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Abstract

NoSQL stores offer a new cost-effective and
schema-free system. Although it is widely accepted
today, Business Intelligence & Analytics (BI&A)
remains associated with relational databases.
Exploiting schema-free data for analytical purposes is
issuing a challenge since it requires reviewing all the
BI&A phases, particularly the Extract-Transform-Load
(ETL) process, to fit big data sources as document
stores. In the ETL process, the join of several
collections, with a lack of explicitly known join fields, is
a significant challenge. Detecting these fields manually
is time and effort consuming, and even infeasible in
large-scale datasets. In this paper, we study the problem
of discovering join fields automatically, and introduce
an algorithm to detect both identifiers and references
on several document stores. The modus operandi
of our approach underscores two core stages: (i)
discovery of identifier candidates; and (ii) identifying
candidate pairs of identifier and reference fields. We
use scoring features and pruning rules based on both
syntactic and semantic aspects to efficiently discover
true candidates from a huge number of initial ones.
Finally, we report our experimental findings that show
very promising results.

1. Introduction

Since more than a decade ago, NoSQL datastore
became commonly used to store Big Data. These
systems are schema-free, and built upon distributed
systems, which makes it easy to scale and shard1.
However, in the rush to solve the challenges of big
data and large numbers of concurrent users, NoSQL
abandoned some of the core features of relational
databases, which make them highly performant and
easy to use [1, 2]. Although the use of NoSQL
stores is widely accepted today, Business Intelligence

1Sharding is a method for distributing data across multiple
machines

& Analytics (BI&A) remains associated with relational
databases. In fact, from the earliest days of data
warehousing, the qualities of the relational model have
been highly valued in the quest for data consistency
and quality. Exploiting NoSQL stores for analytical
purposes requires reviewing all the BI&A phases. In
our previous work [3], we have proposed a hybrid
BI&A approach that considers both schemaless data
sources and analytical needs to efficiently explore more
than one document store. The ETL, i.e., extract,
transform and load, is the cornerstone of our approach.
Carrying out major ETL operations, particularly, the
join operation still being a challenge in document stores
[4, 5]. In fact, fetching relevant data that meets the
decision-maker requirements, often needs to access
more than one document store, thereby needs to use the
join operation. While joining tables in relational data
sources is straightforwardly owed to the availability of a
precise join key, in document stores, collections are the
furthest from having an exact join key due to the absence
of integrity constraints. So, identifying the ”joinable”
fields to stick two document stores is a tricky challenge.
Despite its importance, no previous work has paid heed
to detect join keys pairs in the context of NoSQL stores,
particularly document-oriented stores.

For this, we introduce IRIS-DS (Identifiers and
References DIScovery in Document Stores), a new
approach that aims to discover the pairs of join keys
(identifier, reference) starting from more than two
document stores, i.e., collections. Worthy of mention is
that we focus, in this paper, on non-composite join keys.
Thus, the sighting features of our approach are: (i) to
the best of our knowledge, no former approach has been
dedicated to joining keys discovery in the context of
document stores; (ii) we adapt existing features, which
identify candidates, to the context of document stores
and we introduce new ones; and (iii) unlike existing
works, we use both syntactic and semantic similarity
measure for pruning pointless candidates.

The paper outline is as follows: in Section 2, we
recall the basic concepts related to document stores

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 970
URI: https://hdl.handle.net/10125/70730
978-0-9981331-4-0
(CC BY-NC-ND 4.0)



followed by a motivating example in Section 3. In
Section 4, we scrutinize the related literature. In
Section 5, we introduce the core stages of our approach.
In Section 6, we explain the overall algorithm. In
Section 7, we present a case study of our approach.
Finally, we discuss the experimental results in Section 8
and we allude to takeaway messages and sketch issues
of future work in Section 9.

2. Preliminaries

Document stores, aka document-oriented databases,
are one of the families of NoSQL stores. A document,
which has a schemaless nature, is the basic concept of
document stores. JSON is currently the most commonly
adopted format that we will use in the remainder.
Definition 1. (Document and Collection) A document
d is an object. Each object contains a set of key-value
pairs; a key is a string, while a value can be either a
primitive value (i.e, a number, a string, or a boolean),
an object, an array of values, or null. A collection D is
an array of documents.

Before introducing the problem, we briefly present,
in Table 1, the terminology related to document stores
and their associated concepts in relational databases.

Table 1: Main terminology of document stores and its
equivalent in relational databases

Document stores Relational databases
database/document stores database
collection table
document row
field column
identifier primary key
reference foreign key

3. Motivating Example

In the following, we present a motivating example
that smoothly sheds light on the main challenges of
detecting the join keys in the context of document
stores. We consider n collections denoted C1, . . . , Cn,
that store two main topics, to wit orders made
on marketplaces like Amazon and Cdiscount, and
deliveries insured by brands like Bosch and
Moulinex. For the sake of simplicity, Figure 1
shows two collections, C1 for orders and C2 for
deliveries. Suppose that we are interested in
analyzing the deliveries’ delay, called DD. To do so, we
need to compute the delay as the difference between
the actual delivery date versus the expected one. C1

Figure 1: An excerpt of two collections

contains all the orders made on Amazon marketplace
and C2 contains the deliveries done by the Bosch brand
to different marketplaces. As DD = deliveryDate −
expDeliveryDate where deliveryDate ∈ C1 and
expDeliveryDate ∈ C2, it is of paramount
importance to correctly join C1 and C2 in order to
compute the DD metric. The key fields that join
C1 and C2 are OrderID as an identifier in C1 and
OrderCode as a reference in C2. If we use existing
algorithms dedicated to relational databases in order to
automatically detect join keys, it would be unfitting. In
fact, the OrderID in C1 has a null value in the third
document and is absent in the fourth one. Additionally,
the set of OrderCode values: {Amazon Bosch1,

eBay Bosch1, Cdiscount Bosch1} is not included
in the set of OrderID values: {Amazon Moulinex1,

Amazon Bosch1, Amazon KenWood1}. In document
stores, joining two collections is a thriving challenge due
to their clueless schemaless nature. In fact, (i) unlike
primary key which is unique and not null, identifier as
all the other fields, can be missing in some documents or
can, normally and not exceptionally, have null values;
(ii) document stores doesn’t have ”precise” join keys
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beforehand due to the absence of integrity constraints;
and (iii) unlike a relational database, reference values
are not included in the identifiers’ values, which means
that it is impossible to use the inclusion dependencies in
order to automatically detect identifiers and references.

4. Related Work

Our main objective is to identify ”joinable” key
fields, i.e., identifier and reference fields, to perform a
join operation between two different document stores.
We survey, in this section, existing works that paid
attention to this issue. We identify three main streams of
approaches: (i) dealt with the ETL process over NoSQL
stores; (ii) addressed the join operation in the context of
NoSQL stores; and (iii) proposed contributions for the
primary key and foreign key detection in the context of
relational databases.

4.1. ETL over NoSQL Stores

Few researchers have addressed the problem of
ETL in the context of NoSQL stores, particularly the
document-oriented ones [6, 7]. For example, in [8],
the authors proposed a tool, called BigDimETL, dealing
with the ETL development process in the context of
NoSQL stores. Data are extracted from a document
store to be converted to a column-oriented store to apply
partitioning techniques. The approach aims to minimize
ETL time consuming by parallelizing the treatment of
select, project, and join operations.
Along these works, several approaches have focused on
schema extraction, i.e., a list of document fields with
their types, from document stores [9]. Since it is a
crucial step in an ETL process, dealing with document
stores, we have studied these different contributions.
Baazizi et al. [10] were interested in schema inference
of massive JSON datasets. The distinguishing feature of
their approach is that it is parametric and allows the user
to specify the degree of preciseness and conciseness of
the inferred schema. Besides, Gallinucci et al. [11] have
extended the level of schema extraction of a collection
of JSON documents, with schema profiling techniques,
to capture the hidden rules explaining schema variants.

Although most of the above-mentioned approaches
have exclusively focused on the first phase of the ETL
process, i.e., the extraction phase or on extracting
document schema, contributions in the transformation
phase remain limited and require more effort. Besides,
most of these contributions consider as input only a
single collection of documents.

4.2. Join Operation in the Context of NoSQL
Stores

A number of questions regarding the join operation
in the context of NoSQL stores need to be addressed.
In fact, the join operation is not explicitly available
in NoSQL stores [4]. Few researchers have addressed
this issue. For instance, in [4], the authors discussed
the impact of performing the join operation in the
context of document stores. They have proposed
an algorithm that performs an Inner-join operation
on two MongoDB collections at the application-layer.
The algorithm requires to be fueled with join keys.
Besides, since the join is mandatory for querying
tasks, we have also studied the querying dedicated
approaches. In [12], the authors proposed Squerall, a
framework that enables querying of heterogeneous data
on-the-fly without prior data transformation. Squerall
supports MongoDB, Cassandra, and various sources.
During query time, the framework enables the user
to declare transformations for altering join keys to
make data joinable. In [13], Kondylakis et al., have
proposed a data management solution allowing joins
over NoSQL Cassandra databases where the primary
keys are considered as partition keys. The approach
proposed in [14] inputs two sets of values from join
columns and produces a predicted join relationship
using a big table corpus.

The aforementioned works have all addressed the
join operation in the context of NoSQL stores. However,
we note that all of them rely on a strong assumption:
having the join keys beforehand. It is worth mentioning
that, in the context of NoSQL stores, no prior works
have proposed a method to find the pair of join keys, i.e.
both identifiers and their respective references. Hence,
it would be of benefit to examine prior research carried
out within a relational database context.

4.3. Primary Key and Foreign Key Discovery
in Relational Databases

In this subsection, we present the contributions that
have dealt with the detection of primary keys and
foreign keys in the context of relational databases. The
authors in [15, 16, 17] have paid attention to foreign
keys detection assuming the presence of primary keys.
Quite freshly, Jiang and Naumann [18] have proposed
an approach to discover both primary keys and foreign
keys automatically for a given relational database. The
approach is based on the functional dependencies that
describe the characteristics of a table or relationships
between tables, namely unique column combination and
inclusion dependencies. Both types of dependencies
have been used to, respectively, detect primary keys and
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foreign keys in relational databases. A unique column
combination is the set of attributes whose projection
contains only the set of column combinations having
the unique and non-null values, whereas, in document
stores, fields can easily, be missing in some documents
or can, normally and not exceptionally, have null values.
On the other hand, their work is based on the set of
inclusion dependency given as input. However, this
assumption couldn’t pertain in the context of document
stores as described in our motivating example.

Even if this previous work [18] is the closest one to
our problem, it can not be applied out of the context
of relational databases. Thus, we have undergone a
rethinking of the problem by using alternative methods
adapted to document stores’ schemaless nature.

5. The IRIS-DS Approach to
Automatically Detect Identifiers and
References

In this section, we thorroughly describe the core
stages of our approach: (i) discovery of identifier
candidates; and (ii) identifying candidate pairs of key
fields.

5.1. Discovery of Identifier Candidates

In this first stage, we restrict our focus on the
discovery of identifier candidates on which depends the
identification of the pairs (identifier, reference). Hence,
the aim of this stage is to start with identifying an initial
list of identifier candidates for each collection and come
out with a refined list after the scoring and the pruning
phases.

5.1.1. Identifying the Initial List of Identifier
Candidates. Let us consider a collection C, and its
global schema SG = Tc ∪ Ts, where Tc is the set of fields
with complex types and Ts the ones with simple types.
Since an identifier can not, probably, be a JSONObject
nor a JSONArray, then we limited the search space of
identifier candidates to the ones having simple types
(Ts). Moreover, due to schema flexibility, documents
within the same collection may present some structural
variety. Some fields are not present in all documents.
Thus, we classify fields in Ts as being required (Fr)

or optional (Fo) (cf., Definition 2). We limited the
search space of identifier candidates to the required
fields within Fr. Then, within Fr, we look for those
having unique values.
Definition 2. (Required field) A field is required
whenever its frequency is greater than or equal
to a threshold ε. The frequency is computed as

freq(field) = |k̃c|
|Dc| [19], where |k̃c| is the number of

documents in which the key in the given field is not
missing and has a not null value, and |Dc| stands for
the total number of documents within the collection C.

5.1.2. Scoring Identifier Candidates. In the
context of relational sources, several primary key
features had been explored in the literature [18, 20]
to distinguish true primary keys from spurious ones,
i.e., position, name suffix, and value length. We reuse
these features that we have adapted to the context of
document stores in our proposal, and we introduce
new schema-based features: depth and data type. We
present these features as follows:

• Name suffix: identifiers are generally identified
by their field name suffix. We consider the list of
possible names’ suffixes for identifiers as: ”id”,
”key”, ”nr”, ”no”, ”pk”, ”num”, and ”code”. The
score function suffix(f) is binary. It returns one
if the field, denoted as f , has one of the suffixes
mentioned above or zero otherwise.

• Position: very often, an identifier is ranked first
in a collection. The score function is defined
as 1
|before(f)|+1 , where before(f) denotes the

number of fields before a field f . Worth of
mention in a document store, a field can be found
in different positions in the set of documents.
Hence, we consider the most frequent position of
f .

• Depth: identifiers often have a shallow depth. In
fact, a nested field has a lower chance to be an
identifier for the entire collection. We define the
score function as 1

depth(f)+1 .

• Data type: hands-on hints show that a field is
prone to be an identifier whenever its data type
is Integer or String. The score function type(f) is
binary and returns one if the field has a String or
an Integer type or zero otherwise.

• Value length: fields that are used as identifiers
are supposed to have a short value length, as they
are typically non-semantic identifiers. The score
function is defined as 1

max(1,|LengthMax(f)|−n) ,

where |LengthMax(f)| is the length of the
longest value associated to the field of f and the
parameter n is used to penalize long values.

We use these features to score each identifier
candidate related to each collection. For the total score,
we use the overall average of the computed scores.
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5.1.3. Pruning Identifier Candidates. Expectedly,
the set of the initial identifier candidates is very
large. Filtering techniques are essential to get rid
of poor identifier candidates. For this, for each
collection, we score each identifier candidate using the
above-described features. In this paper, we use the
cliff technique [18] (cf., Definition 3). As described
in Example 1, the set of identifier candidates is split
into two parts: (i) Upper: it contains the candidates
before the cliff; and (ii) Lower: it contains the remaining
candidates. Since the candidates that appear in the
Upper part do have the highest score, we prune the
candidates belonging to the Lower part. We note that
in case of multiple instances of cliff we retain all
candidates.
Definition 3. (Cliff [18]) Given S = {S1, S2, . . . , Sn},
the sorted score list of identifier candidates belonging to
one collection, and their corresponding score difference
list, SD = {SD1, SD2, . . . SDn−1}, where a score
difference is defined as SDi = Si − Si+1 of each pair
of adjacent candidates, the cliff is the pair of adjacent
candidates Si and Si+1 having the largest SD score.
Example 1. As depicted in Figure 2, we suppose
having a list S of identifier candidates’ scores,
which are decreasingly sorted as follows: S =
{1.0, 0.6, 0.58, 0.39, 0.23, 0.1}. We generate the score
difference list SD = {0.4, 0.02, 0.19, 0.16, 0.13}. The
cliff is the largest score difference value in SD, i.e.,
0.4. The green and the red squares, shown in Figure 2,
respectively illustrate, the Upper and the Lower parts.

Figure 2: Example of the cliff method applied to the
ranked scores of identifier candidates

The pruning phase is dedicated to refining the
initial list of identifier candidates for each collection.
Furthermore, the refined list is used to identify candidate
pairs of key fields as detailed in the remainder.

5.2. Identifying Candidate Pairs of Key
Fields: Identifiers and References

This stage aims to constitute the pairs of identifier
and reference fields related to every two document
stores. The stage is based on two steps detailed in the
following parts.

5.2.1. Creating the Initial Set of Pairs. This step
consists in identifying the initial set of pairs (identifier,
reference) between every two collections. Given two
collection schemas, we first perform the Cartesian
product between the identifier candidates IDc(C1) of
the first collection and the set of fields of the second
collection F (C2) = f1, . . . , fn. Secondly, we perform
the Cartesian product between IDc(C2) and F (C1) =
f1, . . . , fm. It is worth mentioning that fields with
complex types are not considered while performing the
Cartesian product.

5.2.2. Filtering. For the sake of refining the initial
list generated from the previous step, we propose a
filtering step, which is based on three rules:

Rule 1: Compatibility of data type: we remove
from the initial list, the pair of fields that do not have
the same type or do not have compatible types. For
example, if we have an identifier with a String type
and a reference with an Integer type, and they are not
convertible, this pair will be omitted in this case. Our
approach covers all possible combinations of primitive
types, e.g., (String, String), (String, Double), (Integer,
Double), (Short, Double). Since a real primitive type
can be hidden under another primitive type, we check
the type of each field pair to detect such cases.

Rule 2: Syntactic similarity-based pruning: in
many instances, fields’ names are not randomly assigned
for the sake of better understanding. Hence, taking
into account the similarity between the fields’ names
of each pair could be a kick-off beacon. To this
end, we use a syntactic similarity measure and we
opt for the Fuzzy-Token similarity since it is the most
suitable for our case [21]. The similarity combines
both token-based similarity and string similarity. To
use this similarity function, the input strings s1 and
s2 are tokenized. We consider both cases for the
tokenization: (i) having a delimiter, e.g., ” ” and/or
uppercase letter; (ii) strings are attached without a
delimiter, e.g., ”LINESTATUS”. The function is defined

as syntac(s1, s2) = |T1∩̃σT2|
|T1|+|T2|−|T1∩̃σT2| , where s1 is

the reference name and s2 is either the identifier name
or the collection name of that identifier. Then, we
retain the maximum value obtained between the two
similarity measures. We note that s1 and s2 are amended
comparing to [18]2. In addition, T1 and T2 are the

2In [18], the authors have concatenated the table name for both
primary key and foreign key presented in an inclusion dependency.
However, it remains unclear to concatenate table name for both of
them because, generally the foreign key is likely to be similar to the
name of the referenced table, but the inverse rarely happens.
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Figure 3: IRIS-DS general’s architecture at a glance

tokens’ sets related to s1 and s2 respectively and σ
is the edit distance threshold used to penalize lower
similarities. To compute this similarity a weighted
bigraph should be constructed using T1 and T2. The
weight, i.e., edit distance measure, is assigned to each
edge. Then, we keep only the edges with a weight
larger than σ. The fuzzy overlap, denoted by |T1∩̃σT2|,
is used to define the maximum weight matching of the
constructed graph.

Rule 3: Semantic similarity based pruning:
using only the syntactic similarity between two fields
is not sufficient to cover all cases, e.g., customer

and client. It leads certainly to generate some
false-positive and false-negative results. To this end,
we propose a filtering step based on semantic similarity.
To do so, we use the Wup semantic similarity measure,
which is based on the lexical database Wordnet3.
Similarly to the syntactic measure, we use tokenization
to divide the attached words into meaningful separated
words.

6. The IRIS-DS Algorithm

Figure 3 shows the overall process of our proposed
algorithm IRIS-DS. Starting from several collections, it
firstly discovers the initial set of identifier candidates
that will be refined after the scoring and the pruning
steps. Secondly, it refines the initial set of candidate
pairs discovered by performing the filtering step. The
pseudo-code is sketched in Algorithm 1, which in turn
invokes various methods that are detailed separately.
In line A1.L2, i.e., Algorithm 1, Line 2, we start with
the extraction of collections’ global schemas. In line
A1.L3, we search identifier candidates from the set of
fields presented in collections’ global schemas. This
step is detailed separately in Algorithm 2. In line
A1.L4, the list of collections’ pairs, denoted as L, is
generated using the Cartesian product while keeping
only pairs with different elements, i.e., each collection
pair is defined as CP = (Ci, Cj) where Ci 6=Cj .

3https://wordnet.princeton.edu/

The cardinality of L is defined as |L| = |C|(|C|−1)
2 ,

where |C| is the number of distinct collections.

Algorithm 1: IRIS-DS
Input: Collections C
Output: Pairs of identifier and reference

candidates for each collections’ pair
IRcand

1 FLCP1 = ∅, FLCP2 = ∅;
2 SGC= GenerateCollectionsSchemas(C);
3 SearchCandidateIDs(C, SGC);
4 L = GetListOfCollectionsPairs();
5 foreach CP=(Ci, Cj) in L do

. |L| = |C|(|C|−1)
2

6 if GetID(Ci) 6= ∅ then
7 foreach IDc in GetID(Ci) do
8 L1= {IDc} ×GetFields(SG(Cj))

. GetFields(SG(Cj)): the set

of fields with simple types

9 FLCP1 = FLCP1 ∪Filter(L1) ;
. FLCP: Filtered list of

candidate pairs

10 end
11 end
12 if GetID(Cj) 6= ∅ then
13 foreach IDc in GetID(Cj) do
14 L2= {IDc} ×GetF ields(SG(Ci));
15 FLCP2 = FLCP2 ∪Filter(L2);
16 end
17 end
18 Store(Ci, Cj , FLCP1, IRcand) ;

. Store: store the IRcand for each

collection pair

19 Store(Cj , Ci, FLCP2, IRcand);
20 end
21 return IRcand

The idea is to iterate over L to find the set of pairs
of candidate join keys (identifier, reference) between
every two collections (lines A1.L5-20). We consider
both directions: a field in Ci can refer to another field
in Cj (lines A1.L6-11) or vice versa (lines A1.L12-17).
The loop from line A1.L7 to line A1.L10 iterates
over the list of identifiers of the current collection Ci
generated with GetID(Ci). To constitute the pairs of
candidate keys, we use the Cartesian product between
the identifier candidate of the first collection and the
filtered fields from the second one. Once the list of
candidates pairs of key fields is generated, we propose a
filtering step (line A1.L9), which is detailed separately
in Algorithm 3.
Algorithm 2 shows the procedure of identifying
the initial list of identifiers candidates.
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Algorithm 2: SearchCandidateIDs()
Input: Collections C, Collections schemas

SGC
Output: Initial list of identifier candidates IL

1 I = ∅, R = ∅, L = ∅, IL = ∅;
2 foreach C in C do
3 I= GetFieldsWithSimpleTypes(SGC);
4 R= GetRequiredFields(I);
5 L= GetUnique(R);
6 IL = IL ∪L
7 end
8 return IL

Algorithm 3: Filter()
Input: List of candidate pairs of key fields L,

thresholds ε and γ
Output: Filtered List FL

1 foreach p in L do
2 if CheckTypeCompatibility()== true and

SyntacticSimilarityMeasure(p) ≥ ε then
Add p(T1);

3 else Add p(T2);
4 end
5 if T2 6= ∅ then
6 foreach p in T2 do
7 if SemanticSimilarityMeasure(p) ≤ γ

then
8 discard(p);
9 end

10 end
11 end
12 FL = T1 ∪ T2;
13 return FL

Figure 4: Sample JSON documents of the TPC-H
benchmark

The basic steps are described in subsection 5.1.1.
Algorithm 3 describes the filtering step, which is based

on both syntactic and semantic similarity measures.
Given a list of candidate pairs of key fields, we iterate
over it to check the data type compatibility and to
compute the syntactic similarity measure using the
method SyntacticSimilarityMeasure(). All the pairs are
split into two groups. The first one holds pairs that
have a syntactic similarity measure equal to or greater
than a given threshold, i.e., both fields are syntactically
similar. The remaining pairs are held into the second
group T2 (lines A3.L2-5) to be semantically checked. In
our experiments, we varied the thresholds and we found
that ε = 0.5 and γ = 0.7 are the most suitable values for
penalization.

7. Case Study

Figure 4 shows two JSON collections, i.e., Orders
and Nation, that are based on the TPC-H4 benchmark.
This benchmark consists of relational sources that we
have transformed into JSON collections5 For the sake
of legibility, we have presented only an excerpt of
one document from each collection. Based on this
benchmark, our basic scenario is to perform a join
operation between Orders and Nation. In doing so,
we should perform identifiers and references discovery
between the two aforementioned collections. We start

Table 2: Initial list of candidate identifiers with their
scores

Collection Candidate identifiers Score

Nation

$/N NATIONKEY 1.00
$/N COMMENT 0.40
$/N NAME 0.63

Orders

$/Customers/PHONE 0.34
$/O ORDERDATE 0.35
$/Customers/ADDRESS 0.32
$/Customers/NAME 0.33
$/O CLERK 0.46
$/Customers/CUSTKEY 0.71
$/Customers/COMMENT 0.31
$/Customers/ACCTBAL 0.31
$/O ORDERKEY 1.00
$/O TOTALPRICE 0.46

by identifying an initial list of identifier candidates
for each collection as described in subsection 5.1.1.
We present the obtained candidate identifiers for each
collection in the second column of Table 2. We
note that we present a field using its path from
the document root, where $ symbol represents the

4Decision support benchmark: http://www.tpc.org/tpch/
5 https://github.com/souibguimanel/TPCHjson
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document root. For each identifier candidate, we
compute its score based on the features described in
subsection 5.1.2. To prune poor quality candidates, for
each collection, we search the cliff value after ranking
the scores. We split the candidate identifiers into Upper
and Lower parts. The Upper part of the collection
Nation contains $/N NATIONKEY, and the Upper part
of the collection Orders contains $/O ORDERKEY. The
remaining candidate identifiers related to each collection
are pruned since they are in the Lower part. We use

Table 3: Fields’ pairs with compatible data types

Field 1 Field 2
Path Type Path Type
$/O ORDERKEY Integer $/N NATIONKEY Integer
$/O TOTALPRICE Double $/N NATIONKEY Integer
$/O SHIPPRIORITY Integer $/N NATIONKEY Integer
$/customer/CUSTKEY String $/N NATIONKEY Integer
$/customer/ACCTBAL Double $/N NATIONKEY Integer
$/customer/NATIONKEY String $/N NATIONKEY Integer
$/Region/REGIONKEY String $/O ORDERKEY Integer
$/N COMMENT Null $/O ORDERKEY Integer

the candidate identifiers belonging to the Upper part
of each collection to identify candidate pairs of key
fields, i.e., identifiers and references. For this, we start
by creating the initial set of pairs using the Cartesian
product. Due to space limitation, we host the Cartesian
product result in a GitHub repository6. Since the
initial list of candidate pairs is large, we refine it by
applying the set of filtering rules. As presented in
Table 3, we first check for pairs, i.e. each pair consists
of a reference candidate (Field 1) and an identifier
candidate (Field 2), containing fields with compatible
types. Then, we compute the syntactic similarity
measure for each pair as shown in Table 4. The
penalization threshold is fixed to 0.5. Thus, we held the
pair having a syntactic similarity equal to or greater than
the threshold value, i.e., {$/customer/NATIONKEY,
$/N NATIONKEY}. The remaining fields, which have
a syntactic similarity measure less than the threshold,
are filtered based on the semantic similarity measure.
In this example, no semantic similarity was detected
among the list of pairs. Hence, the discovered
pair of key fields is {$/customer/NATIONKEY,
$/N NATIONKEY}, where $/N NATIONKEY is the
identifier related to the Nation collection and
$/customer/NATIONKEY is the reference that is
related to the Orders collection.

6https://github.com/souibguimanel/TPCHjson/blob/master/
CaseStudy.txt

Table 4: Syntactic similarity measures (SSM) of the
candidate pairs of key fields

Candidate pair SSM
{$/O ORDERKEY, $/N NATIONKEY} 0.20
{$/O TOTALPRICE, $/N NATIONKEY} 0.00
{$/O SHIPPRIORITY, $/N NATIONKEY} 0.00
{$/customer/CUSTKEY, $/N NATIONKEY} 0.20
{$/customer/ACCTBAL, $/N NATIONKEY} 0.00
{$/customer/NATIONKEY, $/N NATIONKEY} 0.66
{$/Region/REGIONKEY, $/O ORDERKEY} 0.25
{$/N COMMENT, $/O ORDERKEY} 0.00

Table 5: IRIS-DS results for the identifier candidates
discovery in the TPC-H and the TPC-E collections

Collection # d1 P2 R3 A4 Pd5%

T
PC

-H Orders 1000 1 1 1 94.11
Nation 24 1 1 1 87.50
Supplier 1000 1 1 1 85.71

T
PC

-E Trade TT 1000 1 1 1 94.73
CustAcc 1000 1 1 1 97.14
Holding 1000 1 1 1 83.33

1# documents, 2Precision, 3 Recall, 4Accuracy,5Percentage decrease

8. Experimental Study

In this section, we report our experimental findings
after describing the considered data collections.

8.1. Data Collection

Our experimental study is based on both the TPC-H
and the TPC-E benchmarks. Since our approach
deals with document stores, we have implemented a
transformation phase to convert TPC-H and TPC-E
generated flat files to JSON ones. Each record in the flat
file is considered as a document in the JSON collection.

We perform a data preparation stage with respect
to the document-oriented model characteristics,

Table 6: IRIS-DS results for candidate pairs discovery
in the TPC-H and the TPC-E collections

C11 C22 P3 R4 A5 Pd6%

T
PC

-H Orders Nation 1 1 1 95.40
Supplier Order N/A N/A 1 100
Nation Supplier 1 1 1 91.60

T
PC

-E Trade TT CustAcc 1 1 1 98.80
Holding Trade TT 0.50 1 0.96 93.10
CustAcc Holding 1 1 1 97.77

1Collection 1, 2Collection 2, 3 Precision, 4Recall,5Accuracy,6Percentage decrease
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e.g., randomly assigning null or missing values.
Furthermore, in order to have different storage models,
we have denormalised data in both benchmarks: (i)
TPC-H, we have denormalised the Orders collection
by embedding documents from Customer. Similarly,
we have denormalised the Nation collection by
embedding documents from Region; and (ii) TPC-E,
we have denormalised the Trade collection by
embedding documents from TradeType. Similarly,
we have denormalised CustomerAcc by embedding
documents from both Address and Customer

collections. This is done by replacing each foreign key
with its full object. We hosted the generated data in a
GitHub repositories7,8 to make them openly available.

8.2. Evaluation Protocol

The experiments we conducted aim to validate
our approach, in terms of result relevance. The
approach validation consists of both levels: (i) identifier
candidate’s discovery for each collection; and (ii)
identification of candidate pairs of key fields (identifier
and reference) for every two collections. To this end,
for each level, we use four metrics (i) precision: the
fraction of the predicted true identifier/pairs among
the predicted identifiers/pairs; (ii) recall: the fraction
of predicted true identifier/pairs among identifiers/pairs
of the gold standard; (iii) accuracy: the number of
correct results returned by our algorithm; and (iv)
percentage decrease: rate the reduce of the number
of candidates that will be proposed to the end-user,
this metric is computed as [((OriginalNumber −
NewNumber)/OriginalNumber) ∗ 100].

Table 7: Comparison of IRIS-DS with HoPF algorithm
[18] applied on the TPC-H and the TPC-E benchmarks

Id1 (Ref2, Id1)
Algorithm P3 R4 P3 R4

TPC-H HoPF 1 1 0.88 0.88
IRIS-DS 1 1 1 1

TPC-E HoPF 0.80 0.80 0.72 0.91
IRIS-DS 1 1 0.83 1

1Identifier, 2Reference, 3Precision,4Recall

8.3. Experimental Setup and Results

As proof of the concept of our approach, we have
developed java prototypes to support the main phases
and tested them under macOS High Sierra machine,
Processor Intel Core i5, 2.7 GHz and, 8 GB of DDR3

7 https://github.com/souibguimanel/TPCHjson
8 https://github.com/souibguimanel/TPCEjson

RAM. The used collections of JSON documents are
stored on MongoDB as a document-oriented DBMS.
We also used the python Wordninja library9 to split the
attached words into tokens.
As shown in Tables 5 and 6, we compare the output
sets of both identifier candidates and candidate pairs
(reference, identifier) with the gold standard of the
TPC-H and the TPC-E benchmarks, and we report the
precision, recall, accuracy, and the percentage decrease.
The results show that our approach reaches a high
precision and accuracy without diminishing the recall.
Furthermore, the percentage decrease metric yields
increasingly good results by reducing the number of
candidates that will be proposed to the end-user.
Since our approach considers several collections, we
apply key pairs discovery on every two collections.
Certainly, there is at least one pair of collections that
they are not joinable so that they did not have a
relationship (reference, identifier). Our approach can
handle such cases. In fact, as depicted in Table 6,
the pairs’ discovery performed between Supplier and
Order collections returns no pairs. This implies that
the precision and recall are N/A, i.e. Not Applicable
because the number of true-positive values is null.
This might occur in cases in which the gold standard
does not contain key join fields, and our algorithm
returns correctly no pairs. We note that in Table 6,
our algorithm shows a sharp penultimate row drop-in
precision to 0.5 on detecting the pairs of join keys
between Holding and Trade TT collections. This
drop is because the syntactic similarity rule generates
one false-positive result. However, this error accounts
for only a small portion of the used collections, and
fortunately, the percentage decrease is still high. Since
we are the first to propose an approach for identifier and
reference discovery in document stores, we compare our
algorithm against the most recent work [18] proposed in
the context of relational databases as shown in Table 7.
Outcomes from our experiments give insight into the
feasibility of detecting join key fields in document stores
containing scattered out data over several collections.

9. Conclusion and Future Work

Document stores have a variable schema, where
fields can be missing in some documents or can have
null values. Due to the absence of integrity constraints
and inclusion dependencies, a document store is the
furthest from having an exact join key. For this,
detecting join key pairs between two document stores
is a tricky task. In the literature, existing works have
provided dedicated-solutions to relational databases.

9https://pypi.org/project/wordninja/
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For NoSQL data stores, existing contributions rely
on a strong assumption: having the join keys pairs
beforehand. The pair of identifiers and references are
seldom known in document stores.
To this end, we have proposed, in this paper, a new
approach for identifiers and references’ discovery based
on several document stores. We have introduced
the IRIS-DS algorithm that discovers identifier
candidates for each collection, and then identifies the
candidate pairs of identifier and reference for every two
collections. We use scoring features and pruning rules
based on both syntactic and semantic levels to efficiently
discover true candidates from a huge number of initial
ones. The carried out experiments, on the TPC-H and
the TPC-E benchmarks, underscore that our approach
fulfills the accuracy of the generated results.

As part of our future work, we started already
performing larger experimentations over real-life
datasets to better study the efficiency and the boundaries
of our approach. Secondly, we intend to integrate the
discovery of composite identifiers, i.e., an identifier that
is composed of two or more fields and their equivalent
join reference fields. In the long run, as our ultimate
objective is to provide a NoSQL-dedicated BI&A
approach, we plan to complete our proposal through a
formalization of all ETL operations.
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