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ABSTRACT

Pharmacovigilance is a central medical discipline aiming at monitoring and de-
tecting public health events caused by medicines and vaccines. The purpose of
this work is to analyze the notifications of adverse drug reactions (ADRs) gath-
ered by the Regional Center of Pharmacovigilance of Nice (France) between 2010
to 2020. As the current expert detection of safety signals is unfortunately incom-
plete due to the workload it represents, we investigate here an automatized method
of safety signal detection from ADRs data. To this end, we introduce a generative
co-clustering model, named dynamic latent block model (dLBM), which extends
the classical binary latent block model to the case of dynamic count data. The con-
tinuous time is handled by partitioning the considered time period, allowing the
detection of temporal breaks in the signals. A SEM-Gibbs algorithm is proposed
for inference and the ICL criterion is used for model selection. The application to
a large-scale ADRs dataset pointed out that dLBM was not only able to identify
clusters that are coherent with retrospective knowledge, in particular for major
drug-related crises, but also to detect atypical behaviors, which the health profes-
sionals were unaware. Thus, dLBM demonstrated its potential as a routine tool in
pharmacovigilance.
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1 INTRODUCTION

One of the missions of the Regional Centers of Pharmacovigilance (RCPVs) is safety signal de-
tection. However, the method currently used, i.e. manual expert detection of safety signals by the
RCPV, despite being unavoidable, has the disadvantage of being incomplete due to its workload.
This is why, developing automatized method of safety signal detection is currently a major issue in
pharmacovigilance. In such a context, clustering may play an important role in summarizing the
information carried out by pharmacovigilance data and identifying patterns of interest. It would be
indeed of interest to both cluster the drugs and the adverse reactions to help medical experts in their
tasks.

2 THE DYNAMIC LATENT BLOCK MODEL

The main goal of this model is the simultaneous clustering of rows and columns of high-dimensional
sparse matrices in a dynamic time framework. The data we consider are organized such that the rows
(drugs in pharmacovigilance application) are indexed by i = 1, . . . N and the columns (adversarial
effects) by j = 1, . . . , P . Moreover, we consider a fixed time period [0, T ] during which the total
number of rows, N , and columns, P , is fixed. We indicate as X (t) the N ×P matrix that represents
the cumulative number of interactions between i and j at time t ∈ [0, T ]. According to the latent
block model (Govaert & Nadif, 2010), rows and columns of X (t) are assumed to be clustered
respectively into K and L groups, such that the data belonging to the same block are independent
and identically distributed. More formally, the latent structure of X (t) is identified by:

• Z := {zik}i∈1,...,N,k∈1,...,K represents the clustering of rows into K groups: A1, ...,AK .
The row i belongs to cluster Ak iff zik = 1;

• W := {wj`}j∈1,...,P,`∈1,...,L represents the clustering of columns into L groups:
B1, ...,BL. The column j belongs to cluster B` iff wj` = 1.

Moreover, Z and W are assumed to be independent and distributed according to multinomial distri-
butions:

p(Z|γ) =

K∏
k=1

γ
|Ak|
k , p(W |ρ) =

L∏
`=1

ρ
|B`|
` ,

where γk = P{zik = 1}, ρ` = P{wj` = 1},
K∑

k=1

γk = 1,
L∑

`=1

ρ` = 1, and |Ak| and |B`| respectively

represent the number of rows in cluster Ak and the number of columns in cluster B`.

Modeling the dynamic framework A possible approach for the dynamic modeling relies on non-
homogeneous Poisson processes (NHPPs), thus assuming that {Xij(.)}i,j are independent point
processes, with instantaneous intensity functions λ. We further assume that the intensity function
only depends on the respective clusters of row i and column j:

Xij(t) | zik, wj` = 1 ∼ P
(∫ t

0

λk`(u)du

)
. (1)

In order to ease the understanding of the dynamic model and to make the inference tractable, we also
operate a clustering over the time dimension. Let us first introduce a discretization of the considered
time interval [0, T ], as follows:

0 = t0 < t1 < · · · < tU = T, (2)

where the U intervals, Iu = [tu−1, tu[, will also be clustered. The number of interactions between i
and j on the time interval Iu can be therefore summarized by:

Xiju := Xij(tu)−Xij(tu−1), ∀(i, j, u), (3)

where Xij(tu) represents the cumulative number of interactions at time tu between i and j. Since
our goal is to perform clustering over the time dimension as well, each time interval I1, . . . , IU is
also assumed to be assigned to a hidden time cluster D1, . . . ,Dc. To model the membership to time
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Figure 1: Time clusters.

clusters, a new latent variable S has to be introduced, such that su = c if the time interval Iu belongs
to the time cluster Dc. As it is shown in Figure 1, it is worth noticing that a specific time cluster can
occur more than once in the temporal line when a similar interactivity pattern is repeated in time.
Furthermore, as for Z and W , we assume that S follows a multinomial distribution:

p(S | δ) =

C∏
c=1

δ|Dc|
c , (4)

where δc = P{suc = 1};
C∑

c=1

δc = 1 and | Dc | represents the number of time intervals in the

cluster Dc. Once these additional assumptions have been made, we can write:
Xiju|zikwj`suc = 1 ∼ P(λk`c∆u), (5)

where ∆u indicates the length of the interval Iu.We assume that ∆u is constant, ∆u = ∆. We can
finally set ∆ = 1 without loss of generality. Thus, it holds that:

p(Xiju | zikwj`suc = 1, λk`c) =

(
(λk`c)

Xiju

Xiju!
exp (−λk`c)

)
. (6)

It is now possible to write the complete data likelihood of the model:
p(X,Z,W, S|γ, ρ, δ, λ) = p(Z|γ)p(W |ρ)p(S|δ)p(X|Z,W, S, λ), (7)

where p(Z|γ), p(W |ρ) and p(S|δ) were defined in the previous section. The conditional distribution
of X , given Z, W , and S, can be easily obtained from Eq. equation 6 by independence:

p(X|Z,W, S, λ) =
∏
k,`,c

(
(λk`c)

Rk`c

Pk`c
exp (− | Ak || B` || Dc | λk`c)

)
, (8)

where Rk`c =

N∑
i=1

P∑
j=1

U∑
u=1

zikwj`sucXiju and Pk`c =

N∏
i=1

P∏
j=1

U∏
u=1

(zikwj`sucXiju)!.

Model inference In the co-clustering case, the EM algorithm is computationally unfeasible, to go
through this limitation, we propose to approximate it through a Gibbs sampler within the E-step.
Such an approach was proposed by Keribin et al. (2010) and exploited, for instance, by Bouveyron
et al. (2018) for the functional latent block model (funLBM). Thanks to the Gibbs sampler within
the SE step a partition for Z, W and S is generated without computing the joint distribution. The
algorithm starts with initial values for the parameter set θ(0), the column clusters W (0) and the time
clusters S(0). Regarding the burn-in period, after a certain number of iterations of the algorithm, we
can obtain the final parameters estimation by computing the mean of the sampled distribution. The
optimal values for Z, W and S are estimated by the mode of their sample distributions.

Model selection Up to now, we have assumed that the number of row clusters (K), column clus-
ters (L) and time clusters (C) was known. However, for real data sets, this assumption is of course
unrealistic. For this reason, our purpose in this section is to define a model selection criterion that
can automatically identify the optimal number of clusters. We rely on ICL (Integrated Completed
Likelihood, Biernacki et al. (2000)):

ICL(K,L,C) = log p(X, Ẑ, Ŵ , Ŝ; θ̂)− K − 1

2
logN+

−L− 1

2
logP − C − 1

2
logU − KLC

2
log(NPU)

(9)

The triplet (K̂, L̂, Ĉ) that leads to the highest value for the ICL is considered as the most meaningful
for those data.
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3 ANALYSIS OF THE ADVERSE DRUG REACTION DATASET

This section considers a large dataset consisting of ADR data collected by the Regional Center
of Pharmacovigilance (RCPV), located in the University Hospital of Nice (France). The center
covers an area of over 2.3 million inhabitants. A time horizon of 10 years is considered, from Jan-
uary 1st, 2010 to September 30th, 2020, the unity measure for time intervals is a month (∆u = ∆ =
1 month). The overall dataset is made of by 44,269 declarations. We only considered drugs and
ADRs that were notified more than 10 times over the 10 years. During this period, an extremely
uncommon behavior happened in the progress of notifications to the RCPV. In fact, in 2017 an un-
expected rise of reports for ADRs happened concerning a specific drug called Lévothyrox®. This
has been marketed in France for about 40 years as a treatment for hypothyroidism and, in 2017, a
new formula was introduced on the market. The Lévothyrox® case had an extremely high media
coverage in France: Lévothyrox® spontaneous reports represent almost the 90% of all the sponta-
neous notifications that the RCPV received in 2017 Viard et al. (2019). Behind those very visible
effects, many ADR signals need to be detected for obvious public health reasons. In particular, those
data also contain ADR reports regarding Médiator®, which is here far less visible, but also led to
many avoidable serious cardiovascular diseases. This is why, we expect dLBM to be a useful tool to
reveal such hidden signals.

3.1 SUMMARY OF THE RESULTS

We have run dLBM for different values of K, L and C, we tested row (here drugs), column (here
ADRs) and time groups ranging from 1 to 12. The ICL criterion identified the optimal values
as: K̂ = 7, L̂ = 10, Ĉ = 6. Figure 2 shows the frequency of the declarations received by the RCPV
from 2010 to 2020, sorted by month, where the colors represent the identified time clusters. Figure
3 shows the evolution of the relationship between drug clusters and ADR clusters over time. In fact,
each panel represents a cluster of drugs and within them each line identifies a cluster of ADRs and
its intensity changes over time. In this application to pharmacovigilance, dLBM proved to be a very
useful tool for identifying phenomena that would have been difficult to detect otherwise, even by an
expert eye. In fact, dLBM revealed that in addition to Lévothyrox® health crisis, which was the one
with the widest media coverage, two other major events have occurred. The first one concerning
Médiator®, which took place in 2009-2010, and the second one concerning Mirena®, which took
place in the first half of 2017. From a more in-depth analysis of the time clusters, one can easily no-
tice on Figure 2 that the segmentation proposed by the algorithm confirms our knowledge about the
previous mentioned health scandals while revealing a time structure more complex than expected.
In fact, while cluster 1 and cluster 2 include various time intervals, cluster 3 clearly refers to the
health crisis due to the Mirena® scandal while cluster 4 relates to the peak period in the Lévothyox®

crisis. Time clusters 5 and 6 refer to the final stage of the Lévothyrox® crisis, when generics were
introduced to the market. It is worth noticing that without the dLBM application it would have been
impossible to detect the presence of other health scandal just before the one of Lévothyrox®. In fact,
looking at Figure 2, one can see that the increase of declarations during the Mirena® health crisis are
completely masked by the Lévothyrox® ones. The clusters of drugs identified by the algorithm are
also coherent with retrospective knowledge and adequately represent the variety of drugs present in
the dataset. In particular, cluster 1, cluster 6 and cluster 7 are very specific, with one element only:
they correspond respectively to lévothyroxine (Lévothyrox® and generics), benfluorex (Médiator®)
and lévonorgestrel (Mirena®). Moreover, cluster 2 contains the five most frequently reported drugs
and cluster 5 contains other common drugs, while cluster 4 is very large and heterogeneous, with
drugs that are rarely reported and finally cluster 3 contains drugs that cause bleeding. Concerning
the clusters of ADRs, cluster 3 and cluster 8 contain the most frequently notified ADRs. Cluster 1
contains recurring ADRs but less than the other two previously mentioned. Cluster 2 and cluster 4
respectively include the most and the less frequent bleeding related ADRs. Cluster 7 is composed of
ADRs clearly related to Lévothyrox® and Mirena® (e.g hair loss, cramps, insomnia, etc.). In clus-
ter 10 there are general ADRs, although it contains some ADRs specifically related to Lévothyrox®

and Médiator®. Finally, cluster 5, 6 and 9 contain more general and nonspecific ADRs. In ad-
dition, dLBM was also able to put in light some unexpected variations of notifications such as an
under-notification of bleeding related ADRs during Lévothyrox® crisis. Another thing that dLBM
has highlighted is the existence of 3 different phases during the Lévothyrox® crisis corresponding
to the reporting peak, the marketing period of generics and the end of the crisis, respectively. Those
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Figure 2: Reports received by the
RCPV, colors represent the time clusters.
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Figure 3: Evolution of the relation between each drug
cluster and the all ADR clusters over time. Each color
corresponds to a different ADR cluster.

phases were not noticed by the RCPV staff during the Lévothyrox® crisis. In general, we can con-
clude that dLBM could be extremly useful as a routine tool for signal detection, since it might help
health professionals to identify structural changes or patterns of interest and, perhaps, prevent some
of the consequences a health crisis can lead to.
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