidy during periods of lownieon productivity (Lecleret al. 2013a).

As well as accumulating in coastal embayments andeaches, a significant fraction of the
carbon fixed byL. hyperboredlows into seafloor depressions, low-energy habitatd deep
subtidal regions (Filbee-Dexter and Scheibling 2(Fibee-Dexteet al. 2018). Research on
L. hyperboredas already revealed that its degradation is stbative to other species and
accumulations in shallow subtidal ecosystems aleetalmaintain photosynthetic activity
across several months (de Bettigreesl. 2020b), acting as net producers for a sustained

period of time dependent upon the illumination megi

The conspicuous thermally tolerant congeneric kKetpncoet al. 2017; Hargravet al.
2017) of Lusitanian origirl,. ochroleucaBachelot de la Pylaiehas expanded its range

northwards from Morocco and across the English @elim response to the changing
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climate over the last century. Tod&y,ochroleucas expanding its leading edge eastwards
and northwards at around 5.4 and 2.5 km per yespectively (Straubt al. 2016). Its range
now overlaps substantially with the native assegagadominant kelp specids,
hyperborea(Smaleet al. 2015; Hargravet al. 2017) which has undergone a ~250 km range
contraction at its warm leading-edge since 1978s{get al. 2016). In comparison to the
pulsed detrital production froin hyperboreadetrital production by.. ochroleucas greater
in volume, more frequent and degrades faster betwksgy and October (Pessarrodaatal.
2018b). The expanding thermal envelope and subségpesad of.. ochroleucas

modifying both the taxonomic and functional composi of HFS, with resulting effects on
detrital composition. The re-arrangement of HFSeen shown to have marked ecological
implications; extending to adjacent communitiesalihiely on these subsidies of

allochthonous material (Bishagt al. 2010; Straulet al. 2016).

The ecological function of detritus varies betwspacies. Recent studies (Pessarrodna
al. 2018b) comparing. ochroleucaandL. hyperboresghave demonstrated interspecific
differences in seasonal detrital decompositionstatéth L. ochroleucaexhibiting
significantly faster rates (6.5 x) compared.tdyperboregPessarrodonet al.2018b) in
spring In addition, the species exhibit differences mitig of detrital production: thilay
cast fromL. hyperboreaccounting for ~40-60% @nnual lamina erosion (Pessarrodeha
al. 2018a) compared with the continual release oftdstfrom the fronds of. ochroleuca
(Pessarrodonet al.2018b). Such alterations to the supply and cyabihgrganic matter will
likely be amplified as sea surface temperatureease. In the North East Atlantic, a rise of >
2°C is forecast in the next 100 years (Philipgdral. 2011; Masson-Delmottet al. 2018),
which will likely result in the gradual replacemaitthe native cool-watdr. hyperboredy

the warm-water tolerarit. ochroleuca
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146 Degradation is dynamic and testing the responsietnitus across different environmental
147 conditions is important to contextualise this psscelhe depth distribution of photosynthetic
148 kelp-forest communities is strongly influenced Ight availability (Kirk 1994; Gormaset al.
149 2013; Bajjouket al.2015) and the photosynthetic mechanisms of soripesiecies have

150 been demonstrated to respond to changes in unarligitt (e.g. inSaccharina latissima

151 andL. digitata) (Gevaertet al.2002; Delebecet al.2011).L. hyperboreaandL. ochroleuca
152 forests have similar natural depth range but liglenown about the photosynthetic

153 efficiency of these two species within their degitfesholds. Investigating the degradation of
154  kelp detritus across a gradient of depth will fertelucidate its role in the marine

155 environment.

156

157 The aim of this study therefore was to monitorliheak-down dynamics and physiological
158 performance of material froin hyperboreaandL. ochroleucaacross a gradient of light
159 attenuation to investigate the influence of dettoss time. We examined biomass

160 dynamics, oxygen production, respiration and phgttheetic performance and efficiency of
161 photosystem Il of detritus from the two species. Mypothesized thdtaminariaspecies
162 have the capacity to resist degradation, maintgipnmary production function depending
163 upon the illumination regime. Following the findegf Pessarrodoret al (2018a) we

164 hypothesised that the two species should exhitfdréntial responses with respect to

165 degradation, with a quicker decomposition and kaleakn of physiological capacity fdr.
166 ochroleucacompared td.. hyperboreaWe also speculated that there would be an efffiect
167 the amount of light, and for the first time, emgally tested the influence of depth-related

168 light attenuation as a potential driver of variabiin the degradation of kelp material.
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2. MATERIALAND METHODS

The study was conducted in the Roscoff Biologidalin close to the Bay of Morlaix
(France). In May 2018,. hyperboreavas harvested at La Veille (48°42'36.22"N,
3°54'04.81"W) andl. ochroleucaat An Nehou (48°41'34.27"N, 3°56'25.52"W) fror8-10

m below chart datum. Five typical mature canopyviog individuals of each kelp species
were harvested by severing the stipe just abovaditfast. The mean total lengthlaf
hyperboreandividuals was 348 cm comparedLltoochroleucandividuals with a mean

length 0f169 cm. Within two hours of collection, the sporgigs were submerged in the
dark in a 500 L flow-through tank of aerated ambg@a water pumped directly from the Bay

and left to acclimate for 48 hours.

2.1 Experimental design

For each adult individual, three blade fragmentsafal length (20 cm) were cut at a
standardised distance (20 cm) above the meristeay tom the distal section of the kelp
blade which is subject to greater epiphytic colaien. Fragments were tagged with a unique
ID number, their mass recorded and were randondgatied to a depth (0, 15 and 30 m)

treatment. Thus there were five replicates perispewithin each depth treatment.

To simulate different light intensities across attiegradient, light attenuation optical filters
(LEE Filters, Andover, UK) were constructed to cdetely cover the aquaria (Fig. 1). A
photon flux simulating light availability at 15 ai3® mwas recreated using an average light

extinction coefficientK) of 0.14 (from Boutleet al 1974; spring and summer surveys
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around Roscoff) incorporated into equation 1, whigie availability at a specified depth
equates to:

1(t) =1 (zy)expF? equation 1.
The irradiance at depth () Idepends on the light at the surfagg),Ithe depth (z) and the
extinction coefficient of the water in the colunk) (The 0 m treatment, representing
strandline and floating detritus, were submerge8 @m of water hencg, = 0.08 m. The
percentage of light available at 0, 15 and 30 m 9898%, 12.3% and 1.5% respectively;
these values were utilised when assembling theastdilters.We did not, however, account

for the change in spectral character as a funciatepth (Saulquiet al. 2013).

Om

Fig. 1. Experimental set-up composed of filters for 15 @@dn aquaria, constant air
bubbling and HOBO loggers. Two unlabelled aquamaenused for experiments that are
outside the scope of this paper. Each aquariurtacwed five replicate fragments. The
brown squares represent aquaria Withyperboredragments and yellow squares contain

ochroleucafragments.

The fragments acclimatddr a further 48 hours before being transferrefl toaquaria

corresponding to their respective species by deptiment where they remained for the
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duration of the experiment. Each aquaria was ilestalith a wide mesh basket which held
the fragments in 8 cm of water and raised them %rom the bottom. The baskets facilitated
water circulation whilst constant aeration promatétlsion across the boundary layer
(Noisette and Hurd 2018). The six aquaria werd hreh circulating water bath system
supplied with a continual flow of unfiltered seaaafrenewal rate of 10 times the aquarium
volume per hour) located outside (Fig. 1). Thermagts were therefore exposed to ambient
temperature and irradiance in order to re-crea tiatural environment. Two aquaria were
fitted with temperature/light loggers (HOBO Pend&eaimperature/Light Weatherproof
Pendant Data Logger 16K) recording at 10-minuterirals. Data was regularly downloaded
to ensure conditions did not deviate significamityn outside conditions. Physiological
measurements (see below) began 9 days after tpadras were transferred into the
experimental system and observations were repaaftéday intervals thereafter across five-

time periods, (T1-T5) with a 19 day gap betweeram8 T6, for a total duration of 56 days.

2.2 Reproductive tissues and biomass change

Photographs of each fragment were taken at eaehgoimmt to monitor visual changes in
tissue surface (Figure S1), for example, the pmsehsorus (reproductive) tissue (Figure
S2). Repeated measures of wet biomass were takére same fragment at each time point.
Biomass changes were calculated as a percentdlge stfarting mass remaining at each time
point. Completely degraded fragments were remowedlaeir biomass from the preceding
time was recorded as mass lost. This aspect dfithevas extended to 108 days and final
biomass measurements were recorded after alldlgenents from the 30 m treatment had

degraded.
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2.3 Production and respiration measurements

Production and respiration rates were measured @sahosed bottle respirometry technique
(Migné et al 2002; Biscérét al.2019). Twenty incubation chambers, each comprisfray
1.2 L transparent glass jar closed by a watersght, were distributed across four 50 L
experimental units. The experimental units werdndiied with optical filters replicating
light conditions in the corresponding aquaria amideneplenished with the same ambient
unfiltered seawater after each set of productiahraspiration incubations. Fragments were
transferred in the dark from their aquaria into ¢beresponding depth treatment of the
experimental unit with each jar containing an indinal fragment. Two different incubations
were conducted consecutively, measuring both oxypgeduction and consumption
(respiration) respectively. Production was measdrethg a 60-minute incubation (long
enough to allow detection of a change in oxygerceontration whilst avoiding oxygen
saturation) under the experimental aquarium comasti The jars were then opened to allow
water exchange for 30 minutes and the containers wavered by dark tarpaulin to halt
photosynthetic activity. The jars were subsequemtigealed and the respiration incubations
were conducted on the same fragments for 60 mimutesmplete darkness. Dissolved
oxygen concentrations were measured before andbafte incubations (production and
respiration) using a portable multi-meter (HQ40d¢ch®, Loveland, USA) coupled with a
luminescent/optical dissolved oxygen probe (Intali™ LDO101, Hach®, accuracy + 0.2
mg L ™). At the end othe incubations, fragments were retrieved fromjang, gently blotted
dry and weighed (WW in g). Production and resparatiates were estimated by calculating
the difference between initial and final oxygesnddncentrations after being corrected for
temperature change (Aminot and Kérouel, 2004).rakes were expressed in mgkyy WW -

L hr . The production rate is a measure of Net Primaogction (NPP), which represents

the sum of photosynthesis and respiration in tandéeanwhile, Gross Primary Production

10
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(GPP) was calculated by adding the dark respiratitar(R) to the NPP to derive the total
oxygen produced via photosynthesis. The seawatgyarture and incident
photosynthetically active radiation (PAR, 400-700, umol photons rif s, Li-Cor

QuantumSA-190, LI-COR®, Lincoln, USA), were recadldevery minute during the trials.

2.4 Photosynthetic efficiency measurement

To reveal to the extent to which fragments’ photdkgtic apparatuses were active, the
operating efficiency of photosystem ®RSlIl) and the maximal quantum yield of PSII
photochemistry (F#F,) were measured using a portable pulse-amplitudedlated
fluorometer (PAM, Heinz Walz, Effeltrich, German¥).vivo ®PSIl was measured in
ambient light whereas,F~, measurements were obtained from fragments thabéen dark
adapted for 15 minutes (following Hargraeteal. 2017), before being flashed with a 0.8 s
saturating white light pulse (25@®nol photons.m? s ™). R/Fnvalues normally range
between 0.7-0.8 for Phaeophyceae and values be®imdicative of a stress response

(Bischofet al. 1999; Hanelt, 2018)

2.5 Statistical analyses

2.5.1 Biomass change

As a consequence of bimodality in the bounded bgsnaiata, a Euclidean distance-based

permutational ancova (PERMANCOVA) was used in PRRAEer 6.1 (Primer-E, Plymouth)

to test effects of species and depth (fixed fagtover time (continuous covariate), with

fragment identity (the plant from which the fragrmhemas cut) as a random factor. P values

11
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were obtained from type Il sums of squares. MD&9\Wwere inspected as a way of
identifying potential issues relating to heterogees of dispersion, though no formal tests

were performed due to the complexity of the model.

2.5.2 Production, respiration and photosyntheticgmaeters

The effects of species and depths across time tosnigegross oxygen production (NPP and
GPP), dark respiration (R) and combining NPP wihhlof R to represent a full day’s rate of
oxygen flux (NPP-R), were tested with linear mixedtiect models using Maximum

Likelihood (packagémedin R 3.6.1) (Batest al.2015; R Core Team 2019). To account for
variation in abiotic conditions across the expenimenean PAR was used as a continuous
covariate for oxygen production and mean tempegdturdark respiration (PAR and
temperature were strongly correlated). Fragmemttijewas included as a random factor and
p values were obtained from type Il Wajdtests. Plots of residuals versus fits were used to
check assumptions of analyses. Data describinghbsynthetic parameters Fv/Fm and
®PSII were analysed by similar model structure ugjageralised least squares (gls) fitting
(packagenime,Pinheiroet al 2019) due to heterogeneities of variance; PAR agasn used

as a continuous covariate; no random factor coealshtluded in the gls model, between-
plant variability being accounted for in the ovérabdel fit. P values were derived as

described above.

2.5.3 Omnibus PERMANCOVA

To examine thén toto physiological response of the two species, a naritite approach

was employed. A z-transformation was used to nasmahe physiological variables (GPP,

12
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R, Fv/Fm andbPSIl), and a Euclidean distance — based multivasgailarity matrix was
produced in PRIMER ver 6.1. This was then usedhabasis for a mixed model
PERMANCOVA with 999 permutations of a reduced maataploying the same structure as
the linear models described above; p values wetiarad from type Il sums of squares

using a pseudo-F statistic.

3. RESULTS

3.1 Degradation dynamics

The analysis of biomass change with depth indicatiemhg heterogeneity of response to the
environmental factor over time in the differentgpe (3-way interaction pseudg-fz,=
12.857, p <0.001; Fig. 2); no evidence of confongdieterogeneity of dispersion was
apparent in the MDS plots. The interspecific défgces were most apparent in the 15 and 30
m treatments, in both cases some ofLthieyperboredragments degraded more quickly than
L. ochroleucaUnder surface conditions neither species degracaétedly until after 56

days. No intact fragments bf ochroleucaremained at the end of the 108 days, while
hyperborearagments were generally still intact at this poWith light attenuated to levels

at 15 mL. hyperboreabegan to degrade after 23 days, whilsbchroleucapersisted until

the end of the study in the majority of cases. @n8most.. hyperboredragments had
completely broken down after 36 d, in contradt.tochroleucavhere degradation was

significantly slower (Fig. 2, Table 1).

3.2 Reproductive tissues and biomass change

13
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Clear evidence of sorus material was first detewatleitst conducting the final physiological

measurements, 56 days into the experimental penddoL. ochroleucaragments, one in

the O m treatment and one in the 15 m treatmeneniihe study was concluded 108 days

later, two different.. ochroleucdragments had evidence of sorus material on thaebla

surface (Figure S2).

Species B Laminaria hyperborea E3 Laminaria ochroleuca

Om

15m

30m

~
(&)

a1
o

N
(3]

-:---z-?rf-:ﬁj?nl

o =g

T

f.ﬁ.ﬂ.

9

16 23 30 36 56 108

9

16 23 30 36 56 108
Days

16 23 30 36 56 108

Fig. 2. Remaining biomass at three different simulatedtdepver time irLaminaria

hyperboreaandLaminaria ochroleucgdN = 144). Boxes indicate the interquartile range,

horizontal line inside the bars indicates the media

Table 1: Results of permanova analysis (type Il SS) ofiBértass remaining in the different
species and depths (fixed factors) over 108 daystiftuous covariate)Significant terms

(P<0.05) are indicated in bold.

Source Df Pesudo-F P

Time 1 119.37 0.001
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350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

Species 1 2.977 0.104

Depth 2 12.686 0.002
Time:Species 1 18.33 0.001
Species:Depth 2 2.893 0.066
Time: Depth 2 14.448 0.001
Time:Species:Depth 2 12.857 0.001
Fragment ID 24 6.331 0.001

3.3 Production and respiration measurements

As expected, the availability of light was the doant factor affecting GPP; both in terms of
PAR at the surfacef, 161 = 15.735, p < 0.001) and as a main effect of plastenuation
related to depthy(2.161= 92.036, p < 0.001). Contrary to expectation, &esv, across the
degradation period GPP did not decline as expeatatiyhilst the two species responded
differently to the passage of timg?( 161= 5.122, p = 0.024), it was apparent that overall
oxygen evolution was indicative of the metaboligrity of surviving tissues remaining
remarkably intact often beyond 36 days post-detacttitiig. 3a, Table 2).

Respiration (R) was independent of temperaturegiiigred strongly between speciggy(
161= 22.555, p < 0.001), and as a function of tigg (51 = 8.462, p = 0.004) and depth (

2, 161= 10.276, p = 0.006), modifying the species efflicttwithstanding the declining
number of fragments persisting to the end of tia (Fig. 3), it was clear that R did not
display a simple response over time; only the @ata. hyperboreaunder surface light

levels are suggestive of a simple linear increase time (Fig. 3b, Table 2).

Most importantly, Net Primary Production (NPP) ahgriit periods remained at, or recovered
to, positive net production levels in the majoofyfragments until the end of the 56 day trial
(Fig. 3c, Table 2). As with GPP and R, NPP diffesadngly at different depthg {161 =
88.31, p < 0.001). NPP did not differ statistigddetween the two species, but the nature of

this experiment restricts these conclusions tohibiydit daylight hours. Assuming

15



369 equinoctial fully light and dark conditions, withF® and an additional 12 h of R representing
370 afull day's oxygen flux, suggests a significarfeet of species with an additional modifying
371 effect of depth upon thig { 161= 6.244, p = 0.044). Under this ‘24 h’ model, a mcealistic
372 interpretation of differential GPP responses betwbe species can be detected (Fig. 3d,
373 Table 2).

374
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376 Fig. 3.(a) Gross Primary Production (GPP), (b) Respinati®), and (c) Net Primary

377 Production (NPP) and (d) ‘24 hour’ model of oxydlkerx (NPP-R) rates, expressed as

378 oxygen consumption or production, at three diffesemulated depths over time for

379 Laminaria hyperboreandLaminaria ochroleucdN = 161). Boxes indicate the interquartile
380 range, horizontal line inside the bars indicatesrttedian.

381

382 Table 2: Results of likelihood ratio tests based upon limaexed effect models examining
383 responses of (a) Gross Primary Production (GPPRé€spiration, (c) Net Primary

384  Production (NPP) and (d) ‘24 hour’ model of oxydlkerx (NPP-R) rates across time (56
385 days), between kelp species and depth (fixed factwith PAR or Temperature as a

386 covariate. Significant terms (P < 0.05) are indddan bold.

Source df Chisq P
(a) GPP
PAR 1 15.735 <0.001
Time (days) 1 0.566 0.452
Species 1 0.000 0.996
Depth 2 92.036 <0.001
Time: Species 1 5.122 0.024
Species: Depth 2 1.157 0.561
Time: Depth 2 6.316 0.043
Time:Species:Depth 2 4.058 0.131
Fragment ID 1 9.664 0.002
(b) R
Temp 1 0.098 0.754
Time (days) 1 6.110 0.013
Species 1 22.555 <0.001
Depth 2 2.234 0.327
Time:Species 1 8.462 0.004
Species: Depth 2 10.276 0.006
Time: Depth 2 1.369 0.504
Time: Species: Depth 2 0.047 0.977
Fragment ID 1 3.727 0.054
(c) NPP
PAR 1 9.160 0.002
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387

388

389

390

391

392

393

394

395

396

Time (days)

Species

Depth

Time:Species

Time: Depth
Species: Depth
Time: Species: Depth
Fragment ID

(d) NPP-R
PAR
Time (days)
Species
Depth
Time:Species
Time: Depth
Species: Depth
Time: Species: Depth
Fragment ID

3.833
2.032
88.311

1.246
7.147
3.589
3.704
11.22

4.050
7.924
6.215

74.259
0.007
6.861

6.244
2.893
11.226

0.050
0.154
<0.001
0.262
0.028
0.166
0.157
0.001

0.044
0.005
0.013
<0.001
0.933
0.032
0.044
0.235
<0.001

3.4 Photosynthetic response

PAR was a significant covariate for @Sl responseyf;, = 7.901, p < 0.01). Despite time

exerting a non-statistically significant effect ®®Sll (as it did upon NPP and GPP), the

response of detrital fragments clearly declined ¢lve degradation period (Fig. 4a) but

became highly variable at increasing depth, swagaaiy trend. Fig. 4b shows that,

displayed a similarly noisy decline over time. Tdaras no significant difference in the

photosynthetic response between the species. Bo#imgters were significantly affected by

depth. No interactions were significant and theretbe photosynthetic behaviour of detrital

resources from different species was not affectetine or by depth (Figs 4 a-b, Table 3).
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Fig. 4. (a)®PSll and (b) FF, measurements at three different simulated deptéstone
for Laminaria hyperboreandLaminaria ochroleucdN = 161). Boxes indicate the

interquartile range, horizontal line inside thesdbadicates the median.

Table 3 Results of likelihood ratio testing based uponeagalized least squares fitting to
examine responses of @pPSlI (b) K/Fy across time (56 days), between kelp species and
depths (fixed factors) with PAR as a covariate nBigant terms (P < 0.05) are indicated in

bold.
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405

406

407

408

409

410

411

412

413

414

415

Source df Chisq P

(a) ®PSII
PAR 1 7.901 0.005
Time 1 0.221 0.638
Species 1 0.935 0.334
Depth 2 51.403 <0.001
Time:Species 1 0.694 0.405
Species: Depth 2 2.700 0.260
Time:Species:Depth 2 1.331 0.514

(b) Fu/Fnm
PAR 1 13.418 0.001
Time 1 1.620 0.203
Species 1 0.230 0.632
Depth 2 5.981 0.050
Time:Species 1 0.428 0.513
Species: Depth 2 2.654 0.265
Time:Species:Depth 2 1.641 0.440

3.5 Omnibus permanova

The combined response of GPPd®SII and K/F, variables was strongly affected by the
light availability in terms of PARy(>, = 11.176, p < 0.001) and Deptff{ = 21.585, p <
0.001). A realistic picture of detrital degradati@vealed species responded differently to the

passage of time(f; = 9.327, p < 0.001) but not depth (Table 4).

Table 4 Results of omnibus PERMANOVA analysis of standeed data describing GPP,
R, ®PSIl and K/Fy, across time (56 days), between kelp species guith diexed factors)

with PAR as a covariate. Significant terms (P 5D &re indicated in bold.

Source df Pesudo-F P
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418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

GPP, R,®PSII, F/Fn,

PAR 1 11.176 0.001
Time 1 4.837 0.012
Species 1 8.729 0.001
Depth 2 21.585 0.001
Time:Species 1 9.327 0.001
Species: Depth 2 2.269 0.081
Time:Species:Depth 2 0.848 0.519

4. DISCUSSION

4.1. Production and respiration measurements

For the first time, the primary producer functiaislgal detritus have been quantified across
a simulated depth spectrum. Detritus continuedisbasn net production of oxygen across a
56-day period, underscoring its capacity to maimkay functions such as carbon fixation.
Detrital tissues slightly increased in biomass miyithe early stages of degradation,
demonstrating that measured oxygen productiorflscteve of fresh material being
generated. Over time, the respiration of detri@jnents, as a proxy for stress or associated
bacterial activity, increased in some contexts i{Saisd Simenstad, 2013). Evidence of some
degradation was further reinforced by a measuretingein photosynthetic performance
(®PSII and E/Fy), in accordance with the initial hypothesis. A¢ #nd of the first time

period, values between 0.6-0.8 at 15 m and 30 lactefl an optimum performance at depths
at which the kelps inhabit (Gormatal.,2013). Low photosynthetic parameters at 0 m
follow reported trends in the literature of dece=as both measurements with increasing

irradiances (fotaminaria digitatg Delebeccgt al. 2011).

Respiration is a central process in kelp decomjpos{tie Bettigniet al. 2020b) and

measured increases in the rate of oxygen consumytoe mirrored by a decline in the
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448

449

450

451

452

453

454

455

456

457

458

459

detrital biomass. However, it is important to nthtat the measurements reflect the holobiont
respiration olLaminariatissue together with its ensemble of microorganiéBasedkeet al.
2020). The results of this study reveal that tiepiration response differed between the two
species across time. Detritus fremhyperboreaxhibited higher rates of respiration
compared td.. ochroleucaover time in the 30 m treatment and only undefas@ar conditions
was a linear increase in respiration detected. féwyperboreaThis differential response
between the species may be indicative of strebggber biofilm activity associated with
hyperborearagmentsL. hyperboreadegraded faster thdn ochroleucaat 15 m and 30 m,
suggesting that low light conditions may impederdggeneration of damaged tissuelfor
hyperboreawvhich points to the role of light in determinirfgetdetrital fate of some species
(Haderet al.1998; Swanson and Fox 2007). Furthermore, in sostances, during the

initial stages of degradation at 0 and 13.mgpchroleucgoositively increased in biomass
compared td.. hyperboregFig. 2). However, this trend was reversed afted&gs in the 0

m treatment when all. ochroleucadragments were completely degraded in sharp cdritvas
the relatively intact fragments bf hyperborea4.2 Considering the first 40 days of this trial,
this result is comparable, yet contrary to theifigd of Pessarrodora&t al.'s(2018b)in situ
study comparing the biomass loss from the samey Sjpielcies. Pessarrodona et al. (2018b)
report that_. ochroleucadost biomass at a faster rate thamyperborean spring, prior to

the latter shedding of old fronds. The presentyssgparated the change in mass across
regular time intervals and elongated the tempaalkesof degradation to 108 days, as well as
eliminating physical erosion as a mechanism of adgfion, casting light on the purely
organic dimension of how kelp matter breaks dowur. K@sults suggest thiat hyperborea

has the potential to be a more persistent spatiaidy and thus may reside in the ecosystem

for longer under attenuated illumination. Howeverdrodynamics and physical processes
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such as abrasion and grazing may further confoluaidation of the decomposition process.

(Nielsenet al 2004; Braeckmaat al. 2019).

4.2. Contextualizing the findings

These differences in persistence will become irgtngdy important a&. ochroleuca
gradually replacek. hyperboreain habitats where the two species coexist, (Teagte
Smale 2018) and will be further exacerbated bys#asonal modification of detrital
production between the species; ultimately affecthre quality and supply of organic kelp
derived material entering the detrital pathway (Biset al. 2010). The extent to which
benthic ecosystems in the North East Atlantic @meddent on detritus derived frdam
hyperboreaemains unquantified. However, modifications ia thrnover of organic
material, transport (Pedersenal. 2005), trophic connectivity (Leclegt al.2013b), organic
matter content (Abdullabt al.2017) and a homogenization of the nutrient suppiymn kelp

detritus derived from different species will likdiave ramifying effects across food webs.

Extending the investigation to consider the degiadgrocess across environmental
contexts revealed that other measured physiologircalesses of kelp detritus (NPP, GPP and
®PSII and F/Fy) are not only species specific but also highlyasefent on light availability.
Depth significantly affected 24-hour oxygen fluxdaihe Species response to the effect of
Depth was significantly heterogeneous in the ca$®ih respiration and the 24-hour model
of oxygen flux (Fig. 3b and d). Therefore, considgthe dynamic nature of detrital

transport, the depth to which detritus is expodigaificantly determines the carbon fixation,
respiration and photosynthetic performance of keferial (Filbee-Dexter and Scheibling,

2016). Furthermore, detritus was clearly less pctide as a function of decreasing irradiance
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from O m > 15 m > 30 m (Fig. 4a). Photosynthetigazaty was critically impaired at O m,
probably as a result of photoinhibition (Delebet@l. 2011), but remained mostly invariant
between 15 and 30 m. Although the activity of thetpsynthetic apparatus was maintained
in low light conditions, the decline in oxygen puation is indicative that detritus is a less
effective primary producer at 30 m. The differimgponses of respiration in the two species
over time and at different depths highlight that gnocess of degradation needs to be
considered across different environmental conditiith a temporal dimension. Species’
respiration fluctuated across time and their respamas dependent on light attenuation,
which indicates that one species may have the ploggcal capacity to persist for longer

than its congener at a specific depth.

4.3. Re-defining kelp detritus

An unexpected result was tHatochroleucaragments developed visible sorus tissue at gsei¢i
surface indicating that such fragments remain dapaflomaintaining reproductive functions (Fig
S1). Moreover, this was detected first for two fregts during the final time period (T6) in July.
Visible sorus remained at the blade surface twepeddent.. ochroleucaragments when the
experiment ended 108 days post fragment preparatiS8eptember. This time window is in
accordance with the reproductive periodlfoochroleucaPereiraet al 2019), further revealing the
metabolic competency of the kelps post-detachnfemther research would be necessary to
determine spore viability from such tissues. ddiBeieset al. (2020b) reported a similar
phenomenon fok. hyperborean October after subjecting detrital fragment$ tmonths of
degradationn situ. In terms of reproductive capacity, some of thergy generated by detrital
photosynthesis is invested into the generatiorpfaductive tissue which potentially has

considerable implications for the dispersal of éhggecies. If current-borne kelp detritus can still
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reproduce, then kelp populations structure isViltelbe far more fluid than would be indicated by
typical spore or gamete dispersal, which is lowifolividual sporophytes within a kelp forest (~ 5-
200 m, Fredriksempt al1995). This phenomenon compliments the functiool@ of herbivores in
increasing fertilisation success and dispersing kpbres which germinate post-digestion (Bual.

2018).

Another important outcome of the present studya@hédr recent work on physiological
viability of macroalgal ‘detritus’ (de Bettigniest al. 2020b) is a questioning of the rationale
behind defining this material as ‘detritus’. Cutfgncast or detached macroalgal fragments
are considered as ‘non-living’ organic matter gatest by the growth and production of
living organisms (Hageat al.2012): a viewpoint that is based upon terrestrdbical
science. Although such tissues may be no longactat], and as our data suggests, may be
in the process of slowly entering the detrital faeeb, they remain ‘alive’ and
physiologically competent for much longer than vebbeé typical for tissues of land plants.
This ‘productive necromass’ — physiologically pstent and viable, unattached or
fragmented algal biomass — continues to photosgitbend, in the right conditions, can
continue to fix carbon for months after it wouldhetwise be inaccurately defined as detrital.
Our study has demonstrated that kelp detritus gatas productivity for long periods of
time and therefore detrital contribution to Bluerl@a is likely to be much greater than has
been previously accounted for. Accordingly, incogtimg productivity from macroalgal
detritus could account for important increaseh&dontribution of macroalgae in the Blue

Carbon economy.

4.4 The role of kelp detritus in benthic ecosystems
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The vast majority of kelp production enters theititpathway (about 82% according to Krumhansi
and Scheibling 2012), therefore fundamental valitgbn the respiration and photosynthetic
performance of kelp material across time and udd&arent environmental conditions are important
for understanding the persistence and productofigjetrital resources. The composition of kelp
forests and thus their detritus, will likely be nifegtl as climate warming persists (Smale et al.
2015), with the gradual increase of HFS with higirimal affinities and gradual local extinctions of
native HFS with cooler thermal affinities (Wiensl®). These replacements will likely impact many
aspects of the cycling of organic material, froma $ipatial subsidies exported kelp matter provides,
to the fitness of grazers and detritivores feedipgn it, and the rate of carbon sequestration into
longer residence forms in the benthos. Pessarroeloaia(2018b) speculated about an alteration in
the functional importance of this detrital matedak to a variation in the rate of supply from
different kelp species. Here we have shown thattimtinued biological activity of fragmented kelp
tissues also differs between species, across tmhemvironments, further altering the contribution

of kelp mass to spatial subsidies (Lecletal.2013a).

This study provides a snapshot of the degradatyoamiics of two kelps under controlled
conditions. There are numerous potential souraesrfor; for example a change in detrital
respiration could be attributed an upregulatiometabolic processes in hyperboreaor to an
increase in oxygen consuming saprophytic bactewfangi (Fenchel and Jgrgensen, 1977,
Williams et al.2004). Furthermore, variation in species physiologgnot be generalized across the
entirety of benthic ecosystems in the North Eatdmic because despite advances in areas of low-
moderate wave exposure (Smateal.2015),L. ochroleucamay not be able to fully replate
hyperborean sites exposed to high wave exposure (Pessaramd@l. 2018b) and therefore the
composition of detritus from such assemblages ramam relatively unchanged. Also, the role of

macrofaunal colonization and consumption (de Beigiget al. 2020; Ramirez-Llodrat al. 2016) of
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560 the kelps in question could change the degradatoamics completely. Hargraee al. (2016)

561 reported lower concentrations of grazer-deterriolyghenolics and flavonoids in ochroleucahan
562 in another common NE Atlantic congenkerdigitata, with higher grazing rate by herbivorous

563 gastropods in the former. Meanwhile, Pessarro@b (2018b) found a similar herbivore

564 preference fok. ochroleucaoverL. hyperborearecording a faster degradation of the former. If
565 detritivore preference for the more palatabl@chroleucamirrors that of grazers, then the

566 reconciliation of the slower degradationlofochroleucan the earlier stages of the present study
567 with the fastein situdegradation ok. ochroleucaobserved by Pessarrodogtaal. (2018b) could be
568 attributed to mechanical effects, especially ofeapres aiding conversion of frond tissue into

569 coarse particulate organic matter and facilitatmggess by saprophytic micro-organisms. Future
570 study should therefore aim to evaluate the impagaof the ecological consequences of

571 environmentally realistic deposits of macroalgatities with their attendant bacterial and

572 detritivorous assemblages and also continue to acerpe detrital compositions from species at risk
573 of local extinction from a variety of range-expamglor invasive algae (Sorét al.2010), taking into
574 account different environmental contexts in whielfpkdegradation may occur, testing the

575 degradation responge situacross a gradient of turbulence, and explicitgufing on detritivores as
576 adriver of tissue fragmentation and a facilitaibmicro-organismal colonization. These questions
577 have indeed been addressed in other contexts sygainom shallow shorelines to the deep sea
578 whilst the shallow subtidal has often been consid@&s a mere transitional deposition area.

579 However, we argue that detrital accumulations camteneasurable impacts on ecosystem

580 functioning and deserve enhanced attention.

581

582 5. CONCLUSION
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Kelp fragments remained physiologically competentd6 days and possibly reproductively
active for up to 108 days after they were cut fthmnthallus. The fragments’ photosynthetic
apparatus continued to function adequately to alibart-term (~ 56 days in ochroleuca

net gains in biomass which was sustained underambght levels. Light availability was
the greatest determinant of photosynthetic perfageaand net and gross primary
production, whilst light and interspecific differees dominated the response of respiration.
The range-expanding ochroleucabroke down more slowly under attenuated illuminatio
challenging previous findings. We believe that-@valuation of recently formed macroalgal
detritus as ‘living material’ is due and shouldtearly be considered when evaluating the
functional integrity and spatial subsidies affordigckelp forests. The predicted expansion of
the thermally tolerant specids, ochroleucaand replacement of the less tolerant
hyperboreaacross extensive areas is likely to alter theiegabf organic matter. Overall,
these findings demonstrate the indispensable reednsider detritus as an important

autotrophic resource, even after exportation, deipgnon the environmental conditions.
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Supplementary tables 1-4 contain abridged statistables following permanova, linear
mixed effect models and generalised last squargysis to support the summary statistics

guoted in the manuscript.
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Sustained productivity and respiration of degrading kelp detritusin the

shallow benthos: detached or broken, but not dead.
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Marine Environmental Resear ch Highlights-

* The term ‘detritus’ should be revised when refeytio kelp material
» Detached kelp material continues to photosynthesisgefix carbon for months

» Light availability strongly influences productivignd photosynthetic performance
« Material from warm-water and cold-water kelp spsadegrade at different rates
« The cycling of organic material will likely be mdigid in a changing climate
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