The Effect of an Axial Force on the Vibration of Hinged Bars BY S .

WOJNOWSKY•KRIEGER1

It can be shown that the vibration of an exten&ihle bu, can:ying no tmnaverse load and havh:tg the ends fixed at the l!lupports, causes an axial tensile force with a period equal to the half�period qf the vibration of the bat, This m� modifies the process. of th'.:! vibration to a -nonlinear one and produ� an increase of th.e frequency ofvibrati(ln a«:ording to the Wc.-ease of the amplitude.

NOMENCU TUllE

The follnwing nomenclature is used in the po.per: llength of bar y = inst.Antaneous deflection of a.ny point dimentdons; however, it must be small enough to t"epreisent th1:1 curvature of the defiooted J?u: by the approximate exprossi on b"i;/b.w'.

In the absence of txa.ns veroo load, the deftection of the vibra.ting bar, Fig .

l, ia defined by the differential equo.tion

O• y b y� O'tJ B �• "" -µ._ b t• +(So+ 81) �•,,, •..... {lJ , ra. l
The value So being gi�, we will first ex}lreSfl the unknown force 81 through the dellootion y. The amount of &pproaoh of both hinged ends of the bar due to the deJleetion is

Al -�f,1 (�) ' @r •••••••••••• •••• [2]
Now, the axial force 81 produ!lel! "'°elongation of the bar

(I t) S,l ( EA) Al =S 1 EA-(i "'EA 1-li , ....... [ 3 ]
It may be seen from the last e.xprossi on that the constant 1/fJ l.'itL1l be omitted in our further investiption without any loae of geuerality. lf, in fact, the actual 1101lll l tant 1 /If 

•••••••• : •• {5)
Substituting the last expxeMion in Equation.

[1]1 we. obtain The effect of the amplitudeon the incrense ot the rreq�ncy b.

!lOO n from Table 1. 

.. • • • ••• • [24)
. where 'i' dllJloteM a quadric in '/I. The invenie of this integral is again a.n elliptic function. Contrary W the result given in Equa tion [13J, it would represent a no nsym.m.etr:imU n'bratiori abo1tt. the axi.811 "'" 0 of the undA!fleeted bar. Soi;.UTION BT B£SSE L FtrNCTION:!I A. solu.tion analogous to Eq_ua.tion [14] can be obtained. b/ J meMS of Be:mel functi� for the ease of a vibrating" circular plaOO wiUl fixed edgq:, if tml defioot.ed surfa.ee of the plate-ia a&rumed a surface-of rovolution.. B'.owever, sueh a solution would be of little prn.etical interest. In fact, if the amplitude of r. he vibt11-tion of the plate remains sina.11, es eompMOd with its t.hicknem, the i.nfluence of the e�rnal forces a.etingin the middle plane can be practjeaJly :D.eglected. However, if the defteutio ns of the plate p.re Cl�l'tlparable with its thi� the well-known theory of bending of pla.tes with large de:fleotionfi must be taken $8 the basis tor further investigation, and th& whole problem of vibrations then becomea much JilOl'9 complicated.
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  •-.;s1n-, -...... . ... . ... ... !71 the ge(nlll.'l trical eoriditfurui at the hinged ends of the bar are

  -;; •....••.•••...•..•.•• [161 In the absence of axial forees (we can get this e98e � s� = O, r .... . "" and thus obtaining a "" O, k ,.. O, K = r/2) the frequency beoome!I «!G = Pf! .•..•..........••.... (171where po• ""' n•T•B/,d•. Coropa.ring this weJJ,.known resnlt with the caoo in which the ends of the bar a.re fixed {S, � 0), but the initial axial force ia zero (S� = O}, we have by Equa tion[IOI ...... [18) 

  critiCll.l value of the compreooi ve fortle in a vi bra. ting bar Di lar;er than the Euler load P-.. -when the deflection i;; zero, and it decrell.ses to the. wlueP = P�-l')'.Ul.X S1 = P�•••••••••• ...1221 at the instant of the rna.ximum detleetion (,P ... 1). Until now, n.o tr�verse load on the bar bas been assumed . T:too ting the I)tQblem more rigorouely, we should introduce at leMt a load eommem>urate to the mMS oI �he bar. This load CMl be. replaced with sufficient aeeinacy by a trnasvere load folkiwing the law .... [231 [ntrodueing the load q in Equation [l ], we ea.o. reduce our r•rnbtem to the evaluation of AJl elliptic integral of the Mat kind ! m [ :;

  The usual theory of vibration ol the btl.t'fl is balle d on the aaaump tion that one end of the lw-, being free to mow in an axial direetio n, an extensio.nle&l deflection of the bar ill obtained . ln t.eelmieal practice we often have to deal with Immovable end binpi, or with hinges � with support.sin wch a manner that, as the end!; approach: each <>ther, e. tensile. foree bf produced in the bar--which. is proportiowi,l t.o the amount of that motion. fn these eases the efrect of the a:xfal force on the prooesB Qf vifm:L..

	tion must. be investigated. Further, we 8llSl ll ll l'l an initial tensile force and an exl:enfii bility of the bar . The deflection of the bt.r

z, of bar E "" Young's modulus of mat.eria.l A. ,.. cr�onal area. of bar d ... El "" flexural rigidity of bar r "" v' I/ A ... radius of gyration fJ ""' spring oonst&nt of suppor\3 of bar relative to &Jdal dieplace-.,.nt s� ... initial it.rial «insile force of bar S1 = axial tenaile fofl:le due to defumtion q = traOS'Verse load pei:-unit length t = l.ime iJ; "" a function oft alone ,.. ... vil:iration mass pet mrit length of bM a = half amplitude of vibration l:l! = a/r "' ... frequency in radians Pfil' ooo n .. pasitive integers P" "" � = Euler's load Qf bar f,,r buckling fonn with n half .. v,, Po ..,. -Soinitial oompr eoo ive load of bar Vnnu,Ttoo OF BiBs dOM not need t.o be om.all in comparison with its transverse 1 :Frankfort-on.•Main, Ge:tmADy.

  F-0, we should.only rephloo the actual area A in our final rewlta by the reduced value

	A '.,.	48A . 1-� "	.	. (41
	Equating now the ExpMlflions (2J and (3}, we get S , ... lt'A �	

. . .. . . .... . . . ... . = :t;.;:1 (�) t d.1:

  �tisfied. Using Eq.JMl.tion [6), we get the following egua.tion . [81 �fultiplying this by (d,f,)/(dt) &nd integrating the result 00.tWt1en the l'.WL\imun � deflection (f "" l, [d+J/ldt] .., 0) and a.ny

	tor 1f ;;i. +7"'"'0, . defleeti()n 1/1, we obtain d� n'1t4 a' B (n _ �'lf"•B n't'2Sn) di' = -��,,_ , _
	U\1ing the t1.hbrevia.tions
	•nd Bquation' (9] ...... [101 . . . I 1 ii
	. l 12]
	.... [13\

. beoomes [i±.. j . . 1,.,. tl -'/i �)(k"f,' + l -kl)

d(pt)

The solution of Lb.is eqJMl.tlon is

>/I = cn[p(t + M, kJ .

where k i$ the modulus of the elliplie function and kt a oon:.tant vf integra.tion, which we tl\Jl make zero, Now, hy Equatj on [7], each e.. "CpreBHion of the form . •= u ... a sm -1 -en (pt, k) .. . . . ,.

[14] 

with n ""' 1, 2, 3,. . is a pO&Sible oolutkin of Equation [ lJ. But this epti.on iB nonlines.r in y, and for this formal reason a super position of any solut.ioll.8 o{ t.he form, Equation (14), W not p.rae tieable. The obvious meehani ca.1 reeo on for difficul ty in obtain• ing a general solution of the problem ilJ the coupling eff eo'.!t of a.rial forC!ffl resulting from eaeh particular aolution of the form of EqWl.tion

[14]

.

The period of the :function cn(:pt, k) is "" � • J."' 12 a,, . •-.... v'1 -k1 sint,, and the eorresp0 nding frequency

  We have now to eoll.8ider the effect of the initial a.xi.al force s�. At firgt let Su be positiVtl, by Equations [10] and [16] the fre quency w then increases if the value 80 is inerea.sing. Now• Wt Su beeome negative. \Vhile :sol = P� ineress ee , the frequenc:• "' deen"a.Se5, and it vanWbes if Po = P. (1 + 1).

	TABLE I EFFECT OF A\\tPtlTUDl!fON INCREASE OF FREQUENCY 0 0.1 0.2 , .. 0.6 0.8 .. 1 ... 1 1.0008 1.01)38 1.015 t .038 1.0118 • 1U � . 5 2 • ' ..1 .. � 1.080 �:�� t.!l�fl t.976 2.3!i
	HenC\l tile frequency of this forot! i� equM to 2w !l.nd its IlllUi mum value i�
	.... [20[

P � being that Eul11r load which corresponds to the orthogtJUal function y ""' sin (nn)/l .