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Abstract  

The neural monitoring of visceral inputs might play a role in first-person perspective, i.e. the 

unified viewpoint of subjective experience. In healthy participants, how the brain responds to 

heartbeats, measured as the heartbeat-evoked response (HER), correlates with perceptual, 

bodily, and self-consciousness. Here we show that HERs in resting-state EEG data 

distinguishes between post-comatose male and female human patients (n=68, split into training 

and validation samples) suffering from the unresponsive wakefulness syndrome and patients in 

minimally conscious state with high accuracy (random forest classifier, 87% accuracy, 96% 

sensitivity and 50% specificity in the validation sample). Random EEG segments not locked to 

heartbeats were useful to predict (un)consciousness, but HERs were more accurate, indicating 

that HERs provide specific information on consciousness. HERs also led to more accurate 

classification than heart rate variability. HER-based consciousness scores correlate with 

glucose metabolism in the default mode network node located in the right superior temporal 

sulcus, as well as with the right ventral occipito-temporal cortex. These results were obtained 

when consciousness was inferred from brain glucose metabolism measured with Positron 

Emission Topography. HERs reflected the consciousness diagnosis based on brain metabolism 

better than the consciousness diagnosis based on behavior (Coma Recovery Scale-Revised, 

77% validation accuracy). HERs thus seem to capture a capacity for consciousness that does 

not necessarily translate into intentional overt behavior. These results confirm the role of HERs 

in consciousness, offer new leads for future bedside testing, and highlight the importance of 

defining consciousness and its neural mechanisms independently from behavior.  

Significance statement  

Detecting consciousness without relying neither on overt behavior nor on asking to mentally 

perform a specific task is both a fundamental issue pertaining to the nature of consciousness, 

and a clinical challenge. Here we show that the transient brain response elicited at each 

heartbeat captures residual consciousness in the resting-state EEG of post-comatose patients. 

The results show that brain responses to an internal bodily signal might help specify the gray 

zone of consciousness, i.e., the fleeting conscious feelings that are not necessarily associated 

with the performance of a specific task nor translate into behavioral outputs.  
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Introduction 

We recently proposed that the neural monitoring of signals ascending from the heart and 

gastro-intestinal tract plays an important role in consciousness (Park and Tallon-Baudry, 2014; 

Tallon-Baudry et al., 2018; Azzalini et al., 2019). Visceral inputs are intrinsically private and 

might thus be self-specifying. More precisely, the neural responses to visceral inputs would 

contribute to conscious experience through first-person perspective, or the bodily-centered 

viewpoint from which we subjectively experience both the environment and inner mental life 

(Blanke and Metzinger, 2009). This represents a core component of the simplest, but also most 

elusive, aspect of consciousness. A number of experimental results in healthy adult participants 

support this hypothesis. How the brain transiently responds to heartbeats can be experimentally 

measured by averaging EEG or MEG data time-locked to heartbeats, to generate the heartbeat-

evoked response (HER) (Schandry et al., 1986). In healthy participants, HERs predict 

perceptual consciousness (Park et al., 2014; Al et al., 2020), reflect bodily consciousness (Park 

et al., 2016; Sel et al., 2017) and the self vs. other distinction (Babo-Rebelo et al., 2019). HERs 

also co-vary with the self-relatedness of spontaneous thoughts, as rated by participants 

themselves (Babo-Rebelo et al., 2016a, 2016b), suggesting that HERs do capture a component 

of consciousness not related to task performance. We thus hypothesized that heartbeat-evoked 

responses and their fluctuations could be a marker of consciousness even in the absence of overt 

behavior or mental response to instructions in the resting-state EEG of post-comatose patients 

with disorders of consciousness. 

Probing consciousness in the absence of overt behavior is theoretically motivated but 

remains an experimental and clinical challenge. Consciousness is defined by the existence of 

subjective experience and inner mental life (Chalmers, 1995; Block, 2005), that does not 

necessarily translate into overt behavior (Tsuchiya et al., 2015) – in other words, subjective 

experience is necessary for consciousness while overt behavior is not.  If follows that 

experimental work should focus on the neural mechanisms giving rise to conscious experience, 

rather than on the cognitive processes required for report in healthy participants (Frässle et al., 

2014).  In clinical practice, the threshold for (un)consciousness is currently placed between 

patients showing eye opening but only reflex-like responses to the environment (Unresponsive 

Wakefulness Syndrome; UWS (Laureys et al., 2010)) and patients with fluctuating but 

reproducible signs of non-reflex behavior (Minimally Conscious State; MCS (Giacino et al., 

2002)). The clinical rationale is thus based solely on behavioral signs of consciousness (Bayne 
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et al., 2017). In addition to the criticisms raised above, measuring consciousness from behavior 

is an issue in patients who might suffer from motor, sensory or cognitive deficits, or in patients 

lacking the motivation or attentional resources to respond to the command. Consciousness 

indices based on brain activity and which do not require patients' active participation have been 

developed and validated, such as neural responses to magnetic stimulation applied 

transcranially (Casali et al., 2013; Casarotto et al., 2016), or cerebral glucose metabolism at rest 

obtained with 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) (Tommasino 

et al., 1995; Rudolf et al., 1999; Laureys et al., 2004; Nakayama et al., 2006; Thibaut et al., 

2012; Gosseries et al., 2014; Stender et al., 2014, 2015). While behavioral assessments remain 

the clinical standard (Giacino et al., 2018; Kondziella et al., 2020), brain imaging provides 

complementary information in patients without command following, and is recommended by 

the European Academy of Neurology (Kondziella et al., 2020). In particular, FDG-PET seems 

useful to detect residual consciousness, or predict potential for consciousness recovery, from 

brain metabolism in patients without any behavioral sign of consciousness  (Stender et al., 

2014).  

We tested whether HERs could reliably detect residual consciousness in post-comatose 

patients with disorders of consciousness using resting-state high-density EEG data (n=68; 

training sample n=38; validation sample n=30, see Table 1). To probe consciousness 

independently from behavior, we used the neuroimaging diagnosis of consciousness based on 

resting-state brain glucose uptake obtained with FDG-PET. EEG was measured during the FDG 

uptake phase. We further explored cases where the PET-based diagnosis was not congruent 

with the behavioral diagnosis, obtained from repeated standardized clinical assessments using 

the Coma Recovery Scale-Revised (CRS-R, (Giacino et al., 2004; Wannez et al., 2017)).  
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Material and Methods 

Patients  

Patients included in this study were referred to the University Hospital of Liège between 

January 2008 and October 2015 for a one-week assessment of their state of consciousness. This 

included the acquisition of resting-state FDG-PET, high-density EEG data and CRS-R 

assessments.  

Included patients presented a prolonged (at least 28 days) disorder of consciousness 

after severe brain damage, based on international guidelines and repeated CRS-R assessments 

(Giacino et al., 2018). Exclusion criteria were being under-age or suffering from pre-existing 

psychological or neurological diseases, sedative drugs, FDG-PET and EEG contraindications. 

For the purpose of the present study we trained classifiers on the consciousness diagnosis based 

on the assessment of FDG-PET data, hereafter termed PET-based diagnosis as in (Stender et 

al., 2014). More details on the PET-based diagnosis are provided in the section "PET data and 

correlation with consciousness scores". Similar analysis were performed using the clinical 

diagnosis based on the best assessment with the Coma Recovery Scale-Revised (CRS-R) out 

of at least five assessments (Wannez et al., 2017), hereafter termed CRS-R diagnosis. The CRS-

R assessment is based on at least 5 assessments performed on separate days within the one-

week hospitalization, including one CRS assessment systematically performed just before PET-

EEG data acquisition. The assessment with the highest indication for consciousness, or best 

diagnosis, is retained for final CRS-R diagnosis (Wannez et al., 2017). The consistency of the 

CRS-R diagnosis corresponds to the percentage of sessions where the patient reaches his/her 

highest indication for consciousness. In the present dataset, the mean percentage of consistency 

across patients was 63%±4 SEM. Within the subgroup of patients where FDG-PET analysis 

indicated MCS but CRS-R indicated UWS (MCS*), the consistency of CRS-R assessments was 

100%. 

A total of 129 patients were included in the study. As detailed in the Result section 

('Extracting of the electrocardiogram from EEG data'), data from 61 patients had to be discarded 

from further analysis because it was not possible to extract 5 minutes of good quality 

electrocardiogram from their EEG data. The final analysis of EEG data thus included 68 

patients (see Table 1 for demographic information).  



 7 

The study was approved by the ethics committee of the University Hospital of Liège. 

Patients’ legal guardians gave written informed consent for approval of participation in the 

study, as required by the declaration of Helsinki. 

 

Data acquisition 

FDG-PET data were acquired as described previously (Stender et al., 2014). In short, 

the patients fasted for at least 6 hours before commencing the PET procedure. Patients remained 

in a dark room for approximately 10 minutes before and 30 minutes after injection of 150-300 

mBq [18]F-FDG, after which the PET was acquired. Patients were in resting state with eyes 

open. They were aroused when necessary following the same arousal facilitation protocol as 

used for CRS-R assessment (Giacino et al., 2004).   

EEG was recorded during the FDG uptake phase, i.e. after FDG injection, but before 

tomography begun. High-density EEG recordings were obtained from 256 scalp sensors using 

saline electrode nets designed by Electric Geodesics, with a sampling rate of 250 or 500Hz. 

EEG recordings were performed during the dark period of the FDG-PET protocol (i.e. about 10 

minutes before until half hour after the [18]F-FDG injection). The EEG net was removed before 

the PET scan was performed. In 8 patients, and 5 additional healthy control subjects, an 

electrocardiogram (ECG) was obtained from electrodes placed below the left and right clavicles 

using the Polygraph input box (Electric Geodesics).  

 

EEG data preprocessing 

EEG preprocessing was performed using the Fieldtrip toolbox (Oostenveld et al., 2011) 

in Matlab R2016b. Data were downsampled from 500 Hz to 250 Hz when applicable, offline 

filtered (1-25 Hz Butterworth band-pass filter with a Hamming windowing at cutoff 

frequencies) and z-scores per channel over time were calculated.  

The first step in data analysis was to identify a 5-minutes time window of good quality 

EEG, where chances to derive an ECG from EEG data would be maximized. In each candidate 

5-minute time window, we quantified noise as the total duration of EEG segments exceeding a 

z-scored amplitude of 20, across all channels. In each of the 129 patients, the least noisy 5-

minutes time window was retained for further analysis.   
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Within the selected 5-minutes time window, we then identified artefacted channels. We 

computed the area under the curve of the z-score amplitude over during the selected 5-minute 

for each channel and examined the distribution across channels. Channels exceeding +3 

standard deviations of the AUC distribution for all channels were discarded (77 ± 4 SEM 

channels rejected on average, most often located over cheeks and neck). This procedure was 

iterated until all channels satisfied the +3SD criterion, or more than 50 channels had to be 

discarded, at which point the participant would be excluded from further analysis, a case that 

did not occur in the present dataset. To further identify bad channels, we computed the 

correlation between each channel and its neighbors to identify channels with low correlation, 

indicative of artefacts such as poor contact. Neighborhood relationships were computed using 

the default neighborhood definition in Fieldtrip considering as neighbors’ channels up to 

distances of 4 cm. For each channel, we computed a mean correlation score corresponding the 

mean correlation with neighbors, weighted by the distance between channels. Channels with a 

weighted-by-distance correlation lower than 60% were replaced by spline interpolation of 

neighbors. 

After ICA correction (see below for details), we restricted the analysis to the 175 

channels located on the scalp, excluding channels on face and neck. Finally the EEG dataset 

was re-referenced using a common average and reduced to the same 64 channels set in each 

patient, corresponding to standard scalp locations in the 10-10 system (Luu and Ferree, 2000). 

 

Extracting the electrocardiogram from EEG data (ICA-ECG) 

EEG electrodes measure brain activity but also electrical cardiac activity. This is known 

as the cardiac artefact (Dirlich et al., 1997). It follows that it is possible to recover the 

electrocardiogram (ECG) from scalp EEG data (Raimondo et al., 2017). To extract the ECG 

from EEG, we used Independent Component Analysis (ICA) to obtain ICA-corrected EEG data 

on the one hand and an electrocardiogram derived from independent component analysis (ICA-

ECG) on the other hand. This procedure was successful in 68 patients. Out of 129, 61 patients 

were discarded at the ICA-EEG stage, 50 because ICA-ECG extraction was not successful, and 

11 because artefact-free ICA-ECG could not be obtained in 5 minutes of continuous recordings.  

We obtained the independent components using the ‘ICA extended’ algorithm (Jung et 

al., 1998). The ICA component showing heart-induced activity with the clearest R peaks and a 

gradient ear-to-ear amplitude topography (Dirlich et al., 1997) was selected for further analysis. 
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If the R peaks were not clear in part of the 5-minutes segment, we selected a new 5-minute 

segment, and performed the whole preprocessing again starting from the bad channels’ rejection 

onwards. ICA components related to cardiac activity were removed from EEG signals. The 

output of this procedure is thus a 5-minute segment of EEG data ICA-corrected for the cardiac 

artefact, and a corresponding 5-minute segment of ICA-ECG, i.e. the electrocardiogram 

extracted by ICA from the EEG data.  

R-peaks were detected on the ICA-ECG using an automated process. First, a time 

window containing at least 5 R-peaks with good signal-to-noise ratio was manually selected. 

Epochs from 400 ms before to 400 ms after each of those 5 R-peaks were averaged to generate 

a heartbeat template specific to each patient. The template was then correlated with the entire 

ECG signal to automatically detect the R-peaks. Correlation’s local maxima, indicating the 

presence of a heartbeat, were detected over the whole 5-minute ECG data, in sliding time 

windows of a duration equal to the mean interbeat intervals duration obtained in the template 

plus 200 ms, computed at each sample. To limit the number of false positives, consecutive 

detected peaks separated by a duration smaller than the estimated mean interbeat interval 

duration minus 200 ms were discarded automatically. Both peak detection and resulting 

histogram of interbeat interval duration were visually inspected in each patient and manual 

addition/removal of peaks were performed if needed (13 ± 2 SEM manual corrections of 

individual heartbeats on average).  

The accuracy of the heartbeat detection procedure from ICA-EEG was subsequently 

validated in a dataset of 13 participants (8 patients, included in the 68 patients analyzed here, 

and 5 additional healthy participants) where a regular ECG was also recorded. The validation 

consisted of a Pearson correlation of interbeat interval time series and power spectrum between 

0-0.4 Hz, and percentage error of the power in the three frequency bands typically used to study 

heart-rate variability (0.03-0.04 Hz, 0.04-0.15, and 0.15-0.4Hz) (Task Force of the European 

Society of Cardiology the North American Society of Pacing, 1996). 

 

Heartbeat-evoked responses 

The HER corresponds to brain activity evoked by each heartbeat, and can be analyzed 

by averaging EEG data time-locked to heartbeats (Schandry et al., 1986). The HER was 

computed after the rejection of cardiac artefacts with independent components analysis, bad 

channels interpolation and re-referencing to a common average. Epochs of pre-processed EEG 
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data were defined from each R-peak to 500 ms after. Epochs with an amplitude larger than 300 

µV on any channel, or where the next or preceding heartbeat occurred at an interval shorter than 

500 ms, were discarded. Epoched data were smoothed using a 30 ms time window with an 80% 

overlap, resulting in 20 time points.  

We generated surrogate heartbeats to test whether locking EEG data to real heartbeats, 

as in the HER analysis, improves classification accuracy as compared to analyzing EEG data 

at random moments. Heartbeats were reallocated at pseudo-random timings with interbeat 

intervals larger than 500 ms. In each patient 1000 surrogate heartbeats were generated to 

compare classification accuracy obtained using random segments of EEG data locked to 

surrogate heartbeats and the classification accuracy obtained on EEG data locked to 

physiological heartbeats. Classification based on 500 ms EEG segments locked to surrogate 

heartbeats was performed using the same rejection criteria and the same classification features 

as classification based on EEG epochs locked to heartbeats. Note that a number of 500 ms EEG 

segments necessarily overlap with HERs, since the interval between heartbeats falls most of the 

time in the 500-1000 ms range. 

 

Multivariate analysis 

We used a machine learning approach of multivariate analysis to distinguish between 

MCS and UWS patients (Sitt et al., 2014; Raimondo et al., 2017; Engemann et al., 2018). We 

followed machine learning good practices to maximally reduce the biases of prediction models 

(Woo et al., 2017; Steyerberg et al., 2018), such as exploration in a training set with cross-

validation followed by prospective validation of the model in an independent test sample, as 

well as chance level estimation to take into account the influence of an unbalanced number of 

UWS and MCS patients (Pal, 2005; Verikas et al., 2011).  

We first considered a group of 38 patients (training set) for exploration purposes, in 

which we performed cross-validation to build the prediction model. We performed a 3-fold 

cross-validation (MCS/UWS in each fold: 11/2, 10/3, 10/2) without hyper-parameter 

optimization. Its generalization ability was tested in a new, independent set of 30 patients 

(validation set). Participants were pseudo-randomly assigned to the training set (31 MCS and 7 

UWS) and validation set (24 MCS and 6 UWS) to obtain similar proportions of MCS and UWS 

in both sets by author JA. The authors performing the prospective validation (DCR, CTB) were 

blind to patients' diagnosis in the validation set. 
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We used Random Forests (RF) classifier, as implemented at 

https://code.google.com/archive/p/randomforest-matlab/ (Breiman, 2001), with 1000 trees and 

a number of features at each node equal to the square root of the total amount of features 

available, and all other parameters set to default. Compared to other classification approaches, 

such as Support Vector Machines, RF performs better with noisy and high-dimensional data, 

limits over-fitting and adapts better to unbalanced datasets (Breiman, 2001; Pal, 2005; Verikas 

et al., 2011). We nevertheless verified that validation accuracies were larger than chance using 

a permutation test. We estimated chance level accuracy by computing 1000 classifications 

where the labels UWS and MCS were randomly assigned, while maintaining the original 

number of labels in each category as well as the original number of patients in the training and 

validation sets (Ojala and Garriga, 2010; Combrisson and Jerbi, 2015). We then compared the 

distribution of chance level accuracy with the empirical accuracy and derived the corresponding 

Monte Carlo p-value. 

A RF classifier is based on a large number of decision trees that choose their splitting 

features from a bootstrap sampled subset of features. As a result, one can estimate the relevance 

of each input feature for classification, using the “Gini impurity index” (Breiman, 2001; Strobl 

et al., 2008). Additionally, we defined the consciousness score as the proportion of trees that 

predicted MCS diagnosis. A patient with a consciousness score higher than 0.5 was classified 

as MCS. If the consciousness score was lower than 0.5 the patient was classified as UWS. 

Consciousness scores close to 0.5 indicate a more uncertain classification, consciousness scores 

tending to 1 or 0 indicate that all decision trees reach the same conclusion (MCS or UWS 

respectively). The consciousness score can be viewed as the classifier confidence about the 

decision.  

 

PET data and correlation with consciousness scores  

PET data were preprocessed and analyzed to obtain the PET-diagnosis according to 

(Stender et al., 2014). In short, we used SPM to contrast the glucose metabolism of each patient 

with the glucose metabolism of a group of 34 healthy control subjects without known 

neurological or psychological illness. The PET-based diagnosis was made by evaluating the 

relative preservation of regional metabolism, independently from the CRS-R based diagnosis. 

In case of complete bilateral hypometabolism of the frontoparietal network cortex the patient 
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was diagnosed as UWS, while partial preservation of the frontoparietal network corresponded 

to a diagnosis of MCS (Stender et al., 2014). 

For further PET analysis, 19 patients were excluded due to the presence of large lesions 

covering more than 2/3 of an hemisphere and compromising the reliability of anatomical 

normalization, as proposed by (Di Perri et al., 2016). A total of 49 patients was thus included 

in the correlation between cerebral glucose uptake and consciousness score based on HERs. 

We used Statistical Parametric Mapping 12 (https://www.fil.ion.ucl.ac.uk/spm/), a toolbox 

developed for Matlab (2017a) to identify brain regions in which glucose metabolism correlated 

with ECG/EEG-based classification. Separate full factorial designs modeled the effect of the 

PET-based diagnosis (UWS or MCS) and classifiers' (HER or HRV) consciousness score on 

cerebral glucose uptake. Proportional scaling was performed to identify regions that showed a 

relative increase in glucose metabolism with any regressor. T-contrasts were specified for the 

main effect of the HER/HRV regressors, and for the interaction of the HER/HRV regressor and 

diagnosis. Results were considered significant at family-wise error (FWE) corrected p-value 

<0.05. 

 

Heart-rate variability (HRV) 

We used standard measurements of HRV as described in (Task Force of the European 

Society of Cardiology the North American Society of Pacing, 1996), both in the time and in the 

frequency domains. Standard time domain features included the mean interbeat interval, the 

standard deviation of the beat-to-beat intervals (SDNN), and the square root of mean squared 

differences of successive intervals (RMSSD). To estimate power spectral density, we used the 

Burg periodogram of order 7, a method based on autoregressive spectral estimation which uses 

parametric methods to model the data (Thayer et al., 1996). Standard frequency domain features 

for short-term recordings (5 minutes) are defined by the power distribution in three frequency 

bands: Very low frequency between 0 – 0.04 Hz, low frequency between 0.04 – 0.15 Hz and 

high frequency between 0.15 – 0.4 Hz.  

 

Statistical analysis 

Statistical comparisons were based on Mann Whitney tests, paired t-tests, chi-square 

tests or Pearson correlations, as specified in the Results section. Classification accuracy 
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significance was assessed with a Cumulative Binomial Distribution and/or Monte Carlo 

Permutation Tests. Monte Carlo p-values (pmc) were computed as the proportion of the number 

of classifications (out of the 1000 permutations) in which a higher accuracy was reached in 

permuted data than in empirical data. How permutation tests were designed is specified in the 

corresponding sections of the Material and Methods. Because computing Monte Carlo p-values 

is computationally intensive, this method could not be used on each of the 1000 draws of 

random EEG segments. We thus also computed binomial p-values (pbin), considering the 

number of patients as the number of observations, and tested the accuracy significance 

considering a probability of 0.5, i.e. 1/number of possible diagnosis. To assess binomial 

significance of the classification on random EEG segments, binomial p-values were computed 

as the proportion of the number of classifications (out of the 1000 draws of random EEG 

segments) in which pbin significance was not reached at α = 0.05.  

 Bayes factors were computed to estimate evidence for H0 using CRAN package 

BayesFactor version 0.9.12-4.2 for R as implemented in 

https://richarddmorey.github.io/BayesFactor/ (Rouder et al., 2009), with default prior r-scale 

√2/2 and substantial evidence for H0 if BF < 0.3125 (Kass and Raftery, 1995). The statistical 

analysis of PET data is described in the PET data section.  

 

Data and Code Availability Statement 

The data supporting this article, that include sensitive health related information, are 

available upon reasonable request to the Liège Coma Science Group coma@uliege.be 

Codes are publicly available at https://github.com/diegocandiar/brain_heart_doc/.  
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Results 

Heartbeats detection validation 

We first extracted the electrocardiogram from EEG data using independent components 

analysis (ICA-ECG) (Raimondo et al., 2017). To validate this approach (Fig. 1), we compared 

ICA-ECG with real ECG in 13 subjects (8 patients and 5 additional healthy controls) where 

ECG was recorded. Heartbeats were detected independently in ECG and ICA-ECG. The 

interbeat intervals time series obtained from real ECG and ICA-ECG showed a correlation 

greater than 0.99 in all 13 subjects (Pearson correlation coefficient, range 0.9928 to 0.9999). 

Delays of one or two samples between R peaks detected in the real ECG and ICA-ECG could 

be occasionally observed (Fig. 1C). These minor discrepancies had very limited impact on the 

spectral analysis of HRV (Pearson correlation coefficient between spectral densities estimated 

from real ECG and ICA-ECG, range 0.9970 to 1; relative difference between HRV power in 

very low, low and high-frequency ranges computed using real ECG or ICA-ECG smaller than 

5% in all participants).  

 

 

Figure 1. Extraction of the electrocardiogram 

from EEG data, example in one patient 

where both EEG and ECG were acquired. 

(A) Real electrocardiogram acquired from chest 

electrodes (ECG, top) and electrocardiogram 

extracted from EEG data (ICA-ECG, bottom). 

(B) Typical topography of the cardiac-related 

ICA component, corresponding to the cardiac 

artefact in EEG data. (C) Histogram of delays 

between R peaks measured in ECG and ICA-

ECG. Within the 390 heartbeats recorded in 5 

minutes, most R-peaks were perfectly aligned 

and only 14 (3.6%) R peaks showed a delay of 1 

or 2 samples (2 to 4 ms). 



 15 

Decoding residual consciousness associated with preserved glucose metabolism 

using heartbeat-evoked responses: exploration in the training sample 

We then tested whether HER amplitude and variance could distinguish between UWS 

and MCS patients in the training sample (n=38). To determine the latencies at which HERs are 

informative, we computed an independent classifier based on HERs averaged using 200 ms-

long sliding time windows and performed a 3-fold cross-validation to estimate classifier 

performance in each time window. As shown in Fig. 2A, accuracy peaked to 81.62% in the 

time window between 200 and 400 ms after R peak. To verify that classification results were 

not driven by cardiac electrical activity (Fig. 2B), we computed the mean ICA-ECG amplitude 

in the 200-400 ms time interval, and found that it does not reliably distinguish between MCS 

(17.72±15.89 SEM) and UWS patients (-3.55±9.11 SEM; Mann Whitney U test, rank sum = 

622, z-value = 0.64, p-value = 0.52; BF = 0.44, inconclusive evidence for H0). In addition, we 

performed RF classification using all the ECG samples of the 200-400 ms time window, and 

found that accuracy (75.06%±4.51) was much lower than with EEG (81.62%). Because visual 

inspection suggests a difference in ECG around R peak, we repeated the same analysis for the 

time window -100 to +100 ms, and again found a lower accuracy (78.32%±3.31) than in EEG. 

Moreover, the topography of HERs in the 200-400 ms time window (Fig. 2C) was quite 

different from the typical cardiac artefact distribution (Fig. 1B) (Dirlich et al., 1997). 

Having determined the time-window of interest, we proceeded to test whether HER 

amplitude and variance at each time sample between 200 and 400 ms and at each channel could 

discriminate between UWS and MCS patients using 3-fold cross-validation. The random forest 

(RF) classifier had an accuracy of 81.62% in the training sample. The most relevant channels 

for RF classification (Gini index averaged across amplitude and variance and across time 

stamps) were located over right temporal and central regions (Fig. 2D). A sustained difference 

in HERs between UWS and MCS patients could be observed at those locations (Fig. 2E). 

Classification relied more on HER variance than HER average (paired-sample t-test between 

Gini impurity indices, t-stat = -3.7411, df = 63, p-value = 0.0004). The analysis of the training 

sample thus indicates that HERs carry relevant information to detect residual signs of 

consciousness.  
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Figure 2. Classification of PET-based diagnosis of consciousness based on 

heartbeat-evoked responses. 

(A) Classification accuracy in sliding 200 ms-long time windows in a 3-fold cross-

validation with HER amplitude and variance at each channel as features, using the 

consciousness diagnosis obtained from brain glucose metabolism measure with FDG positron 

emission tomography (PET), in the training sample. Accuracy peaks in the 200-400 ms 

window. Accuracies have been normalized (posterior min-max normalization to unitary 

variance), 1 corresponding to best accuracy across all time windows. (B) ICA-ECG in MCS 

and UWS patients do not differ between 200 and 400 ms. (C) HER topographies averaged 

between 200 and 400 ms, for MCS patients, UWS patients and between-group difference, in 

the training sample. The topographies markedly differ from the cardiac artefact (Fig. 1B) and 
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indicate the neural origin of HERs. (D) Topography of channel relevance in the training sample, 

based on both amplitude and variance of HERs, showing a larger contribution of left and right 

occipito-temporal electrodes as well as of right central and temporal electrodes. (E) Group-

average HERs in the training sample, averaged across right central channels, showing a 

sustained difference between 200 and 400 ms. (F) HER-based consciousness scores in the 

independent validation sample, showing low HER-based consciousness scores are more likely 

to correspond to non-behavioral MCS than to behavioral MCS.  

 

We then tested whether patients' classification using HERs outperforms classification 

based on EEG segments of the same duration, but not locked to heartbeats. Training classifiers 

with EEG segments not locked to heartbeats led to a 3-fold cross-validation classification 

accuracy of 79.08±0.7% in the training sample (average across 1000 classifiers trained on 

different random selection of EEG segments). Classification accuracy based on random EEG 

segments is significantly lower than when EEG is locked to heartbeats (81.62%; Monte Carlo 

test, pmc<0.001; Table 2). Indeed, none of the 1000 classifications performed on random EEG 

segments had a higher classification accuracy than the classification on HERs, indicating that 

classification based on HERs is significantly more accurate than classification based on random 

EEG segments with a pmc<0.001. Brain responses to heartbeats thus convey specific additional 

information on residual consciousness, as compared to generic EEG features. 

 

Decoding residual consciousness using heartbeat-evoked responses: blind 

prospective validation in a new sample 

Following classification good practices (Woo et al., 2017; Steyerberg et al., 2018), we 

tested whether such results would generalize to a new sample of 30 participants (blind 

prospective validation). We trained a classifier using all the folds of the training sample (n=38) 

and confirmed that the model classifies all patients in the training set with a 100% accuracy 

before assessing the predictions of this classifier in the validation sample. The classifier reached 

an accuracy of 86.67% (binomial test, pbin<0.001), a sensitivity of 95.8% and specificity of 50% 

in the validation sample.  

We ran two additional control analyses. First, because our sample is unbalanced with 

more MCS (n=31) than UWS (n=7) patients, we verified that results were not due to chance. 

To estimate chance level classifier accuracy due to sample imbalance, we computed 1000 
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classifiers on the same data after randomly reassigning diagnoses across patients, thus 

maintaining the MCS/UWS imbalance. Chance level accuracy was on average 77.05±3.98%, 

almost 10 points lower than the accuracy of the classifier trained on real data. Only one random 

permutation out of 1000 exceeded the accuracy of the classifier trained on the real data, showing 

that the hypothesis that the 86.67% accuracy of the classifier trained on real data is due to 

chance can be rejected with a Monte Carlo pmc=0.001. Second, we applied the same procedure 

to EEG segments not locked to heartbeats and found a mean classification accuracy in the 

validation sample of 80.84±4.09 % (binomial test over 1000 permutations, pbin<0.001), i.e., 6 

points below the classification of the classifier based on HERs, a difference that was only 

marginally significant (comparison between the distribution of the 1000 classifications on 

random EEG segments with HER-based classifier, pmc=0.064). Altogether, the classification 

results in the validation sample (Table 2) show that HERs provide reliable information about 

residual signs of consciousness in MCS patients, that can be generalized to a new dataset, and 

confirm that HERs convey specific consciousness-related information, beyond what can be 

extracted from EEG data not locked to heartbeats. 

 

Non-behavioral MCS patients have smaller HER-based consciousness scores 

So far, we have considered the diagnosis of consciousness based on brain glucose 

metabolism (PET-based diagnosis), because this diagnosis is independent from overt behavior. 

However, clinical diagnosis is most often based on a behavioral index, here based on the best 

CRS-R subscore, but is not always consistent with the PET-based diagnosis (Gosseries et al., 

2014; Stender et al., 2014; Schiff, 2015). In the current dataset, the diagnosis of UWS based on 

PET data was consistent with the CRS-R diagnosis in all UWS patients. However, patients with 

a PET-based diagnosis of MCS could be split into two categories: behavioral MCS (n=18), i.e. 

patients considered as MCS based on both brain metabolism and best CRS-R diagnosis, and 

non-behavioral MCS (or MCS*, n=6), i.e. patients showing only reflex-like behavior as 

measured with CRS-R, yet with a brain metabolism suggesting a capacity for consciousness 

(Gosseries et al., 2014). 

For each patient identified as MCS based on PET-diagnosis, we computed a HER-based 

consciousness score, defined as the proportion of decision trees of the HER-based classifier 

predicting MCS diagnosis (Fig. 2F). This score can be viewed as the classifier’s confidence in 

the diagnosis, with four ranges (0-0.25, UWS with high certainty, 0.25-0.5, UWS with low 

certainty, 0.5-0.75, MCS with low certainty, 0.75-0.1 MCS with high certainty).  Patients with 
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consciousness scores indicating MCS with low certainty were significantly more likely to be 

non-behavioral MCS patients: the proportion of non-behavioral MCS patients was significantly 

larger in low-certainty MCS patients (55%; 5/9) than in high-certainty MCS patients (6.6%; 

1/15; χ2 test, χ2-stat = 7.17, p-value = 0.007).  

 

HER-based consciousness scores correlate with PET metabolism in right occipito-

temporal and lateral temporal regions  
We next tested whether consciousness-related information conveyed by HERs 

correlated with glucose metabolism in specific brain regions, in an exploratory analysis. Across 

both the training and test sets, we identified 49 patients (39 MCS, 10 UWS, based on FDG-

PET) whose brain anatomy allowed anatomical normalization, trained a classifier on HERs in 

those patients, and correlated the resulting HER-based consciousness scores with glucose 

metabolism. A positive correlation between glucose metabolism and HER-based consciousness 

scores was found in the right temporal lobe in the 39 MCS patients (Table 3, Fig. 3). The largest 

cluster extended along the right ventral occipito-temporal regions. Neurosynth (Yarkoni et al., 

2011) reveals that this region is functionally connected mostly to its homologous region in the 

left hemisphere, and that it is strongly associated with the terms "face", "face recognition" and 

"object recognition", as expected from the known functional organization of the ventral visual 

system (Mishkin et al., 1983; Haxby et al., 1991; Kanwisher et al., 1997). The second region 

was located in the anterior part of the right superior temporal sulcus. This region has a much 

richer pattern of functional connectivity as revealed by Neurosynth, being connected to the core 

components of the default network, i.e. ventro-medial prefrontal cortex, posterior cingulate 

cortex, right inferior parietal lobule, as well as to the right amygdalo-hippocampal region and 

the homologous region in in the left hemisphere. The lateral temporal region is loosely 

associated with a larger number of terms, related to social interactions ("social cognitive", 

"theory of mind", "sentence comprehension") but also to internal, self-related cognition 

("default network", "autobiographical"). No significant correlation could be found between 

HER-based consciousness score and PET metabolism in the 10 UWS patients.  
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Figure 3. Glucose metabolism correlates of HER-based consciousness scores in MCS 

patients (n=39). Top, right ventral occipito-temporal regions (MNI [48, -48, -22]; FWE 

corrected, p-value cluster = 0.002). Bottom, right anterior superior temporal sulcus (MNI [48, 

0, -22], FWE corrected, p-value cluster = 0.012). 

 

Using HERs to decode consciousness as diagnosed from CRS-R  
In this study we explore markers of consciousness independent from behavior. 

However, the measure of consciousness most commonly used in clinical practice is the 

behavioral assessments with the CRS-R. We thus tested whether we could decode 

consciousness as diagnosed with CRS-R using HERs, using the same procedure as used for 

decoding consciousness as diagnosed with PET, and compared CRS-R-based classification 

accuracy to PET-based classification accuracy. 

To determine the latencies at which HERs are informative, we computed an independent 

classifier based on HERs averaged using 200 ms-long sliding time windows and performed a 

3-fold cross-validation to estimate classifier performance in each time window. The best 

candidate time-window to decode consciousness as diagnosed with CRS-R in the training 

sample was 156-356 ms, i.e. quite close to the best time window to decode consciousness from 

PET diagnosis, which was 200-400 ms. We then trained a classifier with HER amplitude and 

variance at each channel and each time sample of the 156-356 ms time-window using 3-fold 

cross-validation. The accuracy of classification based on CRS-R diagnosis was 79.06% 

(binomial test, pbin<0.001), which is somewhat lower than the classification based on PET 

diagnosis (3-fold cross validation accuracy 81.62%). HERs did convey a significant advantage 

to CRS-R based classification: classifications performed on random EEG segments led to an 
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average accuracy of 72.95±4.49% (binomial test over 1000 permutations, pbin=0.012), whereas 

HER-based classification accuracy was 79.06% (comparison between the accuracies distribution of 

the 1000 classifications on random EEG segments and the HER-based classifier accuracy, Monte Carlo 

pmc=0.038). 

We then trained a CRS-R-based classifier on all the folds of the training sample (n=38) 

and tested the performance of this classifier in the validation set (n=30, blind prospective cross-

validation). The classification performed over CRS-R diagnosis reached an accuracy of 

76.67%, which is significantly above chance (chance accuracy obtained by randomly shuffling 

diagnosis labels, 59.53±5.34%; 4 out of 1000 permutations outperformed classification on real 

diagnosis, Monte Carlo pmc=0.004). HERs did convey a significant advantage to CRS-R-based 

classification, as compared to EEG segments not locked to heartbeats (EEG segments, mean 

classification accuracy 66,42±7.13% (binomial test over 1000 permutations, pbin=0.272), HER-

based classification accuracy, 76.67%, binomial test, pbin<0.001, Monte Carlo test, pmc=0.041). 

However, the blind prospective classification based on CRS-R diagnosis remained 10 points 

lower than the accuracy of the classifier based on PET diagnosis which was 86.67% (Table 2). 

Finally, when the classification used CRS-R diagnosis, HER consciousness scores did not 

correlate with brain glucose metabolism, in any region. HER classification using the CRS-R 

diagnosis of consciousness thus reproduces partly the results obtained with HER classification 

using the PET diagnosis of consciousness, such as a better accuracy of HERs than random EEG 

segments. However, the generalization accuracy of the CRS-R-based HER classifier was much 

lower than the generalization accuracy the PET-based HER classifier. This suggests an 

underlying better consistency between two brain measures of consciousness (PET glucose 

metabolism and HERs) than between a behavioral measure of consciousness (CRS-R) and a 

neural measure (HER). Of note, in the present study, the difference between CRS-R diagnosis 

and PET diagnosis is exclusively found in MCS* patients, where PET indicates minimal 

consciousness while CRS-R indicates unconsciousness. All 5 behavioral assessments using 

CRS-R, including the one performed at the time of EEG-PET data acquisition, indicated 

unconsciousness in all MCS* patients with 100% consistency over time. The difference 

between PET-based diagnosis and CRS-R diagnosis thus seems to correspond to a reliable 

difference between methods of assessments rather than to fluctuations in behavior.     
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No reliable decoding of residual consciousness using heart-rate variability 

Our results show that HERs, reflecting how the brain responds to ascending signal at 

each heartbeat, could accurately distinguish MCS from UWS patients, especially when using 

PET-based consciousness diagnosis, which is independent from overt behavioral responses. We 

further tested whether heart rate variability, which is strongly constrained by descending signals 

from brain to heart, can distinguish between MCS and UWS during resting state. We first 

investigated, using a standard univariate approach (Mann Whitney U-tests between MCS and 

UWS), whether routinely used measures of HRV would differ between MCS and UWS patients 

in the training set. None of the classical measures (Task Force of the European Society of 

Cardiology the North American Society of Pacing, 1996) we computed could reliably 

distinguish between MCS and UWS patients (Table 4).  

Although neither the low nor high frequency power of HRV could distinguish between 

MCS and UWS, the HRV power spectrum density showed qualitative differences (Fig. 4A), 

suggesting that the full power spectrum is a good candidate for multi-variate analysis. Using 

HRV frequency power at 13 different frequencies as features, we obtained a 3-fold cross-

validation accuracy of 79.06% in the training sample. Two frequency ranges were particularly 

relevant for classification (Fig. 4B), ~0.1-0.2 Hz and ~0.3-0.4 Hz, that differ slightly from the 

classical low (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) HRV ranges (Task Force of the 

European Society of Cardiology the North American Society of Pacing, 1996). We then trained 

a classifier using all folds from the training set, reaching a 100% accuracy. We tested this 

classifier in the independent validation sample of 30 patients, which resulted in an accuracy of 

76.67%. HRV validation accuracy was not significantly different than chance accuracy (Monte 

Carlo test, pmc = 0.382) and was 10 points lower than HER validation accuracy (86.67%). 

The classification based on HER and the classification based on HRV generated 

different predictions, and misclassified patients with one or the other method were different 

(Fig. 4C). Consciousness scores obtained from the HRV-based classifier did not correlate with 

the consciousness scores obtained from the HER-based classifier (Pearson correlation r = – 

0.1512, p-value = 0.4251, BF = 0.5241, inconclusive evidence for H0). These results suggest 

that HER-based and HRV-based classification might be complementary. We thus tried to 

combine predictions based on HER and HRV, by applying the following rule: a patient is 

classified MCS if both the HER-based and HRV-based consciousness scores are larger 0.5, else 

the patient is classified as UWS. This procedure led to an accuracy of 83.33% (binomial test, 

pbin<0.001) in the validation sample, i.e. a lower accuracy than with HER-based classification 
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only (86.67%). However, combining HER and HRV-based classification led to a better balance 

between sensitivity and specificity, compared to HER only. 

 

 

 

Figure 4. Classifications based on the 

spectral analysis of heart-rate variability. 

(A) Heart-rate variability (HRV) power 

spectrum density of MCS and UWS patients in 

the training sample. (B) Relevance of each 

frequency (Gini impurity index) to the HRV-

based classifier in the training sample, with 

most relevant frequencies at the border 

between low frequency (LF) HRV and high 

frequency (HF) HRV and at the upper limit of 

HF HRV. The contribution of very low 

frequencies (VLF) appears limited. (C) 

Consciousness scores obtained from the 

classifier trained on HRV plotted against 

consciousness scores obtained from the 

classifier trained on heartbeat-evoked 

responses (HER), in the independent 

validation sample (n=30). 
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Discussion 

 Because ascending signals from heart to brain have been associated with different 

aspects of consciousness in healthy participants (Park et al., 2014, 2016; Babo-Rebelo et al., 

2016a, 2016b, 2019; Sel et al., 2017), we hypothesized that neural responses to heartbeats 

would differ in MCS compared to UWS patients. We found that heartbeat-evoked responses 

could accurately distinguish MCS and UWS patients in an independent validation sample with 

an accuracy of 87%, (sensitivity 96%; specificity 50%), when the consciousness diagnosis was 

based on glucose uptake as measured with PET, i.e., a diagnosis independent from behavioral 

output. Using HERs as features systematically led to classifier accuracies that were larger than 

when using on random EEG segments or heart-rate variability as features, showing that how 

the brain responds to heartbeats provides additional information on consciousness, as compared 

to generic ongoing EEG activity or to heart rate. HER-based classification offered not only a 

dichotomous classification between UWS and MCS patients but also a more graded and 

individualized consciousness score which captured some of the complexity of the clinical 

diagnosis, with low consciousness scores being much more frequent in non-behavioral MCS. 

HER-based consciousness scores correlated with glucose metabolism in the default mode 

network node located in the right superior temporal sulcus, as well as with the right ventral 

occipito-temporal cortex. HERs predicted consciousness better when consciousness was 

inferred from glucose metabolism than when consciousness was inferred from behavior using 

CRS-R diagnosis. Our results indicate that the transient brain responses elicited at each 

heartbeat convey relevant information on residual consciousness that does not necessarily 

translate into behavior, in patients with chronic disorders of consciousness. 

 

HERs improve the detection of residual consciousness 
HERs correspond to brain responses to ascending cardiac inputs at each heartbeat. So 

far, cardiac-related indexes of consciousness have been obtained from HRV, that characterizes 

descending control of the brain on cardiac rhythm. HRV distinguishes between UWS and MCS 

patients receiving nociceptive stimulation (Leo et al., 2016; Riganello et al., 2018a; Tobaldini 

et al., 2018), auditory stimulation (Raimondo et al., 2017), or at rest and under sedation 

(Riganello et al., 2018b). Here, we show that HERs are more efficient to distinguish between 

UWS and MCS patients in resting, awake state than HRV. Several lines of evidence suggest 

that the difference in HERs between MCS and UWS is of cerebral origin, rather than cardiac 
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electrical activity detected at the sensor level. First, we could not find any ECG amplitude 

difference between MCS and UWS patients, indicating that the HER effect is not directly driven 

by cardiac electrical activity. Second, the most relevant channels to distinguish between MCS 

and UWS patients were located at right central sites, while the EEG channels most affected by 

the cardiac artefact display the typical topography over left temporal and right frontal regions 

(Dirlich et al., 1997). Third, HER and HRV provided non redundant information on 

consciousness. Last, HER-based consciousness scores correlated with brain glucose uptake 

measured with PET in right temporal regions, suggesting that HER-based classification is 

directly related to brain activity.  

A number of studies have successfully used EEG to predict (un)consciousness, with 

prospective validation accuracies in the 71-78% range (Engemann et al., 2018). Our own results 

when using random EEG segments not locked to heartbeats (prospective validation accuracy 

81%) commensurate with the literature, and confirm that generic EEG features, as captured by 

random EEG segments not locked to heartbeats, do provide valuable information to detect 

residual consciousness. However,  the classifications we performed on HERs, using both 

amplitude (Raimondo et al., 2017) and variance from one trial to the next as features, were 

systematically more accurate than those performed on random EEG segments. HERs thus 

convey reliable and specific information about residual consciousness in addition to that 

provided by the generic EEG features captured by random EEG segments.  

 

HERs as an indicator of conscious inner mental life even in the absence of behavior 
The hypothesis that motivated this work is that HERs contribute to subjective 

experience (Park and Tallon-Baudry, 2014; Tallon-Baudry et al., 2018; Azzalini et al., 2019). 

While the results are in keeping with this hypothesis, alternative interpretations have to be 

considered.  

HERs might be a marker of an overall brain state fostering consciousness, such as 

arousal. However, an overall brain state should also be reflected in neural activity not locked to 

heartbeats, whereas we found a systematic advantage to classifications based on HERs over 

classifications based on random EEG segments. Besides, the correlations between glucose 

uptake and HER-based consciousness scores did not occur in brain regions associated with 

arousal, such as the saliency network. Last, in healthy participants, consciousness-related 

modulations of HERs were not accompanied by changes in arousal (Park et al., 2014; Babo-
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Rebelo et al., 2016a, 2019). The difference between classifications based on random EEG 

segments and segments aligned to cardiac events is thus likely to be attributed to a change in 

EEG amplitude and/or variance occurring specifically after heartbeats, i.e. the definition of a 

heartbeat-evoked response.  

If HERs do not reflect a global brain state, then what do they reflect? HERs might 

convey consciousness-related information about how the brain responds to an internal stimulus, 

much as responses to exteroceptive stimuli (Cruse et al., 2011; Sitt et al., 2014) or artificial 

stimuli such as transcranial magnetic pulses (Casali et al., 2013; Casarotto et al., 2016) are 

informative about consciousness state. However, we did not find any link between HER-based 

consciousness scores and glucose uptake in interoceptive regions such as primary 

somatosensory cortex (Kern et al., 2013) or insula (Park et al., 2018). The present results 

relating HERs to residual consciousness in patients appear more congruent with the covariation 

between HERs and perceptual, bodily and self-consciousness (Park et al., 2014, 2016; Babo-

Rebelo et al., 2016a, 2016b, 2019; Sel et al., 2017; Al et al., 2020) observed in healthy 

participants.  

We could link HER-based classification results to glucose metabolism in two regions, 

that are very different from the fronto-parietal regions used to determine the diagnosis of 

consciousness based on glucose metabolism. The right occipito-temporal cluster corresponds 

to areas involved in visual shape analysis, while the right anterior superior temporal sulcus is 

known for its role for in spontaneous, potentially self-related, cognition (Andrews-Hanna et al., 

2010), as well as in self-recognition and theory of mind (van Veluw and Chance, 2014). The 

right lateralization of the brain regions whose glucose metabolism correlates with HER-based 

classification scores, as well as of the electrodes contributing to the HER-based classification, 

is reminiscent of non-verbal consciousness in the right hemisphere of split-brain patients 

(Sperry, 1984).  

Consciousness is defined by the existence of subjective experience and inner mental 

life, a feature that does not necessarily translate into overt behavior. HERs appear here as a 

valid indicator of inner mental life, since HER-based classification successfully detects residual 

consciousness even during resting-state without behavioral reports, and even in non-behavioral 

MCS patients, who never showed any behavioral sign of consciousness. HERs might thus help 

specify the gray zone of consciousness, i.e., the fleeting conscious feelings that might not be 

cognitively accessed nor translate into behavioral outputs. This interpretation is in keeping with 

the fact the HER-based classification is in better agreement with the consciousness diagnosis 
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based on brain metabolism than with the consciousness diagnosis based on behavior. It is worth 

noting that this better agreement does not reflect a mere correlation between two different 

measures of brain activity, independently of the notion of consciousness, since the link between 

HERs and glucose metabolism is mediated by the consciousness diagnosis on which the HER 

classifier is trained. Because measuring consciousness in the absence of overt behavior is 

challenging, cross-validating measures of consciousness is an important step to detect 

consciousness at the cerebral, rather than at the behavioral level, be it at bedside (Bodart et al., 

2017) or in healthy participants (Tsuchiya et al., 2015; Bayne et al., 2017).  

 

Potential clinical relevance 
Observations that heartbeat evoked responses are linked to consciousness in healthy 

adults (Park et al., 2014, 2016; Babo-Rebelo et al., 2016a, 2016b, 2019; Sel et al., 2017) could 

lead to a new sensitive tool to identify residual consciousness and establish fine-grained 

stratification in patients with disorders of consciousness, with only 5 minutes of resting-state 

EEG data that can easily be acquired at bedside, that could prove particularly valuable when 

PET, fMRI or TMS-EEG are not available or cannot be employed for safety reasons. Note that 

recording an ECG together with EEG would markedly improve the procedure, since the 

extraction of ECG from EEG using ICA is not always possible. Because the experimental 

situation does not require the active involvement of the patient beyond being awake, the 

patient's specific sensory impairments or cognitive deficits should have a limited impact on 

HER-based classification. Still, the clinical relevance of neural responses to heartbeats remains 

to be validated in a larger, multi-site cohort, with more UWS patients, and patients long term 

outcome. When assessing consciousness along multiple dimensions (Sitt et al., 2014; Bayne et 

al., 2017; Sergent et al., 2017; Song et al., 2018), neural responses to heartbeats could contribute 

to the evaluation of more experiential aspects of consciousness, potentially corresponding to 

fleeting conscious feelings not accompanied by behavioral signs of consciousness and not 

detected by standard clinical assessment based on CRS diagnosis, rather than fully developed 

intentional communication that translates into behavior.  

 

Conclusion 

HERs convey specific information on residual consciousness in patients, as compared 

to EEG not locked to heartbeats. This result lends support to the hypothesis that HERs play a 
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role in generating conscious experience (Park and Tallon-Baudry, 2014; Tallon-Baudry et al., 

2018; Azzalini et al., 2019), and complement a number of experimental results in healthy 

participants pointing in the same direction (for review, (Azzalini et al., 2019)). We further 

showed that HERs capture the consciousness diagnosis based on brain metabolism during 

resting state better than the consciousness diagnosis based on behavior. It is thus possible to 

conceptualize and experimentally test consciousness as an experiential phenomenon, rather 

than as an intermediate cognitive step between external input and behavioral output.  

  



 29 

Author Contributions 

D. C.-R., J. A., S. L. and C. T.-B. designed the study; J. A., O.G., C.M., A. T. and S.L. 

acquired data and established clinical diagnoses; D. C.-R., J. A., C. T.-B. analyzed data; D. C.-

R., J. A. and C. T.-B. wrote the initial version of manuscript. All authors contributed to the 

submitted version.  

  



 30 

References 

Al E, Iliopoulos F, Forschack N, Nierhaus T, Grund M, Motyka P, Gaebler M, Nikulin VV, 
Villringer A (2020) Heart–brain interactions shape somatosensory perception and 
evoked potentials. PNAS 117:10575–10584. 

Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL (2010) Functional-
anatomic fractionation of the brain’s default network. Neuron 65:550–562. 

Azzalini D, Rebollo I, Tallon-Baudry C (2019) Visceral Signals Shape Brain Dynamics and 
Cognition. Trends in Cognitive Sciences 23:488–509. 

Babo-Rebelo M, Buot A, Tallon-Baudry C (2019) Neural responses to heartbeats distinguish 
self from other during imagination. NeuroImage 191:10–20. 

Babo-Rebelo M, Richter CG, Tallon-Baudry C (2016a) Neural Responses to Heartbeats in the 
Default Network Encode the Self in Spontaneous Thoughts. J Neurosci 36:7829–7840. 

Babo-Rebelo M, Wolpert N, Adam C, Hasboun D, Tallon-Baudry C (2016b) Is the cardiac 
monitoring function related to the self in both the default network and right anterior 
insula? Philos Trans R Soc Lond, B, Biol Sci 371. 

Bayne T, Hohwy J, Owen AM (2017) Reforming the taxonomy in disorders of consciousness. 
Annals of Neurology 82:866–872. 

Blanke O, Metzinger T (2009) Full-body illusions and minimal phenomenal selfhood. Trends 
Cogn Sci (Regul Ed) 13:7–13. 

Block N (2005) Two neural correlates of consciousness. Trends Cogn Sci (Regul Ed) 9:46–
52. 

Bodart O, Gosseries O, Wannez S, Thibaut A, Annen J, Boly M, Rosanova M, Casali AG, 
Casarotto S, Tononi G, Massimini M, Laureys S (2017) Measures of metabolism and 
complexity in the brain of patients with disorders of consciousness. NeuroImage: 
Clinical 14:354–362. 

Breiman L (2001) Random Forests. Machine Learning 45:5–32. 

Casali AG, Gosseries O, Rosanova M, Boly M, Sarasso S, Casali KR, Casarotto S, Bruno M-
A, Laureys S, Tononi G, Massimini M (2013) A Theoretically Based Index of 
Consciousness Independent of Sensory Processing and Behavior. Science 
Translational Medicine 5:198ra105-198ra105. 

Casarotto S, Comanducci A, Rosanova M, Sarasso S, Fecchio M, Napolitani M, Pigorini A, G 
Casali A, Trimarchi PD, Boly M, Gosseries O, Bodart O, Curto F, Landi C, Mariotti 
M, Devalle G, Laureys S, Tononi G, Massimini M (2016) Stratification of 
unresponsive patients by an independently validated index of brain complexity. Ann 
Neurol 80:718–729. 

Chalmers DJ (1995) Facing Up to the Problem of Consciousness. Journal of Consciousness 
Studies 2:200–19. 



 31 

Combrisson E, Jerbi K (2015) Exceeding chance level by chance: The caveat of theoretical 
chance levels in brain signal classification and statistical assessment of decoding 
accuracy. J Neurosci Methods 250:126–136. 

Cruse D, Chennu S, Chatelle C, Bekinschtein TA, Fernández-Espejo D, Pickard JD, Laureys 
S, Owen AM (2011) Bedside detection of awareness in the vegetative state: a cohort 
study. Lancet 378:2088–2094. 

Di Perri C, Bahri MA, Amico E, Thibaut A, Heine L, Antonopoulos G, Charland-Verville V, 
Wannez S, Gomez F, Hustinx R, Tshibanda L, Demertzi A, Soddu A, Laureys S 
(2016) Neural correlates of consciousness in patients who have emerged from a 
minimally conscious state: a cross-sectional multimodal imaging study. The Lancet 
Neurology 15:830–842. 

Dirlich G, Vogl L, Plaschke M, Strian F (1997) Cardiac field effects on the EEG. 
Electroencephalography and Clinical Neurophysiology 102:307–315. 

Engemann DA, Raimondo F, King J-R, Rohaut B, Louppe G, Faugeras F, Annen J, Cassol H, 
Gosseries O, Fernandez-Slezak D, Laureys S, Naccache L, Dehaene S, Sitt JD (2018) 
Robust EEG-based cross-site and cross-protocol classification of states of 
consciousness. Brain 141:3179–3192. 

Frässle S, Sommer J, Jansen A, Naber M, Einhäuser W (2014) Binocular Rivalry: Frontal 
Activity Relates to Introspection and Action But Not to Perception. J Neurosci 
34:1738–1747. 

Giacino JT, Ashwal S, Childs N, Cranford R, Jennett B, Katz DI, Kelly JP, Rosenberg JH, 
Whyte J, Zafonte RD, Zasler ND (2002) The minimally conscious state: definition and 
diagnostic criteria. Neurology 58:349–353. 

Giacino JT, Kalmar K, Whyte J (2004) The JFK Coma Recovery Scale-Revised: 
measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 85:2020–
2029. 

Giacino JT, Katz DI, Schiff ND, Whyte J, Ashman EJ, Ashwal S, Barbano R, Hammond FM, 
Laureys S, Ling GSF, Nakase-Richardson R, Seel RT, Yablon S, Getchius TSD, 
Gronseth GS, Armstrong MJ (2018) Practice Guideline Update Recommendations 
Summary: Disorders of Consciousness: Report of the Guideline Development, 
Dissemination, and Implementation Subcommittee of the American Academy of 
Neurology; the American Congress of Rehabilitation Medicine; and the National 
Institute on Disability, Independent Living, and Rehabilitation Research. Archives of 
Physical Medicine and Rehabilitation 99:1699–1709. 

Gosseries O, Zasler ND, Laureys S (2014) Recent advances in disorders of consciousness: 
Focus on the diagnosis. Brain Injury 28:1141–1150. 

Haxby JV, Grady CL, Horwitz B, Ungerleider LG, Mishkin M, Carson RE, Herscovitch P, 
Schapiro MB, Rapoport SI (1991) Dissociation of object and spatial visual processing 
pathways in human extrastriate cortex. PNAS 88:1621–1625. 

Jung T-P, Humphries C, Lee T-W, Makeig S, McKeown MJ, Iragui V, Sejnowski TJ (1998) 
Extended ICA Removes Artifacts from Electroencephalographic Recordings. In: 



 32 

Advances in Neural Information Processing Systems 10 (Jordan MI, Kearns MJ, Solla 
SA, eds), pp 894–900. MIT Press. 

Kanwisher N, McDermott J, Chun MM (1997) The Fusiform Face Area: A Module in Human 
Extrastriate Cortex Specialized for Face Perception. J Neurosci 17:4302–4311. 

Kass RE, Raftery AE (1995) Bayes Factors. Journal of the American Statistical Association 
90:773–795. 

Kern M, Aertsen A, Schulze-Bonhage A, Ball T (2013) Heart cycle-related effects on event-
related potentials, spectral power changes, and connectivity patterns in the human 
ECoG. Neuroimage 81:178–190. 

Kondziella D, Bender A, Diserens K, Erp W van, Estraneo A, Formisano R, Laureys S, 
Naccache L, Ozturk S, Rohaut B, Sitt JD, Stender J, Tiainen M, Rossetti AO, 
Gosseries O, Chatelle C (2020) European Academy of Neurology guideline on the 
diagnosis of coma and other disorders of consciousness. European Journal of 
Neurology 27:741–756. 

Laureys S, Celesia GG, Cohadon F, Lavrijsen J, León-Carrión J, Sannita WG, Sazbon L, 
Schmutzhard E, von Wild KR, Zeman A, Dolce G, the European Task Force on 
Disorders of Consciousness (2010) Unresponsive wakefulness syndrome: a new name 
for the vegetative state or apallic syndrome. BMC Medicine 8:68. 

Laureys S, Owen AM, Schiff ND (2004) Brain function in coma, vegetative state, and related 
disorders. The Lancet Neurology 3:537–546. 

Leo A, Naro A, Cannavò A, Pisani LR, Bruno R, Salviera C, Bramanti P, Calabrò RS (2016) 
Could autonomic system assessment be helpful in disorders of consciousness 
diagnosis? A neurophysiological study. Exp Brain Res 234:2189–2199. 

Luu P, Ferree TC (2000) Determination of the Geodesic Sensor Nets’ Average Electrode 
Positions and Their 10 – 10 International Equivalents. Available at: 
https://www.egi.com/images/HydroCelGSN_10-10.pdf [Accessed April 6, 2018]. 

Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical 
pathways. Trends in Neurosciences 6:414–417. 

Nakayama N, Okumura A, Shinoda J, Nakashima T, Iwama T (2006) Relationship between 
regional cerebral metabolism and consciousness disturbance in traumatic diffuse brain 
injury without large focal lesions: an FDG-PET study with statistical parametric 
mapping analysis. J Neurol Neurosurg Psychiatry 77:856–862. 

Ojala M, Garriga GC (2010) Permutation Tests for Studying Classifier Performance. Journal 
of Machine Learning Research 11:1833–1863. 

Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: Open Source Software for 
Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. 
Computational Intelligence and Neuroscience 2011:9 pages. 

Pal M (2005) Random forest classifier for remote sensing classification. International Journal 
of Remote Sensing 26:217–222. 



 33 

Park H-D, Bernasconi F, Bello-Ruiz J, Pfeiffer C, Salomon R, Blanke O (2016) Transient 
Modulations of Neural Responses to Heartbeats Covary with Bodily Self-
Consciousness. J Neurosci 36:8453–8460. 

Park H-D, Bernasconi F, Salomon R, Tallon-Baudry C, Spinelli L, Seeck M, Schaller K, 
Blanke O (2018) Neural Sources and Underlying Mechanisms of Neural Responses to 
Heartbeats, and their Role in Bodily Self-consciousness: An Intracranial EEG Study. 
Cereb Cortex 28:2351–2364. 

Park H-D, Correia S, Ducorps A, Tallon-Baudry C (2014) Spontaneous fluctuations in neural 
responses to heartbeats predict visual detection. Nat Neurosci 17:612–618. 

Park H-D, Tallon-Baudry C (2014) The neural subjective frame: from bodily signals to 
perceptual consciousness. Phil Trans R Soc B 369:20130208. 

Raimondo F, Rohaut B, Demertzi A, Valente M, Engemann DA, Salti M, Fernandez Slezak 
D, Naccache L, Sitt JD (2017) Brain–heart interactions reveal consciousness in 
noncommunicating patients. Annals of Neurology 82:578–591. 

Riganello F, Chatelle C, Schnakers C, Laureys S (2018a) Heart Rate Variability as an 
indicator of nociceptive pain in disorders of consciousness? J Pain Symptom Manage 
57:47–56. 

Riganello F, Larroque SK, Bahri MA, Heine L, Martial C, Carrière M, Charland-Verville V, 
Aubinet C, Vanhaudenhuyse A, Chatelle C, Laureys S, Di Perri C (2018b) A 
Heartbeat Away From Consciousness: Heart Rate Variability Entropy Can 
Discriminate Disorders of Consciousness and Is Correlated With Resting-State fMRI 
Brain Connectivity of the Central Autonomic Network. Front Neurol 9. 

Rouder JN, Speckman PL, Sun D, Morey RD, Iverson G (2009) Bayesian t tests for accepting 
and rejecting the null hypothesis. Psychonomic Bulletin & Review 16:225–237. 

Rudolf J, Ghaemi M, Ghaemi M, Haupt WF, Szelies B, Heiss WD (1999) Cerebral glucose 
metabolism in acute and persistent vegetative state. J Neurosurg Anesthesiol 11:17–
24. 

Schandry R, Sparrer B, Weitkunat R (1986) From the heart to the brain: a study of heartbeat 
contingent scalp potentials. Int J Neurosci 30:261–275. 

Schiff ND (2015) Cognitive Motor Dissociation Following Severe Brain Injuries. JAMA 
Neurol 72:1413–1415. 

Sel A, Azevedo RT, Tsakiris M (2017) Heartfelt Self: Cardio-Visual Integration Affects Self-
Face Recognition and Interoceptive Cortical Processing. Cereb Cortex 27:5144–5155. 

Sergent C, Faugeras F, Rohaut B, Perrin F, Valente M, Tallon-Baudry C, Cohen L, Naccache 
L (2017) Multidimensional cognitive evaluation of patients with disorders of 
consciousness using EEG: A proof of concept study. NeuroImage: Clinical 13:455–
469. 

Sitt JD, King J-R, El Karoui I, Rohaut B, Faugeras F, Gramfort A, Cohen L, Sigman M, 
Dehaene S, Naccache L (2014) Large scale screening of neural signatures of 



 34 

consciousness in patients in a vegetative or minimally conscious state. Brain 
137:2258–2270. 

Song M, Yang Y, He J, Yang Z, Yu S, Xie Q, Xia X, Dang Y, Zhang Q, Wu X, Cui Y, Hou 
B, Yu R, Xu R, Jiang T (2018) Prognostication of chronic disorders of consciousness 
using brain functional networks and clinical characteristics Stephan KE, Behrens TE, 
eds. eLife 7:e36173. 

Sperry R (1984) Consciousness, personal identity and the divided brain. Neuropsychologia 
22:661–673. 

Stender J, Gosseries O, Bruno M-A, Charland-Verville V, Vanhaudenhuyse A, Demertzi A, 
Chatelle C, Thonnard M, Thibaut A, Heine L, Soddu A, Boly M, Schnakers C, Gjedde 
A, Laureys S (2014) Diagnostic precision of PET imaging and functional MRI in 
disorders of consciousness: a clinical validation study. The Lancet 384:514–522. 

Stender J, Kupers R, Rodell A, Thibaut A, Chatelle C, Bruno M-A, Gejl M, Bernard C, 
Hustinx R, Laureys S, Gjedde A (2015) Quantitative Rates of Brain Glucose 
Metabolism Distinguish Minimally Conscious from Vegetative State Patients. J Cereb 
Blood Flow Metab 35:58–65. 

Steyerberg EW, Uno H, Ioannidis JPA, Calster B van, Ukaegbu C, Dhingra T, Syngal S, 
Kastrinos F (2018) Poor performance of clinical prediction models: the harm of 
commonly applied methods. Journal of Clinical Epidemiology 98:133–143. 

Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A (2008) Conditional variable 
importance for random forests. BMC Bioinformatics 9:307. 

Tallon-Baudry C, Campana F, Park H-D, Babo-Rebelo M (2018) The neural monitoring of 
visceral inputs, rather than attention, accounts for first-person perspective in conscious 
vision. Cortex 102:139–149. 

Task Force of the European Society of Cardiology the North American Society of Pacing 
(1996) Heart Rate Variability: Standards of Measurement, Physiological 
Interpretation, and Clinical Use. Circulation 93:1043–1065. 

Thayer JF, Peasley C, Muth ER (1996) Estimation of respiratory frequency from 
autoregressive spectral analysis of heart period. Biomed Sci Instrum 32:93–99. 

Thibaut A, Bruno M-A, Chatelle C, Gosseries O, Vanhaudenhuyse A, Demertzi A, Schnakers 
C, Thonnard M, Charland-Verville V, Bernard C, Bahri M, Phillips C, Boly M, 
Hustinx R, Laureys S (2012) Metabolic activity in external and internal awareness 
networks in severely brain-damaged patients. J Rehabil Med 44:487–494. 

Tobaldini E, Toschi-Dias E, Trimarchi PD, Brena N, Comanducci A, Casarotto S, Montano 
N, Devalle G (2018) Cardiac autonomic responses to nociceptive stimuli in patients 
with chronic disorders of consciousness. Clinical Neurophysiology 129:1083–1089. 

Tommasino C, Grana C, Lucignani G, Torri G, Fazio F (1995) Regional cerebral metabolism 
of glucose in comatose and vegetative state patients. J Neurosurg Anesthesiol 7:109–
116. 



 35 

Tsuchiya N, Wilke M, Frässle S, Lamme VAF (2015) No-Report Paradigms: Extracting the 
True Neural Correlates of Consciousness. Trends Cogn Sci (Regul Ed) 19:757–770. 

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer 
B, Joliot M (2002) Automated Anatomical Labeling of Activations in SPM Using a 
Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. 
NeuroImage 15:273–289. 

van Veluw SJ, Chance SA (2014) Differentiating between self and others: an ALE meta-
analysis of fMRI studies of self-recognition and theory of mind. Brain Imaging and 
Behavior 8:24–38. 

Verikas A, Gelzinis A, Bacauskiene M (2011) Mining data with random forests: A survey and 
results of new tests. Pattern Recognition 44:330–349. 

Wannez S, Heine L, Thonnard M, Gosseries O, Laureys S, Coma Science Group collaborators 
(2017) The repetition of behavioral assessments in diagnosis of disorders of 
consciousness. Ann Neurol 81:883–889. 

Woo C-W, Chang LJ, Lindquist MA, Wager TD (2017) Building better biomarkers: brain 
models in translational neuroimaging. Nat Neurosci 20:365–377. 

Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale 
automated synthesis of human functional neuroimaging data. Nature Methods 8:665–
670. 

 

  



 36 

Tables 

Table 1. Demographic information of patients included in the analysis. TBI, traumatic 

brain injury. 

Group PET 
Diagnosis 

Number of 
patients 
(Females) 

Mean age 
in years 
(range) 

Mean 
months 
since onset. 
(range) 

Etiology 

Training MCS 31 (13) 41 (18-73) 33 (1-157) TBI = 17, anoxia = 8, mix 
= 1, hemorrhage = 5 

UWS 7 (2) 44 (28-65) 23 (3-66) TBI = 1, anoxia = 4, mix = 
1, hemorrhage = 1 

Validation MCS 24 (13) 38 (22-70) 25 (2-118) TBI = 9, anoxia = 9, mix = 
1, hemorrhage = 2, 
infection = 2, 
hypoglycemia = 1 

UWS 6 (2) 47 (32-65) 35 (1-168) Anoxia = 5, hemorrhage = 
1 

Total  68 (30) 38 (18-73) 30 (1-168)  

 

Table 2. Summary of main results. Classifications based on HERs consistently outperform 

classifications based on random EEG segments. Classifications using PET-based diagnosis 

consistently outperform classifications using CRS-R-based diagnosis. pbin: p-value assessed 

from a cumulative binomial distribution ; pmc: p-value from a Monte-Carlo permutation test. 

 

  3-fold cross 
validation 
accuracy, 
training sample 

Monte-Carlo 
comparison 
between HER 
and random EEG 
segments 

Accuracy in 
validation sample 
(test against 
chance, bin: 
binomial; mc: 
Monte-Carlo) 

Monte-Carlo 
comparison 
between HER 
and random EEG 
segments 

PET-based 
consciousness 

diagnosis 

HER 200-400ms 81.62%  

 

] pmc<0.001 

86.67%  

(pbin<0.001, 

pmc=0.001) 

 

 

] pmc=0.064 
Random EEG 
segments (mean 
± SD across 1000 
permutations) 

79.08%±0.7 80.84%±4.09 

(pbin<0.001) 
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CRS-R based 
consciousness 

diagnosis 

HER 156-356 ms 79.06%  

 

] pmc=0.038 

76.67% 
(pbin<0.001, 

pmc=0.004) 

 

 

] pmc=0.041 Random EEG 
segments (mean 
± SD across 1000 
permutations) 

72.95%±4.49 66.42%±7.13 

(pbin=0.272) 

 

Table 3. Significant brain regions that correlate with consciousness score in MCS 

patients. Anatomical labels according to AAL Atlas (Tzourio-Mazoyer et al., 2002). 

Cluster Brain regions Number of 
voxels 

Area (mm3) t-value peak X Y Z 

1 Temporal Inf R 338 2704 5.494091 48 -48 -22 

Fusiform R 165 1320 5.415044 46 -50 -20 

Occipital Inf R   149 1192 5.088109 48 -62 -14 

Lingual R 13 104 4.532592 24 -90 -10 

2 Temporal Mid R 86 688 4.845305 48 0 -22 

Temporal Inf R 44 352 4.775336 44 -10 -36 

Fusiform R 18 144 4.723663 40 -8 -36 

Temporal Pole 
Mid R 

3 24 4.513527 46 6 -24 

Temporal Pole 
Sup R 

1 8 4.533496 46 2 -20 

3 Temporal Sup R 5 40 4.482989 64 -22 0 

 

 

Table 4. Heart-rate variability univariate analysis 

Heart-rate variability 
feature 

MCS 
(mean ± 
SD) 

UWS 
(mean ± 
SD) 

Mann-Whitney 
U test p-value 
uncorrected for 
multiple 
comparisons 

Rank sum z-value 

Mean interbeat 
intervals (ms) 

892 ± 194 817 ± 134 0.3661 629 0.9037 
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Standard deviation of 
interbeat intervals (ms) 

47 ± 24 34 ± 23 0.1525 643 1.4309 

Root Mean Square of 
successive differences 
(ms) 

37 ± 29 19 ± 13 0.0768 652 1.7698 

Very low frequency 
power (ms2) 

1.64 ± 
4.04 107 

3.83 ± 
4.88 107 

0.4743 585 -0.7155 

Low frequency power 
(ms2) 

468 ± 571  207 ± 276  0.1752 641 1.3556 

High frequency power 
(ms2) 

637 ± 840  180 ± 189  0.1320 645 1.5062 

Low/High frequency 
ratio 

1.68 ± 
2.09 

1.54 ± 
2.11 

0.8213 611 0.2259 

 

 

 


