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Abstract

Batteries are multi-physical systems and during actual operating conditions they are submitted to variable ambient operating

conditions which can affect the dynamic behavior and the degradation. Therefore, a good understanding of the dynamic behavior

and the degradation laws under actual operating conditions is the key to a durability improvement and to the development of better

energy management strategies. The purpose of the proposed study is to use an experimental database issued from a three years

monitoring of a ten postal vehicle fleet to model the batteries with respect to operating conditions. Based on an electrical circuit

model, an optimization algorithm and a Kalman filter, the scientific contribution is to propose a simple but efficient method, using

vehicle operating data only, to estimate on-board the state of charge and state of health indicators linked to internal resistance and

available capacity. The proposed model presents a very good accuracy and state of health indicators estimations show promising

results. In the future, the proposed method could be applied on-board to estimate and analyze the state of health during the

entire battery lifetime in order to provide an accurate state of charge estimation and to contribute to a better understanding of the

degradation laws.

Keywords— Battery SOH, Battery modeling, Vehicle operating

data, Electric vehicle

1. Introduction

Nowadays, greenhouse gas emissions have to be significantly re-

duced. This is the reason why the popularity of low emission vehicles

such as Electric Vehicles (EVs), Hybrid Electric Vehicles (HEVs) and

Fuel Cell Hydrogen Electric Vehicles (FCHEVs) is highly growing [1–

3]. Consequently, batteries used in transportation applications became

a famous topic. However, batteries are frequently pointed out because

of their high prices but also because of their low autonomy, low dura-

bility and their long time recharge which are limitations to a worldwide

deployment [4].

Battery performances degrade with the repeatedly charging and dis-

charging [5] and because of calendar aging [6, 7]. Batteries are multi-

physical systems and operating conditions can affect the dynamic be-

havior and the degradation in different manners [8, 9]. Moreover, as the

batteries degrade overtime depending on the operating conditions, the

battery maximum discharge capacity decreases during the long-term

operation and affects the accuracy of the State Of Charge estimation

(SOC). Therefore, a good understanding of the dynamic behavior and

the degradation mechanisms occurring during actual operating condi-

tions is of particular importance to improve the durability with the de-

velopment of better materials and energy management strategies. To

tackle this issue, a first step is to master a good online degradation

quantification of the battery component.

The battery State of Health (SOH) is commonly used as a metric to

quantify the aging level of a battery [10, 11]. The SOH often refers to

either the capacity fade [12, 13] or to the power fade [13]. The capacity

fade refers to the loss in capacity (in Amps hours) of the component

and the power fade refers to the internal impedance increment. On the

one hand, accurate online estimation results are helpful to ensure the

system running safely and to estimate precisely the SOC. On the other

hand, SOH evolution can be analyzed with respect to operating condi-

tions in order to contribute to a better understanding of the degradation

laws.

A wide variety of studies have focused on SOH estimation [10, 11].

The proposed approaches can be classified according to three differ-

ents categories: (1) direct measurement approaches, (2) data driven

approaches and (3) model-based approaches. Each category has its

own advantages and drawbacks in terms of accuracy, computational

requirement, testing time or cost.

(1) Direct measurement approaches: these methods use raw mea-

sured data to estimate SOH without reproducing the dynamic be-

havior of the battery. For example, from the perspective of deter-

mining the battery capacity, Kong et al. [14] proposed a coulomb

counting method to estimate the SOC and the SOH of a battery

cell. Coulomb counting methods are very basics and do not con-

sider operating conditions [10]. Moreover, an accumulated error

and sensor noise can lead to significant estimation errors.

Some other studies proposed Open Circuit Voltage (OCV) based

methods to determine the battery capacity by using the relation-

ship between the OCV and the SOC [15, 16]. OCV based meth-

ods can be performed in both online or offline states. Nonethe-

less, laboratory tests are necessary to determine the relationship

between OCV and SOH.

Electrochemical Impedance Spectroscopy (EIS) has also been

considered as a tool to estimate battery SOH [17–20]. Based

on a Nyquist diagram, raw data can be used to identify easily a

degradation. Another way to estimate SOH with EIS is to corre-

late Nyquist diagrams with the parameters of an Electrical Cir-

cuit Model (ECM). Although EIS provides very consistent infor-

mation about the battery state and shows very good accuracy to
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Nomenclature

BMS Battery management system

DVA Differential voltage analysis

ECM Electrical circuit model

EIS Electrochemical impedance spectroscopy

EKF Extended Kalman filter

FT P − 75 EPA Federal Test Procedure

ICA Incremental capacity analysis

Li f ePO4 Lithium iron phosphate

NEDC New European Driving Cycle

OCV Open circuit voltage

S OC State of charge

S OF State of function

S OH State of health

WLT P Worldwide harmonized Light vehicles Test Proce-

dures

estimate ECM parameters, this tool is still more dedicated to lab-

oratory applications as online applications are not yet well mas-

tered. However, several studies have shown promising results

and assure that EIS can be integrated in a vehicle by controlling

the harmonic injection in the system to be characterized via the

static converter [21, 22].

Incremental Capacity Analysis (ICA) and Differential Voltage

Analysis (DVA) are both interesting methods that have been fo-

cused on. These methods provide information about the internal

cell state using only the cell voltage and current measurements

during a constant recharge or discharge [23–25]. ICA refers to

the ratio between a quantity of electric charges and a voltage vari-

ation and DVA is the mathematical inverse. Some studies used

these methods during battery charging to analyze the dynamic

behavior and quantify the SOH [23–26]. Both methods are very

promising and show very consistent results. However, as men-

tionned in Dubarry et al. [23], the consistency of the obtained

information are directly linked to the current value: the lower

the charging current the best the information, which can be very

problematic in the case of vehicle applications.

(2) Data driven approaches: data driven methods have also been used

to estimate battery SOH. This approach does not consider the

physical laws of the battery system as the methods are purely

based on data-driven tools such as artificial neural networks [27–

29], support vector machine [30, 31] or again deep learning [32].

Although these black-box approaches can provide good estima-

tion accuracy, they require a large amount of data for the train-

ing and high computational load. Because of these constraints,

these methods may not be suitable for on-line real-time purpose

as BMS often contain some microcontrollers or low computing

performance systems.

(3) Model based approaches: a large number of studies have focused

on the use of battery models to identify degradation and esti-

mate the SOH [10, 33, 34]. Models are used to reproduce the

dynamic behavior of a battery: voltage response as a function

of inputs such as current, temperature and SOC. Model parame-

ters have certain relationships with the battery aging level. Thus,

they can be used to estimate the SOH and their evolutions can be

investigated overtime and correlated with operating conditions

to analyze degradation laws. It is worth remembering that op-

erating conditions such as SOC, temperature, current etc. affect

battery degradation and dynamic behavior. Thus, many parame-

ters are interdependent and empirical models can tend to be com-

plex. This is the reason why electrical circuit models (ECM)

and electrochemical models are commonly used. Electrochemi-

cal models are generally exploited to understand electrochemical

phenomena. This kind of model is more complicated to imple-

ment as it needs many physico-chemical parameters as inputs

and lead to important computational requirements [35–37]. In

contrast, ECM have been extensively studied in the literature for

SOH estimation applications [38–42]. These approaches exhibit

low complexity, low computational requirement and acceptable

estimation accuracy. Ren et al. [41] proposed a method based on

an ECM and a Kalman filter to estimate SOC and SOH indicators

of a battery pack. The method has been tested with Hybrid Pulse

Power Characterization (HPPC) profiles and showed promising

accuracy. Shen et al. [39] proposed a method to estimate con-

currently the SOC, the SOH, and the state of function (SOF) for

lithium-ion batteries in real-time applications. The battery capac-

ity was estimated according to the accumulated charge between

two specific moments with online OCV identification. Based on

the capacity update from SOH estimation, the SOC could be es-

timated according to the battery aging. The tests were performed

with HPPC profiles. Although the presented results show good

accuracy, this method is based on OCV curves. Therefore, the

method can be hard to be applied on other technologies such as

LiFePO4 which presents a relatively flat OCV curve for SOC

between 80% and 20%.

Given the previous cited studies, an ECM based method has been

preferred in our study to estimate internal resistance and battery

capacity as SOH indicators. It is worth noting that SOH esti-

mation accuracy depends on the model accuracy. Consequently,

the first step is to build an accurate and suitable model for real

applications.

The large majority of SOH estimation methods published in the lit-

erature are based on laboratory tests or simplified driving cycles such

as NEDC, FTP-75 or WLTP. Despite the greatest attention given to

these studies, the generated electrical solicitations may not fully reflect

the battery dynamic behavior operating in real applications. Therefore,

the use of raw vehicle operating data directly issued from monitoring

is essential to build more accurate models and more reliable SOH es-

timation methods.

In this framework, the main contribution of this study is to propose

a simple and accurate model-based method to estimate both SOH indi-

cators (capacity and internal resistance), of a LifePO4 battery by using

only physical values measured on-board during real driving cycles. In

a first part the experimental context of the project and its application

2



will be introduced. In a second part, the method to build the battery

cell model considering the operating condition and to identify online

the internal resistance will be detailed. In a third part a method based

on an extended Kalman filter to estimate concurrently the SOC and the

battery capacity will be exposed. Finally conclusion and perspectives

will be drawn.

2. Experimental context

2.1. Vehicle fleet

Mobypost was a european project which aimed at developing a fleet

of ten experimental fuel cell hydrogen electric vehicles (cf. Figure 1)

dedicated to postal delivery applications [43],[44]. The vehicles were

designed considering the ability to support an important number of

starts and stops and also the possibility to operate with the fuel cell

off. The power-train integrated two power sources : a LiFePO4 battery

pack and a fuel cell system.

The battery pack is composed of four modules connected in series.

Each module presents a nominal voltage of 12.8V at 23°C. Nominal

capacity given by the manufacturer is 110Ah at 23°C with a discharge

current of C/5. Each module integrates four cell groups connected in

series which are composed of LiFePO4 3.2V cells connected in paral-

lel to reach a capacity of 110Ah. The battery temperature values are

measured inside each module.

A deep monitoring of the vehicles during the three years of experi-

mentation led to create a rich database. More than one hundred physi-

cal variables from all the vehicle components were measured and saved

on a server every second such as battery cell voltages, battery current,

battery temperature, battery SOC, fuel cell system voltage and current,

hydrogen tank SOC, vehicle speed, gps location to cite the main vari-

ables.

Figure 1: Three vehicles of the vehicle fleet

The vehicles were parked in a garage where ambient temperature

was controlled to be 12°C so the temperature in the vehicles has never

been lower than 0°C during experimentation.

2.2. Database presentation

The fleet monitoring led to create a database that store more than

1500 real driving cycles. This database can be used to analyze the

dynamic behavior with respect to the operating conditions and inves-

tigate their effects. In this study the data used to analyze the dynamic

behavior are physical measurable variables : battery current (I), the

battery cell voltage (Vcell) and the battery module temperature (T ). In

addition, some characterizations have been performed on one battery

pack at the beginning of the Mobypost project to measure OCV and to

estimate battery capacity with constant charge/discharge profiles and

internal resistance with HPPC profiles.

Figure 2 draws an example of data recorded during a driving cycle

with the vehicle in pure electric mode (fuel cell stopped). Negative

current values refer to currents provided to the motors, and positive

current values refer to energy recovery during breaking.

The Table 1 highlights the features of the fleet after three years of

experimentation exposing: determined cycle number that the batteries

suffered [44], number of post delivery that the vehicle realized, dis-

tance traveled by the vehicles and the total electric charge supplied by

the batteries.

It is worth noting that battery packs of vehicles were over-sized and

that all the vehicles were recharged after each postal delivery. In this

context, no driving cycle reached a battery state of charge value below

50%.

Table 1: fleet features

Vehicle

number

Battery

cycle

number

Postal

delivery

number

Distance

traveled

(km)

Electric

charge

supplied

(Ah)

1 74 160 2600 7913

2 83 203 2950 8816

3 69 154 2320 7640

4 89 243 3200 9600

5 76 145 1980 8015

6 39 110 1500 4184

7 62 149 2140 6579

8 83 188 3016 9354

9 60 159 1925 6133

10 69 171 2176 6860

3. ECM and parameters identification

3.1. ECM structure

Electrical circuit model are commonly used to reproduce the tem-

poral battery voltage response. Several structures of equivalent circuits

can be found in the litterature but a very common is highlighted in Fig-

ure 3 [40, 45, 46]. By integrating R//C circuits, this simple structure

allows reproducing the dynamic behavior and the voltage response of

a battery which is composed of transient periods of different durations.

Therefore, the R//C circuits time constants (τ) will be different so that

the model is able to reproduce different time order responses. R//C

circuits are used to represent impedances linked to the charge transfer

effects, double layer effects, diffusion and relaxation phenomena. The

number of R//C integrated in the model refers to the desired accuracy

and computing time limitations. Models can be found considering only

one R//C circuit as in [13, 47–49], or two R//C circuits [38, 39, 50, 51],

or with three R//C circuits [52–54].
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Figure 2: Data measured during a postal delivering

Figure 3: Battery RC model

In the proposed study the equivalent circuit integrates three R//C cir-

cuits in order to approach a good compromise between accuracy and

computational requirements. Theoretically an infinite number of R//C

circuits would be necessary to represent the complete voltage response

but practically increasing the number of R//C circuits will proportion-

ally increase the number of parameters of the model and consequently

the computational requirements. In the proposed structure, three R//C

circuits are used to represent the double layer effects, charge transfer

phenomena, diffusion phenomena and relaxation phases according to

the following distinction.

The model of Figure 3 contains parameters corresponding to resis-

tances and capacitors:

• A resistance R0 representing the ohmic losses related to the phys-

ical nature of the electrodes and the electrolyte.

• A first R//C circuit linked to the effects of the double layer ca-

pacity and charge transfer phenomena. The time constant will be

the smallest of the model.

• Two R//C circuits linked to the diffusion phenomenon in the

electrolyte and the relaxation phases. Time constants of these

circuits will be higher.

3.2. Parameter identification

A large number of methods has been presented during the last

decades to identify battery model parameters. The recursive least

square and the Kalman filter are the most common because of their

low complexity. Zhou et al. [55] proposed a method based on recur-

sive least square algorithm to identify parameters of a one R//C circuit

ECM. Results show satisfying accuracy but the method is tested with

a simplified HPPC profile and variations of ambient conditions are not

considered. Ren et al. [41] used a Kalman filter to estimate the param-

eters of an ECM and to estimate the SOC. Based on the model and the

SOC estimation the battery capacity can be quantified. Temperature

variations are not considered and simulation and validation have been

performed on simplified HPPC profiles which may not fully reflect ac-

tual operating conditions.

Zhang et al. [42] assured that the accuracy of such adaptative meth-

ods is generally not satisfying. The authors preferred to use optimiza-

tion algorithm in order to identify ECM parameters. In their study, they

proposed an ECM based method to reproduce the dynamic behavior of

a battery pack and estimate its capacity. Firstly the optimization algo-

rithm was applied to identify ECM parameters, then a particle filter

was used to estimate the SOC and finally a recursive least square algo-

rithm was performed to quantify the battery capacity. Results showed

satisfying accuracy. However, the method was tested on lab with sim-

plified HPPC profile and temperature variations were not considered.

Considering the previous study [42], the use of an optimization al-

gorithms have been also preferred in our study as the feature of more

effective in parameters identification. In a different approach, our con-

tribution is here to build a reliable battery model able to reproduce the

dynamic behavior during actual driving cycle with good accuracy by

using data directly issued from a vehicle monitoring. Moreover, the

model will be reliable regardless of varying operating conditions.

3.3. Model equations

The first step is to define the model equations and the mathematical

relationships linking ECM parameters to operating conditions. From
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Figure 3, the equation governing the battery cell output voltage during

discharge are given by:

Vcellestimated
= OCV − U0 − U1 − ... − Ui (1)

OCV being the Open Circuit Voltage.

dUi

dt
=

1

Ci

.I −
1

Ri.Ci

.Ui (2)

Solving the first order differential equation (2) leads to the following

expression (3). It is worth noting that the acquisition frequency is 1Hz,

so t is discretized with a sampling period of 1s to solve the equation.

Ui(n) = Ui(n − 1).e
−(t(n)−t(n−1))

Ri .Ci + Ri.(1 − e
−(t(n)−t(n−1))

Ri .Ci ).I(n) (3)

Ri and Ci being the resistive and capacitive parameters of the

electrical equivalent circuit given in Figure 3.

In order to integrate thermal dependency to the model, resistive pa-

rameters will be dependent on the temperature as in (4). This equation

form was prefered because of the temperature dependence following

an Arrhenius law [56] and was demonstrated in [57],[58] or in [59]

based on experiments.

Ri(n) = ai.exp(bi.T (n)) + ci (4)

where ai , bi and ci are constants to be identified. T is the

temperature in Celsius degree.

As presented in [60], battery internal resistance is also dependent

on the SOC value. The relationship is exponential, the lower the state-

of-charge, the higher the resistance. However, for a state of charge

higher than 0.3, the internal resistance remains constant. In this study,

driving profiles never reach SOC values lower than 0.3, consequently

this relationship has not been considered in the proposed model.

Concerning the OCV, it is known that the latter is a measure of the

battery electromotive force which have a monotonic relationship with

the battery SOC [57, 61]. Therefore, accurate knowledge of this non-

linear relationship is required for adaptive SOC estimation throughout

the use of the battery. Equally, relationship between the OCV and the

temperature of the battery cells has been proven [62, 63]. The conse-

quence is a variation of the usable battery capacity [64]. Therefore, to

better reproduce the battery dynamic behavior, both relationships have

to be considered in the proposed model.

For this purpose, OCV characterizations have been performed in

order to translate mathematically its evolution with respect to the tem-

perature and the SOC. It is worth noting that, as highlighted on the

Figure 2, when the vehicle is stopped (speed = 0) ancillaries require

a constant current of 2A. To fit with this application, the choice was

made to characterized pseudo OCV by measuring discharge curves at

very low current (C/22). Figure 4 highlights three pseudo OCV evolu-

tions measured at three different temperatures. As shown in Figure 4, a

decomposition of each part of the curves allowed to identify mathemat-

ical expressions able to reproduce the path of the curves. For example,

it can be noticed that the OCV value decreases exponentially when the

temperature decreases. Mathematically, this phenomenon is governed

by the expression α.exp(β.T (t)).

Figure 4: OCV mathematical function decomposition

The deduced empiric mathematical function (5) can be used to re-

produce OCV evolution according to the temperature and SOC. Pa-

rameters a, b, c, d, e, f, g, h and i are constants to be identified. Based

on the measured operating data, the parameter identification allows to

adjust the OCV evolution path specific to each LiFePO4 cell. Con-

sequently, OCV of a LiFePO4 cell can be estimated online without

further characterizations.

OCV(t) = a +
b.(20 − T (t))

S OC(t)
+

c

sqrt(S OC(t))
+ d.S OC(t)

+ e.ln(S OC(t)) + f .ln(1.001 − S OC(t))

+ g.ln(1.01 − S OC(t)) + h.exp(i.T (t))

(5)

T is the temperature in Celsius degree.

3.4. State of charge reference

As the battery SOC is an input of the proposed model, a reference

value is required to identify ECM parameters. Coulomb counting is a

common method to estimate the SOC easily [10]. The SOC could be

computed with equation (6).

S OC(t) = S OC(0) −
1

Qbatt × 3600

∫ t

0

I.dt (6)

where Qbatt represents the battery capacity in Ah.

However, this method can be inaccurate as the battery capacity

varies with respect to the temperature, as exposed in Figure 4, the ag-

ing and the current [11]. To determine a good SOC reference, we need

a relationship between the capacity and the temperature. This would

enable to adjust the battery capacity in (6). Based on characterizations

which aimed at measuring the battery capacity under three different

temperatures (2°C, 20°C, 30°C), the empirical relationship (7) was de-

termined with a polynomial regression.

Qbatt = −0.025 × T 2 + 1.6 × T + 86.76 (7)

where T is the temperature in Celsius degree. Figure 5 illustrates

this empiric relationship. The nominal capacity is 110Ah at 23°C for a

discharge current of C/5.
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Figure 5: Characterized battery capacity versus temperature

3.5. Optimization algorithm

Optimization methods can be summarized as identifying a set of

input parameters (xn) minimizing a mathematical function f(xn). The

nature is a great inspiration for proposing optimization methods such

as Genetic Algorithms, Ant Colony System, Simulated Annealing,

Particle Swarm Optimization or again big-bang big-crunch [65–67].

Optimization algorithms have been already used to identify parameters

of a battery model [42, 68]. The purpose is to identify the set of input

parameters model minimizing the objective function. In this case the

objective function to minimize is the Normalized Root Mean Square

Error (NRMSE) (8).

NRMS E =
RMS E

max(Vcellreal) − min(Vcellreal)
(8)

where RMSE is the Root Mean Square Error, max(Vcellreal is the

real cell voltage maximum value, min(Vcellreal is the real cell voltage

minimum value.

In this work the Big-Bang Big-Crunch (BB-BC) algorithm has been

prefered as it presents good results and performances in [69]. It is

worth noting that in this study the purpose is not to demonstrate which

optimization algorithm is the best. The proposed BB-BC algorithm

refers to one of the theories of the universe evolution [69, 70]. This

theory, explains that the universe expansion phase due to the big bang

will end and will be replaced by a universe contraction phase named

big crunch.

The BB-BC algorithm is constituted by the following steps:

• Step 1: create an initial population of Npop candidates randomly,

respecting the search space limitations.

• Step 2: evaluate performance of each candidate by applying the

objective function.

• Step 3: identifying the best candidate (named center of mass).

Candidate leading to the lowest error.

• Step 4: create a new population around the center of mass and

reduce the search space. However an exploration probability is

preserved to get out of a possible local minimum: some candi-

dates are created in the entire search space looking for a global

optimum.

• Step 5: return to step 2 while stopping criteria is not met.

The reduction of the search space is represented by a function in-

versely proportional to the number of generation. The equation (9)

illustrates the research space division (RS div) according to the number

of generations (gen):

RS div(gen) =
1

gen
(9)

This function radically reduces the search space for the first gener-

ations which can lead to progress to a local minimum instead of the

desired global minimum. In order to tackle this issue, another way to

reduce the search space, proposed in [69], has been used in this study.

The proposed method divides more slowly the search space during first

generations and then accelerates to find the results more efficiently. For

this purpose, an exponential function replaces the linear function in the

proposed version of the algorithm.

3.6. Training data

To improve robustness of the model and avoid extrapolations, iden-

tifying model parameters according to the entire operating range is of

particular importance. For that purpose, four driving cycles (cf. Figure

7) have been chosen as they have been realized at four different tem-

peratures as detailed below. The entire operating temperature range of

the vehicle is therefore considered (from 1°C to 25°C).

• Cycle 1 : average temperature 3°C

• Cycle 2 : average temperature 7°C

• Cycle 3 : average temperature 18°C

• Cycle 4 : average temperature 24°C

3.7. Modeling results

As a result of the parameters identification, the Figure 6 draws a

comparison between the estimated and the measured voltage during

the driving cycle 3 used for model building. It is worth remembering

that this voltage is the result of a parallel association of single LFP cells

which reach a capacity of 110Ah. Results highlight the good accuracy

of the model. The obtained error is NRMS E = 0.016. The model is

able to provide an accurate cell voltage estimation with respect to the

temperature and the SOC. Tables 2 and 3 present the values of the iden-

tified model parameters. Three different time constants are obtained:

2 seconds to reproduce the end of charge transfer and double layer ef-

fects and the beginning of diffusion phenomena, 40 seconds and 400

seconds to reproduce both diffusion phenomena and relaxation phases.

The efficiency could be improved by adding others R//C circuits with

higher time constants up to several hours in order to reproduce relax-

ation phenomena at best [71]. Figure 8 illustrates the evolution of the

internal resistance Rin with respect to the temperature. In this study

Rin is defined as the sum of the four resistive parameters. Figure 9

compares OCV estimation based on operating data and OCV measures

from characterization.
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Figure 6: Cell voltages comparison with a driving cycle used for parameters

identification

Table 2: Model parameters for T = 20◦C

Model

parameter Value

τ1 2 s

τ2 40 s

τ3 409 s

C1 1266F

C2 47772F

C3 454800F

a 3.566 V

b −1.013 × 10−4 V◦C−1

c −0.0700 V

d 0.0735 V

e −0.0191 V

f −0.0744 V

g 0.0657 V

h −0.023 V

i −0.00201 ◦C−1

Table 3: Model resistive parameters

Model

element ai(mΩ) bi(
◦C−1) ci(mΩ)

R0 0.407 −0.067 0.145

R1 0.678 −0.058 0.305

R2 0.889 −0.04 0.186

R3 1.1 −0.14 0.427
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Figure 8: Internal resistance evolution versus temperature
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Figure 9: Comparison between estimated and measured OCV at three different

temperatures

Then, the model must be validated by verifying its accuracy for

an input profile (current and temperature) different from one used for

parameters identification. Thereby, Figure 10 compares both estimated

and real voltage responses for a driving cycle selected randomly from

the database. The battery temperature range is from 13◦C to 17◦C.

The error is NRMSE = 0.02 which proves the validity of the proposed

model.
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Figure 10: Cell voltages comparison with entire driving cycle used for valida-

tion

In this section, a method has been proposed to model a battery with

respect to temperature and SOC dependencies. This method allows to

estimate the cell voltage response with a good accuracy whatever the

operating conditions.

4. On board estimation of SOH indicators

The previous parameter identification could be applied during the

vehicle lifetime to follow model parameters evolution according to the

aging. In particular, the internal resistance Rin evolution can be dis-

sociated from the temperature influence. Consequently, SOH referring

to power fade, could be quantified on-board all along the vehicle op-

eration. However, the proposed modeling method needs to know the

value of the SOC (cf. equation (5)) and SOC is directly depending on

battery capacity. Therefore monitoring this capacity is a key for on

board estimation of SOH indicators (internal resistance and capacity).

As mentioned before, the capacity varies with respect to the temper-

ature, the current and the aging. The coulomb counting is a simple

method but not sufficient for a good estimation in embedded applica-

tions. This study proposes a method to estimate simultaneously the

battery SOC and the battery capacity based on the previous presented

model.

The proposed approach to estimate the usable battery capacity is

based on SOC variations (∆S OC) and electric charge variations ∆Q

(in Ah). The battery capacity is defined by the expression (10).

Qbattestimated =
∆Q

∆S OC
(10)

In this case, as ∆S OC is at the denominator of the expression (10), a

small ∆S OC will easily lead to oscillations. This is why it is advisable

to consider sufficiently large SOC variations to minimize estimation

errors. In the proposed method, ∆S OC is defined as the difference

between the SOC at time k and the initial SOC, so the estimation will

be more accurate through the time steps.

The proposed approach is governed by the following algorithm 1.

All along a driving cycle, measures are acquired at a sampling period

∆t. At each time step, the sum of supplied current is computed and

stored in variable int. With this sum, the quantity of electric charges

∆Q (in Ah) delivered by the battery can be determined. Finally, esti-

mated capacity is determined by the ratio between ∆Q and ∆S OC.

Algorithm 1 Capacity estimation

while k < end do

int = int + I(k)

∆Q(k) = int.∆t/3600

∆S OC(k) = S OC(0) − S OC(k)

Qbattestimated(k) =
∆Q(k)

∆S OC(k)
k = k + 1

end while

Then, the first step is to propose an SOC estimation. Several meth-

ods have been exposed in the literature to estimate battery SOC such

as artificial neural networks [72, 73], Kalman filters, particle filter,

recursive least square or again fuzzy logic. Considering the literature,

Kalman filtering is certainly the most common method to estimate

8



SOC due to its good accuracy, low computational requirement and

easy implementation [47, 74–76]. For theses reasons a Kalman filter

based method has been preferred in this study.

4.1. Extended Kalman Filter equations

Kalman Filters (KF) can be used to estimate a system state which

cannot be directly measured, in this case the battery state of charge.

The Extended Kalman Filter (EKF) is a variant of the basic Kalman

Filter which is usable only if the system is linear. EKF is one of the

commonly used methods for battery parameter and state estimation

[47, 76]. This filter is a recursive algorithm that combines a model

which is used to estimate a measurable value and a measurement data

set to seek for an optimal estimation of the internal state of the sys-

tem. Once a new measurement is available, the prediction error is

used to correct the state prediction. A good detailed introduction on

the EKF and its applications for SOC estimation has been provided

in [74]. EKF relies on two functions : a state equation (11) and a

measurement equation (12). These two equations are governed by the

nonlinear vector functions f and h, where xk is the state vector at time

index k, uk is the system input, wk is the process noise, yk is the output

of the system and vk is the measure noise that affects the measurement

of the output.

xk = f (xk−1, uk−1) + wk (11)

yk = h(xk , uk) + vk (12)

The function f can be used to compute the predicted state from

the previous estimate and the function h can be used to compute the

predicted output from the predicted state. As KF cannot work in a

nonlinear model, functions f and h cannot be applied directly so a lin-

earized process method is required for EKF. State equation (11) and

measurement equation (12) are linearized iteratively by Taylor series

expansion. The Jacobian matrices of the first order Taylor expansion

are computed as in (13) and (14). Fk and Hk are the first partial deriva-

tive matrices of functions f and h with respect to xk.

F =
∂ f (xk, uk)

∂xk

(13)

H =
∂h(xk , uk)

∂xk

(14)

The filter consists of two phases : one for predicting the measured

value and one for correcting. The prediction phase is governed by the

two following equations (15) and (16) :

Prediction of the state variable at time k :

x̂−k = f (x̂k−1, uk−1) (15)

Prediction of covariance error :

P−k = Fk .Pk−1.F
T
k + Qk (16)

And the measurements update equations are governed by (17)-(20):

Update of innovation covariance :

S k = Hk.P
−

k .H
T
k + Rk (17)

Update of Kalmain gain :

Kk = P−k .H
T
k .S

−1
k (18)

Optimal estimation of system state at time k :

x̂k = x̂− + Kk.(yk − ŷk) (19)

Update of system state error covariance matrix :

Pk = (I − Kk.Hk).P−k (20)

Qk and Rk are the covariances of the process and measurement

noises. Pk is the a posteriori covariance matrix which is a measure of

the estimated accuracy of the state estimation.

To apply EKF, the first step is to transform the SOC expression (6)

to a discrete form (21):

S OC(k) = S OC(k − 1) − I(k).
∆t

Qbattestimated × 3600
(21)

With Qbattestimated the usable battery capacity estimation obtained

through the Algorithm 1.

The Kalman filter state equation f (xk, uk) (11) and measurement

equation h(xk, uk) (12) can now be expressed respectively as in (22)

and (23).





S OCk+1

U1k+1

U2k+1

U3k+1



 =





S OCk − I(k).
∆t

Qbatt

U1k
.e

−∆t
R1 .C1 + R1.(1 − e

−∆t
R1 .C1 ).Ik

U2k
.e

−∆t
R2 .C2 + R2.(1 − e

−∆t
R2 .C2 ).Ik

U3k
.e

−∆t
R1 .C1 + R3.(1 − e

−∆t
R3 .C3 ).Ik




(22)

h(xk , uk) =
[
OCVk −U1k

−U2k
−U3k

−R0k
.Ik

]
(23)

with the battery current defined as the input signal uk = Ik. Jacobian

matrices Fk and Hk can be expressed respectively as in (24) and (25) :

Fk =
∂ f (xk, uk)

∂xk

=





1 0 0 0

0 e
−∆t

R1 .C1 0 0

0 0 e
−∆t

R2 .C2 0

0 0 0 e
−∆t

R3 .C3




(24)

Hk =
∂h(xk, uk)

∂xk

=





∂OCV

∂S OC
−1

−1

−1





T

(25)

4.2. EKF estimation of SOC and capacity

Figures 11, 12 and 13 highlight SOC estimation with the proposed

EKF. The figures compare the EKF estimation and a basic coulomb

counting during three driving cycles realized at three different tem-

peratures : 20°C, 5°C and 25°C. These cycles have been selected in

the database in order to represent the full temperature range in which

the driving cycles were realized. The Figure 11 highlights two SOC

estimations compared to a coulomb counting for two driving cycles

realized at 20°C. It can be seen that both estimations achieve same

SOC final value than the coulomb counting regardless of the final state

of charge value. For a temperature of 5°C (cf. Figure 12), the esti-

mation differs from the coulomb counting as the usable battery capac-

ity changed due to temperature variation. In the third case of 25°C

(cf. Figure 13), the difference is less visible. Kalman filter estima-

tion remains close to the coulomb counting as at higher temperatures

the variation of usable capacity is less significant (cf. Figure 5). This

shows that the proposed estimation is able to consider battery capacity

variations. To verify the proposed method, SOC estimations in Figures

9



12 and 13 have been compared with coulomb counting reference per-

formed with the characterized battery capacity at both temperatures.

This way, it can be seen that estimations from the Kalman filter con-

sider battery capacity decreasing due to the low temperature and small

capacity increasing due to higher temperature which is faithful to char-

acterizations.
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Figure 11: State of charge estimation for battery temperature at 20°C
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Figure 12: State of charge estimation for battery temperature at 5°C

Results above show that the Kalman filter is able to concurrently

estimate the state of charge and the battery usable capacity. The esti-

mation of the battery capacity is an important challenge as it is directly

linked to the vehicle autonomy and is not constant during the battery

lifetime. That is why the method for SOC estimation needs to be ro-

bust regarding the knowledge of the real value of capacity. This is thus

mandatory to verify that SOC estimation remains reliable whatever the

knowledge of the battery capacity. For that purpose the previous pre-

sented method has been performed with two different capacity values

initialized in the algorithm. The Figure 14 highlights the proposed

SOC estimation at 20°C and compare it with a basic coulomb count-

ing initialized with two different initial capacity value. As expected,

the coulomb counting estimations differ as the capacity values in the

SOC expression (cf. equation (6)) are different. In contrary, the value
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Figure 13: State of charge estimation for battery temperature at 25°C

of the initial capacity Qbatt in the Kalman filter state equation (21)

does not affect the SOC estimation. Indeed, even if the initial capacity

value is different (210 Ah instead of 110 Ah), the SOC estimation con-

verges to the same value. The proposed method corrects the battery

capacity value and does not require to further measure the real value

to provide a reliable SOC estimation.
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Figure 14: State of charge estimation with two different initial capacities

The proposed approach can be applied on-board all along the vehi-

cle lifetime coupled with ECM parameters identifications to estimate

the battery state of charge and capacity, which directly refers to SOH

indicator, depending on the temperature and the battery aging. Con-

trary to the initial estimation (cf. section 3.4) this EKF estimation

is based on battery model. Therefore, if model parameters vary with

the aging, the battery SOC and usable capacity can be concurrently

estimated based on these new parameters. In this way aging will be

considered.
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5. Conclusion

Based on vehicle operating only, this paper proposed a method to

identify state of health indicators of a LiFePO4 battery cell: available

capacity and internal resistance referring to the available power. The

method is based on an electrical circuit model to reproduce and simu-

late battery dynamic behavior according to operating conditions. The

proposed model is able to reproduce the battery dynamic behavior: cell

voltage with respect to thermal and state of charge dependencies, with

a very promising accuracy. Model parameters can be used to estimate

the internal resistance which is a first state of health indicator. Based

on a Kalman filter, the model can then be used to estimate concurrently

the state of charge and the available capacity, which is a second state

of health indicator, considering the temperature variations and the ag-

ing. The proposed method could be integrated on board and applied

during the entire vehicle lifetime to provide a reliable state of charge

estimation and to follow state of health in order to contribute to a bet-

ter understanding of the degradation laws and to develop better energy

management strategies.

Otherwise, future aging data will be generated to extend the

database in order to validate the proposed method, to analyze battery

state of health evolution and to study effects of actual operating condi-

tions on the battery degradation.
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