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Abstract

In this document, we revisit classical Machine Learning (ML) notions and algorithms under
the point of view of the numerician, i.e. the one who is interested in the resolution of partial
differential equations (PDEs). The document provides an original and illustrated state-of-the-
art of ML errors and ML optimisers. The main aim of the document is to help people familiar
with the numerical resolution of PDEs understanding how the most classical machine learning
(ML) algorithms are built. It also helps understanding their limitations and how they must be
used for efficiency. The basic desired properties of ML algorithms are stated and illustrated. An
original (PDE based) framework built in order to revisit classical ML algorithms and to design
some new ones is suggested, tested and gives interesting results. Several classical ML algorithms
are rewritten, reinterpreted in this PDE framework, some original algorithms are built from this
same framework. The document highlights and justifies an analogy between ML frameworks (such
as TensorFlow, PyTorch, SciKitLearn etc.) and Monte-Carlo (MC) codes used in computational
physics: ML frameworks can be viewed as instrumented MC codes solving a parabolic PDE with
(well identified) modeling assumptions. Finally, an analogy with transport and diffusion is made:
improvements of classical optimisers are highlighted, new optimisers are constructed and applied
on simple examples. The results are statistically significative and promising enough for counting
the design of new transport based ML algorithms amongst the perspectives of this work.

1 Introduction

In this document, we revisit classical Machine Learning (ML) notions and algorithms under the point of
view of the numerician, i.e. the one who is interested in developping numerical schemes to approximate
partial differential equations (PDEs). The objectives are three-fold:

– the primary one is to present ML differently, in a way that (we hope) is more adapted to people
from a PDE background. Some parts of the document may be seen as an attempt to perform an
original and illustrated state-of-the-art of ML algorithms, from the numerician point of view.

– The second objective is to identify numerical tricks commonly used for PDE discretisations
which could benefit ML algorithms (this will be put forward throughout the many examples of
the document). For example, at first sight, a numerician would be astonished to realise that the
optimisation algorithms, despite being non-consistent (see section 3.3), give satisfactory results.
The PDE framework we build in this document, in our opinion, helps understanding why and
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how. From the next analysis, we show that relatively classical notions from numerical analysis
to solve PDEs could benefit ML algorithms (consistency, a posteriori errors bounds, stability
conditions etc.) or at least their understanding.

– Conversely, ML algorithms are known to intensively make use of vectorised (fine grained HPC)
architecture: the analysis could lead to new ideas to make a better use of vectorisation within
PDE resolutions. ML algorithms are also known to handle efficiently correlated inputs or treat
vectorial outputs (which remain complex in uncertainty quantification for example). In un-
certainty analysis, Kriging [71, 5] needs the minimisation of a nonconvex functional and ML
algorithms seem to perform well on this point. In brief, what we mean here is that numerical
and uncertainty analysis (pilars of the V&V concept [3] in computational physics) could also
benefit from the next analysis of ML algorithms.

At the end of the document (section 4), we also hope the analogy between ML algorithms and Monte-
Carlo (MC) codes such as the ones implemented and used at the CEA (and in many other industrial
contexts) will be clearer. This document does, in no way, represent a first attempt to relate transport
models to learning theory: there is a whole section in Asymptotic Analysis of Transport Processes [54]
entitled learning theory and other examples. In this document (section 4), we try to sharpen this link,
to better characterise it with respect to what is currently classically used in ML frameworks and in
MC resolutions of (stochastic or not) PDEs [54, 10, 9, 14, 39, 6, 60, 59, 57, 55, 73, 12].

The aim of ML can be summed up, without loss of generality, by a will to provide a mapping, an
approximation, of an application

X ∼ dPX ∈ Din ⊂ Rdin −→ u(X) ∈ Dout ⊂ Rdout .

This application u transforms an input vector X in dimension din, following a certain distribution
X ∼ dPX , into an output one u(X). In probability theory, X is called a random vector. Nothing
prevents the components of X from being correlated (on the contrary, they are often correlated, for
example, for signal or image processing). The latter random vector is transformed into u(X) ∈ Dout ⊂
Rdout which is unknown ∀X ∈ Din. In practice, we only have access to (u(Xi), wi)i∈{1,...,N} via
realisations/snapshots/points of experimental design (Xi, wi)i∈{1,...,N}. In general, the weights are

equals to wi = 1
N but nothing prevents them from being different than this (but in this document, we

assume that
∑N
i=1 wi = 1).

Now, ML supposes looking for an architecture X ∼ dPX ∈ Din × θ ∈ Θ ⊆ RCard(θ) −→ u(X, θ) ∈
Rdout which will fit u(X) ∈ Rdout thanks to the fine tuning of the vector of weights θ ∈ Θ: this fine
tuning will be described (and even, in a sense, revisited, in section 3). Note that the notation for
the architecture (Artificial Neural Network ANN) is general: it can denote a Multi Layer Perceptron
(MLP), a Deep Neural Network (DNN) or any other kind of approximation (Convolutional, ResNet
etc.)1. The notation u(X, θ) is concise but abusive: in order to completely describe an architecture,
one should provide at least a number of neurons nl in layer l, a number of layers Nl and one (or several)
activation function(s) σ (for a fully connected NN). The previous (hyper)parameters will be recalled
in the text when relevant but not in the notations u(X, θ) for the sake of conciseness (and, we insist,
without loss of generality in this document).

The architectures classically used in ML have several important properties:

– the number of parameters Card(θ) in vector θ depends onNl and nl: suppose there are nc neurons

in layer c and Nl layers, then Card(θ) =
∑Nl
c=1(nc−1 + 1)nc + nc+1nc

2. It consequently grows
polynomially with the dimension, the number of layers/neurons and linearly with the number of
outputs. To give an idea, well-known and commonly used methods such as polynomial regression

1As every type of architecture resumes to the tuning of their weights even if not having the same power of expres-
siveness, denoted by ε later on.

2if n0 = din, nNl = dout.
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(which ensures spectral convergence [57, 21, 7]) have a complexity which grows exponentially with
the dimension and the truncation order and linearly with the number of output, see [60, 58]. ANN
may represent an interesting alternative to polynomial regression or Kriging etc. in moderate to
high dimensions.

– Futhermore, once the best θ ∈ Θ obtained, the cost of an execution of the architecture is
independent of the number of training points N . This is not the case for Kriging (or kernel
based methods) for example, see [58, 60, 71, 5]. Hence their relevance in a big data context.

– With low regularity assumptions on u (such as u ∈ L2, of importance in our applications),
relatively general assumptions on the activation functions σ and assuming we can find the relevant
θ ∈ Θ, the ANN approximation u(X, θ) converges toward u as Card(θ)→∞, see [30, 2, 43] for
example.

According to the above properties, this kind of approximation is particularly well fitted to important
correlated dimensions in a big data context. In the next section, we explain in which way u(X, θ) can
approximate u(X).

2 The different types of errors in Machine Learning

In order to fit the parameters, the idea is to look for the set of weights θ ∈ Θ minimising a functional

J(θ) =

∫
L (u(X), u(X, θ)) dPX .

Functional (x, y) ∈ R2 −→ L(x, y) is called the loss function (see example 2.0.1).
Different theorems (Hornik [30], Barron [2], Lu-Su et al. [43]) ensure that some architectures

u(X, θ) are converging as the number of parameters3 Card(θ) −→∞ for a given choice of loss function
L. Converging with Card(θ) or not, we can always decompose u(X) as

u(X) = u(X, θ∗) + ε(X),

where

– u(X, θ∗) corresponds to the best approximation with architecture u(X, θ),

– ε(X) is the residue of u(X).

With the previous decomposition, we have

J(θ) =

∫
L(u(X, θ∗) + ε(X), u(X, θ)) dPX .

Now, in practice, we do not have access to J but rather to an approximation of J based on the
experimental design (Xi, wi)i∈{1,...,N}. This experimental design (or snapshot or training set) is nothing
more than a set of points discretising (X, dPX) in the sense that ∀f ∈ L2(Din, dPX)

N∑
i=1

wif(Xi)
L−→

N→∞

∫
f(X) dPX .

The convergence above is in law (L) for an MC experimental design but may be in L1/L2 depending
on the set of points and the regularity of the integrand. The convergence rate depends on the kind of
chosen training set/experimental design4.

3Card(θ) is related to both the width of the architecture (with the number of neurons) or its depth (with the number
of layers).

4It can be O( 1√
N

) for MC, O( 1
N

) for uniform designs, faster for Gauss points, etc., see [23, 60] for example.
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Let us introduce

JN (θ) =

N∑
i=1

wiL(u(Xi), u(Xi, θ)),

and the discrete probability measure

dPNX (X) =

N∑
i=1

wiδXi(X).

We can rewrite JN as

JN (θ) =

∫
L(u(X), u(X, θ)) dPNX ,

and J as

J(θ) =

∫
L(u(X, θ∗) + ε(X), u(X, θ)) dPX − JN (θ) + JN (θ),

=

∫
L(u(X, θ∗) + ε(X), u(X, θ))

[
dPX − dPNX

]︸ ︷︷ ︸
dPNX︸ ︷︷ ︸

generalisation error J(θ)

+ JN (θ).
(1)

Above, J is the sum of what is called the generalisation error/gap J and JN . Of course, JN is what
is used in practice in order to tune θ. The generalisation gap depends on points outside the training

set, see the definition of dPNX . Note that dPNX is a measure, but not a probability measure (as it is
not necessarily positive nor does not necessarily sums up to 1), which tends to the null measure as N
grows. The set of points used in order to estimate the generalisation gap J is commonly called the
test-set in a cross-validation context. Assume θ̂ is the set of weights obtained after the optimisation
step on JN . Then the a posteriori estimation of J(θ̂), if accurate enough5, provides an estimation of

the error made by architecture u(X, θ̂) to approximate u(X). Functional J can also be decomposed
into

J(θ) = J(θ) + JN (θ)− JN (θ∗N )︸ ︷︷ ︸
optimiser error

+ JN (θ∗N ),
(2)

Where θ∗N is the minimiser of JN (θ). The above simple expression (2) emphasizes the fact that even
if we estimate accurately J , estimating the optimiser error is not easy without knowing JN (θ∗N ). For
this reason, in the next sections in which we focus on the optimiser error, we consider test-cases for
which we know θ∗N in order to avoid misleading interpretations. Because misleading interpretations
are possible: J(θ) is a mix of errors. To give a better idea, let us rewrite (2) as

J(θ) = J(θ∗)︸ ︷︷ ︸
truncation error

+ J(θ)︸︷︷︸
generalisation error

+ JN (θ∗N )− J(θ∗)︸ ︷︷ ︸
integration error

+ JN (θ)− JN (θ∗N )︸ ︷︷ ︸
optimiser error

.
(3)

In the above expression (3), there are four types of errors:

– the truncation error expresses the error related to the choice of the architecture as

J(θ∗) =

∫
L(u(X, θ∗) + ε(X), u(X, θ∗)) dPX =

∫
L(ε(X), 0) dPX .

It corresponds to what can be asymptotically reached

5i.e. if there are enough points in the test set to accurately evaluate it.
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– as N � 1,

– and with an infinitely efficient optimisation of the weights θ.

For a converging architecture, this error goes to zero as Card(θ)→∞, see [30, 2, 43].

– The optimiser error is positive (as JN (θ∗N ) ≤ JN (θ),∀θ by definition) and expresses the error
related to the fact that the optimisation algorithm (see next section) may not exactly find θ∗N .
Still, this does not mean that we will have a bad model u(X, θ) at the end of the optimisation
step:

– for example, the optimisation algorithm can get close to θ∗ when looking for θ∗N
6.

– Or suppose that the optimiser finds θ̂. Even if JN and J are far from each other (important

integration error) so that θ∗ is not close to θ∗N = θ̂ or if the optimiser is not good enough

and θ̂ is far from θ∗N , this does not mean we will have a bad model u(X, θ̂). We have

J(θ∗)− J(θ̂) = (θ∗ − θ̂)∇θJ(θ̂) +O((θ∗ − θ̂)2),

and if ∇θJ(θ̂)� 1, then, intuitively, J(θ∗) ≈ J(θ̂). The gradient of J strongly depends on
the choice of the architecture (number of layers, of neurons, activation function choice etc.)
and of the loss function. In a sense, having small gradients for θ → J(θ) here seems to lead
to robust models/architectures. Unfortunately, small gradients are also known to lead to
longer optimisation/learning times, see [28].

– We have, to our knowledge, no idea of how to estimate the optimiser error. The PDE
framework we introduce in section 3.5 may help on this topic.

Remark 2.1 The optimiser error is neither a part of the training error JN nor of the gener-
alisation error J . It can not easily be estimated or accounted for by computing JN (θ̂) and J(θ̂)

where θ̂ is the set of weights selected after a training phase. For this reason, when studied in the
next sections of this paper, we have to rely on benchmarks for which we a priori know the local
minima. It justifies the simplicity of the test-cases of this document and allows avoid misleading
conclusions.

– The integration error depends on both

– how fast JN converges toward J ,

– how close θ∗N is from θ∗ even if JN remains quite far from J .

This error is unsigned (independently of the choice of L) and can consequently be misleading:
JN (θ∗N )−J(θ∗) can compensate the other errors. Practically, this means that an approximation7

u(X, θ̂N ) with less points than an approximation8 u(X, θ̂N ′) with N � N ′ can yield better
performances.

– Of course, if all these errors are small, then we may be able to solve the problem we want to
solve, namely (minimising J by) minimising JN .

In every case, decomposition (1) states that once θ̂ obtained after a training step with N points, the

quality of our approximation u(X, θ̂) can be estimated

– by evaluating J(θ̂) thanks to a test set,

6and sometimes hopefully miss it! Indeed, there are many algorithms, such as dropout [69] for example, which tries
to fit θ but modify the results of the training to estimate the generalisation gap, see section 3.6.2.

7obtained thanks to an optimiser working on JN and outputting θ̂N .
8obtained thanks to an optimiser working on JN′ and outputting θ̂N′ .
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– and JN (θ̂) on the training set,

– and summing up both contributions to obtain J(θ̂) = J(θ̂) + JN (θ̂).

But the above discussion shows that if J(θ̂) does not reach our expectations in term of accuracy, then
it will be hard identifying the main contributor of the error. The work described in [50] may represent
an attempt to do it.

Example 2.0.1 (An example of function J(θ)) We here suggest presenting an example of
function that we may want to minimise

θ ∈ R −→ J(θ) = −e− θ
2

4 − 2e−
(θ−6)2

4 . (4)

The function has two minima, at θ = 0 and θ = 6 and J(6) < J(0). They are known, see remark
2.1. Function (4) could, for example, be the loss function J(θ) =

∫
L(u(X), u(X, θ)) dPX of an

architecture with

– loss function x, y → L(x, y) = (x− y) (L is not necessarily related to a norm),

– to approximate X ∼ dPX → u(X) = 0,

– with activation function x, θ → e−
(x−θ)2

4 + 2e−
(−6−(x−θ))2

4 (θ is only a bias here, see [28]),

– only one point in the training set (X1 = 0, u(X1) = 0),

– only one layer and one neuron so that the architecture is u(x, θ) = e−
(x−θ)2

4 +2e−
(−6−(x−θ))2

4 .

Note that, equivalently, it can be the loss function of an architecture with

– loss function x, y → L(x, y) = (x− y),

– to approximate X ∼ dPX → u(X) = 0,

– with activation function x, θ → e−
(x−θ)2

4 (θ is only a bias here, see [28]),

– only two points in the training set {(X1 = 0, u(X1) = 0), (X2 = 6, u(X2) = 0)},

– only one layer and two neurons with the first one with weight w1 = 1 and the second with
w2 = 2,

– and the two bias θ1 = θ2 = θ.

With this simple example, we can see that two different architectures can lead to the same optimi-
sation problem for some particular directions of the space of the weights.

This simple problem will constitute a fil rouge which will be revisited all along this document
to better understand the behaviour of ML algorithms.

With the above expression, we realise that we may have to be lucky to obtain a good θ and/or to
identify where the error comes from. Fortunately, from the convergence theorems [30, 2, 43], we know
that we can make the terms depending on ε arbitrarily small by refining (increasing the width/depth
such that Card(θ)→∞) the architectures. This means that once an architecture is chosen, ε is fixed,
only three errors remain:

– the generalisation error: it is a posteriori estimated and helps attesting of the quality of approx-
imation u(X, θ).

6



– The integration error: it strongly depends on the choices of the points (Xi, wi)i∈{1,...,N}. In
[51, 52], the authors use the distribution of points as a lever in order to improve the performances
of an architecture by decreasing this error.

– The optimiser error: in this document, we focus on this error and on the optimisation of θ
mainly because several goal-oriented sensitivity analysis [50] pointed out that the optimiser (and
its parameters) is very often the main contributor to having small global errors.

Let us study the optimiser error via the study of the optimisation algorithms at hand.

3 The optimisation step

In this section, we present the optimisation step, i.e. how θ is found in practice. Note that this
presentation is, to our knowledge, original and different from what can be found in classical ML books
[28]. This presentation is adressed to people familiar with PDE resolution/discretisation and numerical
analysis. It aims at putting forward an analogy between ML algorithms and MC codes (for neutronics,
photonics, plasma physics, economics or finance, see for examples [10, 9, 14, 39, 6, 12, 60]). It also
allows

– going through several interesting ML algorithms (GD, SGD, dropout, etc.),

– candidely presenting why and how they are used,

– putting them in a common framework in order to ease their analysis and understanding (especially
for the ones which are not familiar with the furnished ML literature).

Let us begin by a presentation of what is commonly called the forward and backward propagations.

3.1 The forward and backward propagations

As explained in the previous lines, we aim at minimising

J(θ) =

∫
L(u(X), u(X, θ)) dPX =

∫
L(X, θ) dPX .

We consequently have to look for θ cancelling the gradient

F (θ) = ∇θJ(θ) =

∫
L′(u(X), u(X, θ))∇θu(X, θ) dPX =

∫
L′(X, θ)∇θu(X, θ) dPX ,

where L′(x, y) = ∂yL(x, y). Note that by cancelling the gradient, we may unintentionally also look
for maxima of J , which are not of interest. The forward propagation consists in evaluating J(θ) for a
given θ. The backward propagation consists in evaluating ∇θJ(θ) in order to correct θ.

3.1.1 From deterministic optimisation algorithms...

Looking for minima of J implies looking for θ cancelling ∇θJ(θ) and making sure that θ cancelling
∇θJ(θ) is not a maximum or a saddle point. The first reflex as a numerician is to consider the most
classical optimisation algorithm to cancel F , the Newton algorithm:

– it is based on the Taylor development

F (θ + ∆θ) = F (θ) +∇θF (θ)∆θ +O(∆θ2), (5)

– in which assuming local linearity (i.e. O(∆θ2)� 1),
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– leads to F (θ∗) = 0 if ∆θ = θ∗ − θ.

As consequence, in practice, one looks for θ∗ such that

0 = ∇θJ(θ) +∇θ,θJ(θ)(θ∗ − θ). (6)

In general, F is not linear and we just described one step of an iterative algorithm.
Of course, θ∗ is the unknown: we have

θ∗ = θ −
[
∇2
θ,θJ(θ)

]−1∇θJ(θ).

We consequently need to inverse the Hessian ∇2
θ,θJ(θ). Now, one has to keep in mind that

1. it is of size Card(θ)× Card(θ)� 1: its inversion is not affordable in practice due to its size.

2. Functional J is not strictly convex which means that the eigenvalues of ∇2
θ,θJ(θ) are not all

strictly positive. Typically, this means that the Newton algorithm may ’go uphill’ or remain
stuck on a saddle point [19] (or see example 3.1.1). In practice, in order to avoid this situation, it
is common practice to replace ∇2

θ,θJ(θ) by (an approximation of) |∇2
θ,θJ(θ)|, see [19] for example,

where |H| has the same eigenvectors as H and the absolute values of the eigenvalues of H as
eigenvalues. In the following, |H| is called the absolute value of H. As a consequence, through
the iterations, (6) is replaced by

0 = ∇θJ(θ) + |∇θ,θJ(θ)|(θ∗ − θ). (7)

Using the expression above instead of the (6) ensures going in the opposite direction of the
gradient ∇θJ even if ∇2

θ,θJ is not strictly positive (see example 3.1.1).

3. Even once (6) replaced by (7), the non-convexity of the functional to minimise implies a problem
of non unicity of the minimum (of θ cancelling ∇θJ). In order to avoid remaining stuck in a
local minimum, one needs to run several times the Newton algorithm at several starting points,
see example 3.1.1.

Let us tackle every of the above points in a pedagogical example based on the minimisation of (4) of
example 2.0.1.

Example 3.1.1 (Newton for a nonconvex functional) We here suggest presenting the be-
haviour of a Newton algorithm (cf. (6)) and a modified one (according to (7)) in order to minimise
the nonconvex function (4) of example 2.0.1. Applying a Newton algorithm is easy here because
din = 1 and J ′′ is easy to compute so that only point 1 above is simplified (i.e. the matrix inver-
sion). Equations (6) and (7) resume to

θn+1 = θn −
J ′(θn)

J ′′(θn)
and θn+1 = θn −

J ′(θn)

|J ′′(θn)|
.

Figure 1 presents the results obtained with the two Newton algorithms. The two top pictures
are obtained with (6), the four bottom ones with (7). The left column displays the functional
θ → J(θ) given by (4) together with the serie of coordinates ((θn, J(θn))n∈{1,...,nepoch=2000} through
nepoch = 2000 iterations/epochs. The best point (θnbest

, J(θnbest
)) is in blue and the last point

(θnlast
, J(θnlast

)) is in magenta. The right column presents the straight lines θ∗ = 0 and θ∗ = 6
together with the values of n→ θn obtained by the concerned algorithms.

On the top pictures, we can see that a classical Newton (6) is not adapted for a nonconvex
functional: the process (θn)n∈{1,...,nepoch=2000} goes ’uphill’ and does not follow the opposite direc-
tion of the gradient. On the right picture, we see that it does not tend toward neither θ∗ = 0 nor
θ∗ = 6.
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On another hand, on the bottom pictures, the modified Newton algorithm (7) allows converg-
ing toward θ∗ = 0 or θ∗ = 6. It converges toward θ∗ = 0 or θ∗ = 6 depending on where the
Newton has been initialized. On the right pictures, we can even see that the convergence is
fast: θ∗ = 0 or θ∗ = 6 are reached within about 10 iterations. Note that with this algorithm,
(θnbest

, J(θnbest
))=(θnlast

, J(θnlast
)): the last point is always the best point amongst the iterations.

Newton (cf. (6)) Through the iterations
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Modified Newton (cf. (7)) Through the iterations
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Figure 1: Top: results obtained with a classical Newton algorithm (6) on the nonconvex functional (4).
Bottom: results obtained with the modified Newton algorithm (7) on the same functional for several
initialisations. Comments are provided in example 3.1.1.

As we will aim at minimising some non-convex functionals in the following sections, we will keep in
mind the fact that care must be taken to have an algorithm which follows the opposite direction of the
gradient together with relying on multiple initialisations (see example 3.1.1). Concerning this second
point, closely related to the existence of several local minima, many authors studied the number of
local minimum to be adressed: in [4], the authors show that even with only one layer, one neuron,
x ∈ Rdin and if L(σ(θ ·x), y) is continuous and bounded (independently of the choice of the loss function
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L and of the activation function σ), then θ → L(σ(θ · x), y) has exponentially many local minima with
N and din. In other words, such (deterministic) (modified) Newton algorithm may need a number of
initialisations growing exponentially fast with N and din in order to find/deal with the many local
minima. Example 3.1.2, presenting more quantitative results, aims at quantifying the probability for
the optimiser (here, the Newton or the modified Newton) to reach the global or a local minimum.

Example 3.1.2 (Newton for a nonconvex functional, quantitative results) The results
of example 3.1.1 related to figure 1 were mainly qualitative and helped understanding and illus-
trating what may happen in practice. We here suggest some quantitative ones. This example is
motivated by the fact that the results of the top line of figure 1 are not really representative of
the general behaviour of the Newton algorithm (based on (6)). Indeed, if initialised elsewhere, the
same algorithm could have lead to finding a global/local minimum. For example, if θ0 is such
that J ′′(θ0) > 0, then the Newton algorithm will converge toward a local minimum. In the above
example, with J given by (4), it is easy characterising the regions where J ′′ is positive or negative:

J ′′(θ) ≤ 0 for θ ∈ [−∞,−1.414125] ∪ [1.32005, 4.613025] ∪ [7.4145,+∞],
J ′′(θ) > 0 for θ ∈ [−1.414125, 1.32005] ∪ [4.613025, 7.4145].

(8)

In order to find the global minimum amongst the potentially many local ones [4], it is common
having resort to multiple initialisations. In this document, we say that we change the seed, or
rely on Nseed different seeds/initialisations. Practically, it consists in sampling θ0 according to
a prescribed probability distribution. This distribution is often called the initialiser in an ML
context. In this document, we mainly consider initialiser θ0 ∼ U([−15, 15]): the guess θ0 is
sampled uniformly within interval [−15, 15]. Of course, other initial distributions can be used (see
table 1 and the related discussion).

For each initialisation/seed, we run a Newton based on (6). Let us denote by θmin the parameter
θmin ∈ (θn)n∈{1,...,nepoch=2000} such that J(θmin) ≤ J(θn),∀n ∈ {1, ..., nepoch = 2000}. Then,

– the probability of having θmin in the vicinity of θ∗ = 0 is ≈ 9.1%,

– the probability of having θmin in the vicinity of θ∗ = 6 is ≈ 9.3%,

– the probability of going uphill and not being in the above vicinities is ≈ 81.6%.

Table 1 sums-up those probabilities together with others, obtained for different initialisers:

– θ0 ∼ U([−15, 15]), i.e. an uniform sampling in interval [−15, 15],

– θ0 ∼ G(0, 1), i.e. a gaussian sampling of mean 0 and variance 1,

– θ0 ∼ G(3, 3
2 ), i.e. a gaussian sampling of mean 3 and variance 3

2 .

Expectedly, the probabilities are sensitive to the initial distribution of θ0: an attempt will be made
later on to understand how to build better initialisers (see example 3.6.3 and the related discussion
about the solution of the Fokker-Planck equation). In the next examples of this document, we will
mainly focus on initialiser θ0 ∼ U([−15, 15]).

Note that we must define more precisely the term vicinities: in this example, the vicinities are
defined by an interval [θ∗ − ε, θ∗ + ε] for both θ∗ = 0 and θ∗ = 6 where ε remains to be chosen. In
practice, we choose ε = 10−2 (even if for the Newton algorithms, ε is close to the threshold of the
stopping criterion of the Newton algorithms, i.e. 10−14).

In the same conditions as above, if we apply a modified Newton algorithm based on (7), then

– the probability of having θmin in the vicinity of θ∗ = 0 is ≈ 2.7028−−15
30 = 59%,
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– the probability of having θmin in the vicinity of θ∗ = 6 is ≈ 15−2.7028
30 = 41%,

– the probability of going uphill is 0%.

The previous probabilities are recalled in table 1 for several initialisers for θ0 and for the Newton
and the modified Newton algorithms. This table will be useful to compare the performances of
other algorithms later on. The terms, notations and parameter choices defined in this example are
common to all the next quantitative studies, it will ease the next algorithm comparisons.

Vicinity of θ∗ = 0 Vicinity of θ∗ = 6
Initialiser θ0 ∼ U([−15, 15]) P(θmin ∈ [−10−2, 10−2]) P(θmin ∈ [6− 10−2, 6 + 10−2])

Newton based on (6) 9.10% 9.30%
modified Newton based on (7) 59.0% 41.0%

Initialiser θ0 ∼ G(0, 1) P(θmin ∈ [−10−2, 10−2]) P(θmin ∈ [6− 10−2, 6 + 10−2])
Newton based on (6) 82.8% 1.95× 10−6%

modified Newton based on (7) 99.6% 0.40%
Initialiser θ0 ∼ G(3, 3

2 ) P(θmin ∈ [−10−2, 10−2]) P(θmin ∈ [6− 10−2, 6 + 10−2])
Newton based on (6) 12.9% 13.9%

modified Newton based on (7) 42.1% 57.9%

Table 1: Probabilities for the Newton (6) and modified Newton (7) algorithm to recover the local
(θ∗ = 0) or the global (θ∗ = 6) minimum of (4) for different distributions of θ0. Comments are
provided in example 3.1.2.

As explained above, examples 3.1.1 and 3.1.2 do not tackle the hessian inversion problem (described
in point 1 above) as the examples are in a low dimensional context. The hessian and the absolute
value of the hessian computations here are immediate. In the next example, we present the Gradient
Descent algorithm which is classically used when the inverse of the (absolute value of the) hessian is
not at hand.

Example 3.1.3 (Newton for a nonconvex functional without hessian inversion)) In
this example, we suppose we cannot have access to the inverse of the (absolute value of the)
hessian. Gradient Descent suggests arbitrarily choosing a value γ > 0, often called the learning
rate, in order to roughly approximate it. As a consequence, a Gradient Descent (GD) algorithm
(classical if J ′′ can not be computed) is such that

θn+1 = θn −
1

|J ′′(θn)|
J ′(θn) ≈ θn − γJ ′(θn). (9)

Figure 2 revisits the results of example 3.1.1 and figure 1 with a GD algorithm for several learning
rates γ = 0.05, 3.5, 25. The initialisation points are exactly the same, only the descent algorithm
is changed. The top pictures shows the results obtained from the starting point θ0 = −5, with
learning rate γ = 0.05: the left column displays the functional θ → J(θ) given by (4) together
with the serie of coordinates ((θn, J(θn))n∈{1,...,nepoch=2000}. The best point (θnbest

, J(θnbest
)) is in

blue and the last point (θnlast
, J(θnlast

)) is in magenta. The blue and magenta points match: the
algorithm stops at the best point in this case. For such low learning rate (relative to the slope of
the function to minimise), the GD algorithm stops just before some major improvements. The
right column presents the straight lines θ∗ = 0 and θ∗ = 6 together with the values of n→ θn: we
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can see that the algorithm would need more than nepoch = 2000 iterations to attain the vicinity of
θ∗ = 0. The pictures from the second line present the results obtained from starting point θ0 = −5
and γ = 3.5. This time, there are enough iterations/epochs for the GD algorithm to stagnate in
the vicinity of θ∗ = 0. Still, see the right picture of the second line, it needs more iterations than
the modified Newton algorithm of figure 1 in the same conditions. The pictures from the third
line present the results obtained from the θ0 = 11 starting point and γ = 3.5. In this case, the
last point is not the best point: in this sense, GD is not an optimisation algorithm as it does not
ensure cancelling the gradient. It is more an exploration algorithm: this means that one must
monitor the error and keep in memory the point with the lowest value in order to avoid losing it.
In other words, while tuning your weights θ, you must be able to instrument the descent, monitor
the error and keep track of the best weights along the iterations/epochs. Furthermore, with this
choice of γ = 3.5, the algorithm oscillates between several states and does not go below a certain
value. Note that it is common practice to decrease the learning rate after a certain number of
arbitrary iterations/epochs but, to our knowledge, the learning rate reduction strategies are rules
of thumbs. The last line of figure 2 tackles the case θ0 = 11 and γ = 25.0: the GD algorithm
almost immediately jumps outside the region of interest and lands in a zero-gradient region where
it remains stuck.

Example 3.1.4 (Nonconvex functional without hessian inversion, quantitative results)
The results of example 3.1.3 related to figure 2 were mainly qualitative. We here suggest some
quantitative ones, just as in example 3.1.2.

Let us consider initialiser θ0 ∼ U([−15, 15]) as in example 3.1.2. For each starting points,
a GD based on (9) is run. Let us denote by θmin the parameter θmin ∈ (θn)n∈{1,...,nepoch=2000}
such that J(θmin) ≤ J(θn),∀n ∈ {1, ..., nepoch = 2000} for the concerned run. The probabilities of
recovering the local θ∗ = 0 or the global θ∗ = 6 minimum of (4) with GD are displayed in table 2
for several values of the learning rate γ.

For a small learning rate γ = 0.05, GD gives a 25% probability of having θmin in the vicinity
of the local minimum θ∗ = 0 and a 28% one for θmin to be in the vicinity of the global minimum
θ∗ = 6. The probability of not reaching the interesting vicinities is 100− 25.4− 28.7 = 45.9% and
is relatively important.

With γ = 3.5, the probability of recovering θmin ≈ 0 is higher but the probability of reaching the
vicinity of the global minimum is way smaller (≈ 0.22%) than for γ = 0.05. This poor performance
is of course closely related to the bad behaviour of GD depicted in figure 2 (third line). Here, the
probability of not reaching a vicinity of interest is given by 100−31.2−0.22 = 68.58% and is greater
than for γ = 0.05. For a small learning rate, the probability of stopping in the middle of a slope
as in figure 2 (top line) is of course important but is circumvented by the multiple initialisations
strategy.

With γ = 25.0, the probabilities of recovering θmin ≈ 0 or θmin ≈ 6 drastically drop. This poor
performance is of course closely related to the bad behaviour of GD depicted in figure 2 (fourth
line).

The previous probabilities, three first lines of table 2, were computed for vicinities defined by
intervals of the form [θ∗ − ε, θ∗ + ε] for θ∗ = 0, θ∗ = 6 and ε = 10−2. The last line of table 2
presents the results for GD with γ = 0.05 (giving the previous best performances) for narrower
vicinities (i.e. ε = 10−4). The probabilities for GD to recover these narrow vicinities are certainly
extremely small (not statistically significative enough with only Nseed = 104, cf. the 0.00% line).
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Figure 2: These figures revisit the test-case of example 3.1.1 but with a GD algorithm with learning
rates γ = 0.05, 3.5, 25.0.

Example 3.1.5 (The regularisation effect) From the last line of figure 2 (obtained with a too
important learning rate γ = 25.0), it is tempting having resort to regularisation technics. Figure 3
investigates the effect of an L2-regularisation (but any regularisation could be investigated in the
same manner). Regularisation technics consist in adding a term to the nonconvex functional we
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Initialiser θ0 ∼ U([−15, 15]) Vicinity of θ∗ = 0 Vicinity of θ∗ = 6
GD (Nseed = 104) P(θmin ∈ [−10−2, 10−2]) P(θmin ∈ [6− 10−2, 6 + 10−2])

γ = 0.05 25.4% ∈ [24.59%, 26.30%] 28.7% ∈ [27.75%, 29.52%]
γ = 3.50 31.2% ∈ [30.33%, 32.14%] 0.22% ∈ [0.120%, 0.310%]
γ = 25.0 0.14% ∈ [0.065%, 0.214%] 0.29% ∈ [0.180%, 0.400%]

GD (Nseed = 104) P(θmin ∈ [−10−4, 10−4]) P(θmin ∈ [6− 10−4, 6 + 10−4])
γ = 0.05 0.00% ∈ [0.000%, 0.000%] 0.00% ∈ [0.000%, 0.000%]

Table 2: Probabilities for the Gradient Descent (GD) algorithm to recover the local (θ∗ = 0) or the
global (θ∗ = 6) minimum of (4) for several values of the learning rate γ. To compute the probabilities,
we have resort to Nseed = 104 multiple initialisations with θ0 ∼ U([−15, 15]). Confidence intervals for
the results are provided. The 0.00% are not significative but attest for a small probability. Comments
are provided in example 3.1.4.

aim at minimising. For an L2 regularisation, (4) is typically replaced with

θ ∈ R −→ J(θ) = −e− θ
2

4 − 2e−
(θ−6)2

4 + ξ(θ − θguess)2, (10)

where ξ and θguess are two parameters. The first line of figure 3 shows the effects of those pa-
rameters on the L2 regularisation of functional (4). The top-left picture shows the effect of ξ, the
top-right shows the effect of θguess. Let us begin with figure 3 (top-left): it shows a regularised
functional with (θguess = 0 and) ξ = 0.010, 0.029, 0.050. As ξ increases, the slopes of the formerly
zero gradient zones ]−∞,−5] and [10,∞[ are steeper and steeper. A GD algorithm will not remain
stuck in those areas. On another hand, we also see that the regularised functional does not yield
the same performances as the original one: in the vinicity of θ = 6, the minimum increases with
ξ. For ξ = 0.05, the local minimum in the vicinity of θ = 6 is not anymore the best one and the
regularised functional does not yield equivalent performances as the non-regularised one. Nothing
changes around θ = 0 = θguess. Figure 3 (top-right) shows the regularised functional (10) for
(ξ = 0.01 and) θguess = 0, 1, 6. The performance, in term of minimum, of J remains unchanged
in the vicinity of θguess whereas ξ ensures having non-zero gradient. But if θguess is not well
enough chosen, the performances can greatly be altered: for θguess = 0, 1, the minimum is higher,
i.e. have poorer performances, than for the non-regularised functional.

Besides, it is not because the regularised functional now has some non-zero gradient regions
that it is easier to minimise with a GD algorithm: the two last lines of figure 3 show how the GD
algorithm behaves for two different values of ξ = 0.010, 0.029 (for θguess = 0). On the second line,
the gradient are so steep that (for the chosen learning rate) the algorithm diverges. For smoother
gradients (last line of figure 3), the algorithm path remains bounded but still presents an unstable
behaviour. Of course, if, despite those instabilities and this diverging behaviour, the GD algorithm
comes close to the minimum, a good candidate may be found and kept in memory (cf. the blue dot
• which is close to the minimum of the regularised functional). But surely, many iterations are
lost. We insist on the fact that the oscillations here are numerical instabilities (the algorithm is
deterministic, the oscillations are not due to the introduction of any stochasticity).

Example 3.1.6 (The regularisation effect, quantitative results) The results of example
3.1.5 related to figure 3 were mainly qualitative. We here suggest some quantitative ones.
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Figure 3: These figures revisit the test-case of example 3.1.1 but with a GD algorithm with learning
rates γ = 25.0 with the minimisation of an L2-regularised functional (see example 3.1.5).

The conditions are the same as in the previous (quantitative) examples 3.1.2–3.1.4. The prob-
abilities for the penalised GD algorithm to reach local/global minima vicinities are displayed in
table 3. The regularised results must be compared to the last line of table 2: regularisation does
improve the results for γ = 25.0 but the probabilities to recover the vicinities remain quite low.
The reasons are those depicted in figure 3 and detailed in example 3.1.5.

3.1.2 ... To stochastic optimisation algorithms

Let us now tackle the problem of the dimension of the hessian (which we avoided in example 3.1.1
which is 1D and for which we computed J ′′ analytically). The size of the hessian depends on the
size Card(θ) of the vector of weights. This size depends on the number of neurons per layer and

15



Initialiser θ0 ∼ U([−15, 15]) Vicinity of θ∗ = 0 Vicinity of θ∗ = 6
penalised GD (Nseed = 104) P(θmin ∈ [−10−2, 10−2]) P(θmin ∈ [6− 10−2, 6 + 10−2])

γ = 25.0 ξ = 0.029 0.56% ∈ [0.413%, 0.707%] 0.40% ∈ [0.276%, 0.524%]
γ = 25.0 ξ = 0.001 0.00% ∈ [0.000%, 0.000%] 0.21% ∈ [0.204%, 0.221%]

Table 3: Probabilities for the penalised GD algorithm to recover the local (θ∗ = 0) or the global
(θ∗ = 6) minimum of (4) for γ = 25.0 and two values of the regularisation coefficient ξ. To compute the
probabilities, we have resort to Nseed = 104 multiple initialisations with θ0 ∼ U([−15, 15]). Confidence
intervals for the results are provided. The 0.00% are not significative but attest for a small probability.
Comments are provided in example 3.1.6.

on the number of layers. Even if growing polynomially with the dimension, the number of weights
remains important mainly due to the important number of input dimensions (din) we aim at taking into
account: for example, suppose we aim at working with datasets composed of 100× 100 pixel images,
then a neural network with only one layer with nc neurons needs to tune (din + 1)× nc + nc × dout =
10001 × nc + 10000 × dout weights. Even for small number of neurons nc and of outputs dout, this
number implies a diagonalisation/inversion of a huge matrix.

Now comes the second reflex as a numerician: when you have a dimension problem, a numerician
uses a discretisation method which is the less sensitive to the dimension possible, the Monte-Carlo
(MC) one [39, 40, 60]. How do you do that? You can discretise PDEs with an MC method so let us
build a PDE. Equation (6) which describes one step of a Newton algorithm is equivalent to

0 =

∫
L′(X, θ)∇θu(X, θ) dPX

+

∫ [
L′(X, θ)∇2

θ,θu(X, θ) + L′′(X, θ)∇θu(X, θ)∇Tθ u(X, θ)
]

(θ∗ − θ) dPX ,
(11)

where L′′(x, y) = ∂2
y,yL(x, y) and where we introduced new notations, L′(X, θ) = L′(u(X), u(X, θ)) and

L′′(X, θ) = L′′(u(X), u(X, θ)), for the sake of conciseness. Remember that in the previous expression,

– θ∗ is the unknown,

– the equation is still vectorial at this stage,

– the equation is averaged over dPX .

– In practice, dPX is replaced by dPNX but the next analysis are independent of the distribution
of training points (i.e. discretised or not).

Now, we are going to make u(X, θ) the unknown of an instationary PDE. We will consequently tem-
porarily have two unknowns, u(t,X, θ) and θ∗.

Also, we are going to temporarily forget about the integration with respect to dPX . We will come
back to it in section 3.4. Let us now rewrite (11) for an arbitrary component i ∈ {1, ..., Card(θ)} and
an arbitrary output k ∈ {1, ..., dout}:

0 = ∂θiuk(X, θ)

L′(X, θ) + L′′(X, θ)

Card(θ)∑
j=1

∂θjuk(X, θ)(θ∗j − θj)


+L′(X, θ)

Card(θ)∑
j=1

∂2
θi,θjuk(X, θ)(θ∗j − θj).

(12)

The above equation reminds of a drift-diffusion equation. In the next section, we recall few results on
that type of PDE. We aim at clarifying some analogies between parabolic PDEs and (12).
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3.2 Few reminders on the stochastic resolution of parabolic equations

In this section, we recall few results which will be handy later on when studying the optimisation
algorithms at play in ML. Let us first recall the general Ito formula.

Lemma 1 (The general Ito formula) This definition is taken from [53, 70]. Assume Xt is an n
dimensional Ito process. Let t, x ∈ R+ × Rn −→ g(t, x) = (g1(t, x), ..., gp(t, x))T ∈ Rp with g being C2.
Then Yt = g(t,Xt) is a p dimensional Ito process and verifies ∀k ∈ {0, ..., p}

dY kt = ∂tgk(t,Xt) dt+

n∑
i=1

∂xigk(t,Xt) dXi
t +

1

2

n∑
i,j=1

∂2
xi,xjgk(t,Xt) dXi

t dXj
t .

From the above general Ito formula can be deduced Ito’s lemma recalled here.

Lemma 2 (Ito’s lemma [53, 70]) Define

dXt = µ(t,Xt) dt+ σ(t,Xt) dBt, (13)

where (t, x) ∈ R+ × Rn −→ µ(t, x) ∈ Rn and (t, x) ∈ R+ × Rn −→ σ(t, x) ∈ Rn×m and dBt is an m
dimensional Brownian process, then we have ∀k ∈ {1, ..., p}

dY kt =

∂tgk(t,Xt) +

n∑
i=1

∂xigk(t,Xt)µi(t,Xt) +
1

2

n∑
i,j=1

∂2
xi,xjgk(t,Xt)

[
σ(t,Xt)σ

T (t,Xt)
]
i,j

 dt

+

n∑
i=1

∂xigk(t,Xt)

m∑
j=1

σi,j(t,Xt) dBjt ,

(14)

where
[
σ(t,Xt)σ

T (t,Xt)
]
i,j

=
∑m
k=1 σi,k(t,Xt)σj,k(t,Xt). We insist on the fact that m and p are

independent. In matricial form (more concise but the dimensions are less visible), we get

dYt =

[
∂tg(t,Xt) +∇xg(t,Xt)µ(t,Xt) +

1

2
Tr
[
σT (t,Xt)∇2

x,xg(t,Xt)σ(t,Xt)
]]

dt

+∇xg(t,Xt)σ(t,Xt) dBt.
(15)

Similarly, we recall Kolmogorov’s theorem in the next lines.

Theorem 1 (The Kolmogorov backward equation [53, 70]) Let u0(x) be C2 and let Xx
t be an

Ito process as in (13) with initial condition X0 = x. Kolmogorov’s theorem states that u(t, x) defined
as u(t, x) = E[u0(Xx

t )] is solution of ∂tu(t, x) +

n∑
i=1

µi(t, x)∂xiu(t, x) +
1

2

n∑
i,j=1

[σ(t, x)σT (t, x)]i,j∂
2
xi,xju(t, x) = 0,

u(x, 0) = u0(x).

(16)

The above theorem states that we can solve a drift-diffusion equation by averaging realisations of a
stochastic process. This will be of interest later on. Let us first continue with useful results.

Theorem 2 (The Kolmogorov forward equation [53, 70]) Let Xx
t be an Ito process as in (13).

Let us denote by px(t, y) the distribution of process Xx
t (beginning at X0 = x), i.e. such that

E[f(Xx
t )] =

∫
f(y)px(t, y) dy,

for all measurable f . Then px(t, y) satisfies the Kolmogorov forward (Fokker-Planck) equation ∂tpx(t, y) +

n∑
i=1

∂yi(µi(y)px(t, y))− 1

2

n∑
i,j=1

∂2
yi,yj ([σ(t, y)σT (t, y)]i,jpx(t, y)) = 0,

px(0, y) = p0,x(y).

(17)
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Note that the linear operator in (17) is the adjoint of the one in (16). The Fokker-Planck equation
gives an idea of the distribution at time t of the position of Xt when departing from x.

Let us finally insist on the fact that the results presented in this section all concern linear PDEs
whereas (12) is nonlinear. The material of this section will only be relevant once a linearisation strategy
for (12) chosen. We tackle this point and the analogy between ML algorithms and PDE resolutions in
the next section.

3.3 From stationary to unstationary processes and their discretisations

Equation (12) is close to equation (16). We aim at transforming (12) into something which even more
looks like (16). Let us insist on several points:

– first, in Ito’s lemma, g ∈ Rp whereas u ∈ Rdout so that p in Ito’s lemma echoes the number of
outputs of the ANN. Of course, n plays the role of Card(θ).

– Second, (12) is still vectorial: it lacks a sum if compared to (14). Let us introduce an arbitrary
vector α ∈ RCard(θ). Then (11) is equivalent to ∀α ∈ RCard(θ),

0 =

∫
L′(X, θ)αT∇θu(X, θ) dPX

+

∫
αT
[
L′(X, θ)∇2

θ,θu(X, θ) + L′′(X, θ)∇θu(X, θ)∇Tθ u(X, θ)
]

(θ∗ − θ) dPX .
(18)

Remark 3.1 Equivalency between (11) and (18) is only ensured ∀α ∈ RCard(θ) or for α the
components of a basis of RCard(θ).

– Third, there is one less and one additional dependence: θ in (12) echoes x in (16). But (12) does
not depend on time t (yet) and (16) does not depend on X. The dependence with respect to
X will be tackled in section 3.4 but assume that the solution of (16) depends on X, then it has
exactly the same structure as some uncertainty quantification problems, see [60, 59, 57, 12, 55].

Let us here focus on the dependence with respect to time t. Let us now consider an instationary
equation (typically, we suppose that u now also depends on time t). Then, for one component
of (18), we have ∀k ∈ {1, .., dout}

0 = ∂tuk(t,X, θ) +

Card(θ)∑
i=1

∂θiuk(t,X, θ)

αiL′(t,X, θ) + L′′(t,X, θ)αi

Card(θ)∑
j=1

∂θjuk(t,X, θ)(θ∗j − θj)


+

1

2

Card(θ)∑
i,j=1

∂2
θi,θjuk(t,X, θ)

[
2L′(t,X, θ)αi(θ

∗
j − θj)

]
.

(19)

The above equation is

– now scalar,

– must be true ∀α ∈ RCard(θ) or for a set of basis vectors of the same space (see remark 3.1),

– and must be solved for ∀t ∈ [0, T ] and ∀θ ∈ Θ. Furthermore, if

1. T < ∞ and9 |Θ| ≤ ∞, (19) together with an initial condition u0
k(θ) = uk(t = 0, θ),∀k ∈

{1, ..., dout} is a Cauchy problem.

9|Θ| denotes the volume of the space Θ.
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2. T = ∞ and |Θ| < ∞, (19) must be completed with non-zero boundary condition in order
to have a non-zero solution as time tends to ∞.

In both cases, the problem is wellposed under the conditions detailed below. In ML problems, in
general, the space of the parameters Θ is not bounded (i.e. |Θ| =∞) so we will mainly consider
the first case above. Still, the following discussions are also valid in the second case.

– Besides, the resolution of the equation must be instrumented in order to monitor the generalisa-
tion error J : due to the fact that u now also depends on time t, the generalisation error (1) also
does and is now given by

J(t, θ) = J(u(t, ·, θ)) =

∫
L(u(X), u(t,X, θ)) dPNX .

During the resolution, we must find the couple (t∗, θ∗) ∈ [0, T ] × Θ such that J(t∗, θ∗) ≤
J(t, θ),∀(t, θ) ∈ [0, T ]×Θ.

Remark 1 The above points highlight the fact that ML frameworks (such as TensorFlow or PyTorch
or SciKitLearn etc.) are very similar to our simulation codes for computational physics. Let us give
an example:

– at the CEA, we develop codes simulating solid mechanics. We solve the (hyperbolic) equations of
continuum dynamics [44, 45, 33, 34]: ∂tτ(t,X, θ) = ∇θv(t,X, θ),

∂tv(t,X, θ) = ∇θΣ(t,X, θ),
∂te(t,X, θ) = ∇θ

[
ΣT (t,X, θ)v(t,X, θ)

]
,

where τ ∈ R+ is the specific volume, v ∈ R3 is the velocity, e ∈ R+ is the total energy and the
system is closed thanks to a constitutive law Σ(τ, e) ∈ R3×3.

– We typically look for the vector of unknowns u = (τ, v, e)T for times t ∈ [0, T ] ⊂ R+, for the spa-
tial variable θ ∈ Θ ⊂ R3 and with X ∼ dPX modeling some uncertainties on the initial/boundary
conditions or the constitutive law (Σ) [35, 36, 37, 38, 66, 22, 67, 60, 21].

– Quantity Σ(t,X, θ) is the constitutive law: it is chosen in order to model the physical behaviour of
a material. It is chosen as a function of τ, u, e, i.e. Σ(t,X, θ) = Σ(τ(t,X, θ), u(t,X, θ), e(t,X, θ)),
in order to close the system10.

– In computational physics, it is common monitoring a functional of the physical variables in order
to perform a study. For example, in our solid mechanics context, J(t, θ) would be the minimum
over time t ∈ [0, T ] and space θ ∈ Θ of the main stress (the minimum of the eigenvalues of Σ).
Thanks to this physical quantity, we are able to know whether our material will break or not at
some time t∗ and position θ∗ which are a priori unknown.

In other words, ML frameworks are just classical codes, solving a particular (uncertain) PDE (a
parabolic one) given by (19) together with relevant modeling assumptions (mainly on α, θ∗ − θ). Now,
there are several ways to solve the PDE of interest: you can have resort to deterministic or stochastic
(MC) schemes.

10i.e. in order to have the same number of equations and unknowns.
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Let us complete the analogy with (14). The next question is: can we identify µ, σ as in (14) but in
(19)? For µ, this is pretty obvious, see below,

0 = ∂tuk(t,X, θ)

+

Card(θ)∑
i=1

∂θiuk(t,X, θ)

αiL′(t,X, θ) + L′′(t,X, θ)αi

Card(θ)∑
j=1

∂θjuk(t,X, θ)(θ∗j − θj)


︸ ︷︷ ︸

µi(t,X,θ)

+
1

2

Card(θ)∑
i,j=1

∂2
θi,θjuk(t,X, θ)

[
2L′(t,X, θ)αi(θ

∗
j − θj)

]︸ ︷︷ ︸
[σ(t,X,θ∗−θ)σT (t,X,θ∗−θ)]i,j??

, t ∈ [0, T ], θ ∈ Θ, X ∼ dPX ,

uk(t = 0, X, θ) = u0
k(X, θ),∀k ∈ {1, ..., dout}, θ ∈ Θ, X ∼ dPX ,

together with the evaluation of J(t, θ) = J(u1(t, ·, θ), ..., udout(t, ·, θ)) in order to find
t∗ ∈ [0, T ], θ∗ ∈ Θ such that J(t∗, θ∗) ≤ J(t, θ),∀t ∈ [0, T ],∀θ ∈ Θ.

(20)

But it is not clear whether (see the ?? in the above expression) the coefficients of the second order
operator can be rewritten as the general term of a matrix times its transpose. In other words, it is not
guaranted that all choices of α, θ∗ − θ, L ensure wellposedness of the PDE we need to solve.

Remark 3.2 The existence of the above decomposition is not straightforward: we must have

[
σσT

]
i,j

=

m∑
k=1

σi,kσj,k = 2L′(t,X, θ)αi(θ
∗
j − θj). (21)

– If Card(θ) = 1 then it exists under positivity conditions on L′, α and θ∗ − θ.

– In dimension 2, it is easy building a set of parameters such that the decomposition does not exist.

– For a general dimension Card(θ), it is always possible to

– choose α = (θ∗ − θ),
– assume positiveness of L′ and θ∗ − θ component by component,

– and build σ(t,X, θ∗ − θ) = diag(
√

2L′(t,X, θ)|θ∗1 − θ1|, ...,
√

2L′(t,X, θ)|θ∗m − θm)|).
– With the above conditions, (20) has the desired structure. Note that in this case, many

terms are zero in [σσT ]i,j and m is arbitrary (it can be smaller than Card(θ) or bigger
which would imply having many zero on the diagonal).

– Of course, uniqueness of the existing decomposition is not ensured: one can choose m ∈ N in the
previous diagonal decomposition. Every modeling11 choices of α, θ∗ − θ make a potential
new heuristic in order to compute our minimum. Of course, just as in computational
physics, not every modeling choices are equivalent: some are coarse but efficient and enough in
some situations, some are fine and computationally intensive but necessary in order to obtain
accurate results. This will be emphasized in section 3.5.

The positiveness or the use of absolute values for L′ or the components of θ∗ − θ echoe the discussion
on the sign of the eigenvalues of the hessian in the previous section12: by construction, the σσT

symmetrical structure will make sure we look for minima (and not maxima).

11Echoing the physical modeling choice operated via Σ in remark 1.
12and taking the absolute value |H| of the hessian H in a Newton algorithm in order to go in the opposite direction

of the gradient direction.
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In the following sections, we assume the existence of σ(t,X, θ∗ − θ, α) as desired, even if some
choices and hypothesis need to be made. As in practice, we can always choose the decomposition as in
the third point of remark 3.2 and from now on, we will assume wellposedness for the ML problem/PDE
(20). We can consequently try to solve it.

At this stage, the reader may wonder why all this fuss, all these hypothesis stated in the more
general terms possible etc. Mainly because numericians are more familiar with selecting a set of
PDEs, analysing its properties before choosing a discretisation method. In other words, only now is
the time for the discretisation question: due to the structure of the problem of interest, we are able to
relate Ito’s lemma to (20). Regarding (20) and lemma 1, we are tempted to identify

– the drift term as

µ(t,X, θ, α) = αL′(t,X, θ) + L′′(t,X, θ)α∇Tθ u(t,X, θ)(θ∗ − θ),

– and its diffusion coefficients
[
σ(t, α,X, θ∗ − θ)σT (t, α,X, θ∗ − θ)

]
i,j

= 2L′(t,X, θ)αi(θ
∗
j − θj).

– In order to solve equation (20) (but still, not exactly our optimisation problem! We still do not
integrate with respect to X!), we can consequently introduce the stochastic process

dθt(X) =
[
αL′(t,X, θt) + L′′(t,X, θt)α∇Tθ u(t,X, θt)(θ

∗ − θt)
]

dt+ σ(t,X, α, θ∗ − θt) dBt. (22)

The instrumentation J(t, θ) then becomes13 J(t, θ) = J(θt).
The above equation (22) is a stochastic nonlinear ODE. It can not, in general, be integrated
analytically. We must have resort to a numerical scheme. Let us consider the simplest integration
scheme for an ODE, the explicit Euler scheme. It supposes integrating (22) over a time step [0, t]

θt(X) = θ0(X) +

∫ t

0

[
αL′(s,X, θs(X)) + L′′(s,X, θs(X))α∇Tθ u(s,X, θs(X))(θ∗ − θs(X))

]
ds

+

∫ t

0

σ(s,X, α, θ∗ − θs(X)) dBs,

and assuming

αL′(s,X, θs(X)) + L′′(s,X, θs(X))α∇Tθ u(s,X, θs(X))(θ∗ − θs(X)) ≈
αL′(0, X, θ0(X)) + L′′(0, X, θ0(X))α∇Tθ u(0, X, θ0(X))(θ∗ − θ0(X)),

∀s ∈ [0, t = ∆t] together with

σ(s,X, α, θ∗ − θs(X)) ≈ σ(0, X, α, θ∗ − θ0(X)),

∀s ∈ [0, t = ∆t]. As a consequence, for an arbitrary time interval [tn, tn + ∆t = tn+1], we have

θn+1(X) = θn(X) +∆t
[
αL′(tn, X, θn(X)) + L′′(tn, X, θn(X))α∇Tθ u(tn, X, θn(X))(θ∗ − θn(X))

]
+σ(tn, X, α, θ∗ − θn(X))

√
∆tG(0, 1).

(23)

For convergence and stability, the explicit Euler scheme demands a restriction on the time step
[41, 11]. Theorems in [41, 11] states that if ∆t is small enough, we have a converging approxi-
mation of Yt toward Xt with convergence rate given by O(

√
∆t). From the above definitions, we

realize that the stability of (23) in order to discretise (22) is not straightforward and is closely
related to restrictions on L,α, θ∗, X.

We talked about the explicit Euler scheme demanding a restriction on the time step but of
course, it is also possible to design many other different integration schemes (implicit Euler,

13Note that the dependence with respect to X complicates the analysis. But this will be clarified later on, mainly in
section 3.4.
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semi-implicit, high-order Runge-Kutta etc.) depending on the resolution needs (unconditional
stability, stiffness of not etc.), now that we identified the PDE we want to solve.
In a discretised form, the instrumentation J(t, θ) becomes J(t, θ) = J(θt) ≈ J(θtn) ≈ J(θn) (this
will be clarified later on).

We here put forward one important advantage of having resort to such PDE resolution framework:
several numerical schemes, bearing various properties, are at hand to solve (20) and may bene-
fit ML optimisers. This point will be investigated later on (and even illustrated in example 3.6.1).

Let us finish this section by few remarks:

– From the Kolmogorov backward theorem 1, we can tell that the analytical integration of (22),
given by

θt(X) = +θ0(X)

+

∫ t

0

[
αL′(s,X, θs(X)) + L′′(s,X, θs(X))α∇Tθ u(s,X, θs(X))(θ∗ − θs(X))

]
ds

+

∫ t

0

σ(s,X, α, θ∗ − θs(X)) dBs,

(24)

with time t ∈ [0, T ] makes sure that (18) is fulfilled for the chosen α ∈ RCard(θ). But nothing
ensures that only one choice of α ∈ RCard(θ) will ensure that (11) is fulfilled, see remark 3.1.

– Note that, as written above, θt (hence θt∗ such that J(θt∗) ≤ J(θt) ∀t ∈ [0, T ]) depends on X (i.e.
θt∗ ≡ θt∗(X)) whereas in practice in ML problems, θn does not depends on X (except maybe in
[24] which will be briefly discussed in section 3.4). In ML problems, equation (20) is averaged
with respect to dPX . This is an important point and we did not avoid it. It is long to debate on
so we suggest postponing this discussion to section 3.4 (note that it deserves a whole section).

– In the second line of (14), the last term ∇xu(t,Xt)σ(t,Xt) dBt corresponds to an error term.

With the analytical integration (24) of (22), theorem 1 tells that
∫ t

0
∇xu(t, θt)σ(t, θt) dBt = 0

(martingale property). But if θt is discretised, nothing ensures this same term is zero and it gives
an idea of how the error may evolve with the time step [0, t = ∆t].

– In the Kolmogorov forward equation, µ is also called a background. From the Kolmogorov forward
equation, one can tell that asymptotically as t → ∞ (and given some boundary conditions on
Θ), the distribution pθ0(t, θ) ∼

t→∞
p∞θ0 (θ) of Xt satisfies14:

−∇θ(µ∞(X,α, θ)p∞θ0 (X, θ)) +
1

2
∇2
θ,θ(σ

∞(α,X, θ∗ − θ)((σ∞)T (α,X, θ∗ − θ)p∞θ0 (X, θ)) = 0.

The convergence of pθ0(t, θ) toward p∞θ0 (θ) is exponential and the constant within the exponential
is the same as in the Poincaré inequality related to µ, σ, see [56]. At this stage, theorem 1 and 2
of [73] may become handy (expressed in a UQ context, see section 3.4), in order to understand
the behaviour with respect to time of pθ0(t, θ) or its asymptotic behaviour p∞θ0 (θ) (but this is
beyond the scope of this document).

From now on, we only considered what is under the integration
∫
·dPX in (18). In the next section,

we focus on this important point, the integration with respect to dPX .

14boundary conditions should be given for wellposedness.
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3.4 The dependence with respect to X in a PDE framework

Until now, we mainly focused on equation (20). For the sake of conciseness and without loss of
generality, let us assume that there is only one output so that dout = 1 and we do not need the k
index. Then, ∀X ∼ dPX , (20) is rewritten as

0 = ∂tu(t,X, θ)

+

Card(θ)∑
i=1

∂θiu(t,X, θ)

αiL′(t,X, θ) + L′′(t,X, θ)αi

Card(θ)∑
j=1

∂θju(t,X, θ)(θ∗j − θj)


+

1

2

Card(θ)∑
i,j=1

∂2
θi,θju(t,X, θ)

[
2L′(t,X, θ)αi(θ

∗
j − θj)

]
, t ∈ [0, T ], θ ∈ Θ, X ∼ dPX ,

u(t = 0, X, θ) = u0(X, θ), θ ∈ Θ, X ∼ dPX ,
together with the evaluation of J(t, θ) = J(u(t, ·, θ)) in order to find
t∗ ∈ [0, T ], θ∗ ∈ Θ such that J(t∗, θ∗) ≤ J(t, θ),∀t ∈ [0, T ],∀θ ∈ Θ.

(25)

At this stage, it is important putting forward one last time the analogy between the structure of (25)
and the structure of Stochastic PDEs for uncertainty quantification, see [60, 59, 57, 12, 55]. The
numerical methods described in the previous paper could certainly benefit the resolution of our ML
problem. But in this document, we mainly would like to formalise what is commonly done in ML
frameworks: the main problem with (25) and the analysis of the previous sections is that, in ML
problems, we do not have to cancel15 (25) ∀X ∼ dPX but only (25) averaged over dPX , i.e., only

0 = ∂t

∫
u(t,X, θ) dPX

+

Card(θ)∑
i=1

∫
∂θiu(t,X, θ)

αiL′(t,X, θ) + L′′(t,X, θ)αi

Card(θ)∑
j=1

∂θju(t,X, θ)(θ∗j − θj)

dPX

+
1

2

Card(θ)∑
i,j=1

∫
∂2
θi,θju(t,X, θ)

[
2L′(t,X, θ)αi(θ

∗
j − θj)

]
dPX .

(26)

Let us decompose u(t,X, θ) into

u(t,X, θ) = u(t, θ) + û(t,X, θ),

where

u(t, θ) =

∫
u(t,X, θ) dPX and û(t,X, θ) = u(t,X, θ)− u(t, θ).

In fact, u is nothing more than the mean of u over dPX and û is a centered fluctuation. This kind of
decomposition is intensively used in turbulence modeling, see [46]. We then have to solve

15Of course, if it is cancelled ∀X ∼ dPX then it implies it will cancel the mean but this is not reciprocal, except with
some more of less strong assumptions.
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0 = ∂tu(t, θ)

+

Card(θ)∑
i=1

∂θiu(t, θ)

∫  αiL
′(t,X, θ)

+L′′(t,X, θ)αi

Card(θ)∑
j=1

∂θj [u(t, θ) + û(t,X, θ)] (θ∗j − θj)

 dPX

+
1

2

Card(θ)∑
i,j=1

∂2
θi,θju(t, θ)

∫ [
2L′(t,X, θ)αi(θ

∗
j − θj)

]
dPX

+

Card(θ)∑
i=1

∫
∂θi û(t,X, θ)

 αiL
′(t,X, θ)

+L′′(t,X, θ)αi

Card(θ)∑
j=1

∂θj [u(t, θ) + û(t,X, θ)] (θ∗j − θj)

dPX

+
1

2

Card(θ)∑
i,j=1

∫
∂2
θi,θj û(t,X, θ)

[
2L′(t,X, θ)αi(θ

∗
j − θj)

]
dPX , t ∈ [0, T ], θ ∈ Θ,

u(t = 0, θ) + û(t = 0, X, θ) = u0(θ) + û0(θ,X), θ ∈ Θ, X ∼ dPX
together with the evaluation of J(t, θ) = J(u(t, θ) + û(t, ·, θ)) in order to find
t∗ ∈ [0, T ], θ∗ ∈ Θ such that J(t∗, θ∗) ≤ J(t, θ),∀t ∈ [0, T ],∀θ ∈ Θ.

(27)

The above PDE is not closed in the sense that we have one equation but two unknowns u and û.
The same problem occurs in turbulence modeling, see [46]. In other words, we are going to need at
least one additional modeling hypothesis/heuristic in order to close our system (as we have 2 unknowns
but still only one equation).

Remark 3.3 From the Kolmogorov backward theorem 16, we can tell that averaging the stochastic
process

θt = θ0 +

∫∫ t

0

[
αL′(s,X, θs) + L′′(s,X, θs)α∇Tθ u(s,X, θs)(θ

∗ − θs)
]

dPX ds

+

∫∫ t

0

σ(s,X, α, θ∗ − θs) dPX dBs,

(28)

will make sure that the three first lines (and only the first lines) of (27), i.e.

0 = ∂tu(t, θ)

+

Card(θ)∑
i=1

∂θiu(t, θ)

∫ αiL′(t,X, θ) + L′′(t,X, θ)αi

Card(θ)∑
j=1

∂θju(t,X, θ)(θ∗j − θj)

 dPX

+
1

2

Card(θ)∑
i,j=1

∂2
θi,θju(t, θ)

∫ [
2L′(t,X, θ)αi(θ

∗
j − θj)

]
dPX , t ∈ [0, T ], θ ∈ Θ,

u(t = 0, θ) = u0(θ), θ ∈ Θ,
together with the evaluation of J(t, θ) = J(u(t, θ)) in order to find
t∗ ∈ [0, T ], θ∗ ∈ Θ such that J(t∗, θ∗) ≤ J(t, θ),∀t ∈ [0, T ],∀θ ∈ Θ,

(29)

are cancelled for the chosen α ∈ RCard(θ). In other words, we here implicitly made the modeling

hypothesis û ≡ 0. We then have u(t, θ) = E[u0(θ
θ

t )]. Discretised with an explicit Euler scheme over
time step [tn, tn + ∆t = tn+1], (28) becomes

θn+1 = θn +∆t

∫ [
αL′(tn, X, θn) + L′′(tn, X, θn)α∇Tθ u(tn, X, θn)(θ∗ − θn)

]
dPX

+
√

∆t

[∫
σ(tn, X, α, θ∗ − θn) dPX

]
G,

(30)
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where G ∼ (G1(0, 1), ...,Gm(0, 1))T . Of course, in practice, dPX is a discrete measure dPNX =∑N
i=1 wiδXi(X). Assume furthermore that wi = 1

N ,∀i ∈ {1, ..., N}, then (30) is equivalent to

θn+1 = θn +
∆t

N

N∑
i=1

[
αL′(tn, Xi, θn) + L′′(tn, Xi, θn)α∇Tθ u(tn, Xi, θn)(θ∗ − θn)

]
+

√
∆t

N

[
N∑
i=1

σ(tn, Xi, α, θ
∗ − θn)

]
G.

(31)

The above expression needs the evaluation of ∇Tθ u(tn, Xi, θn) which is not known. Let us assume that
∇Tθ u(tn, Xi, θn) ≈ ∇Tθ uANN (tn, Xi, θn) where uANN expresses the fact that u is replaced by an ANN
architecture: we just introduced the need for back propagation and the evaluation of the gradient of u,
in order to estimate some term in the drift (see [28]). Finally, (31) resumes to

θn+1 = θn +
∆t

N

N∑
i=1

[
αL′(Xi, θn) + L′′(Xi, θn)α∇Tθ uANN (tn, Xi, θn)(θ∗ − θn)

]
+

√
∆t

N

[
N∑
i=1

σ(Xi, α, θ
∗ − θn)

]
G.

(32)

Back propagation can then be understood as a type of linearisation of equation (31) in order to obtain
(32).

Now, nothing prevents us from simulating stochastic process (32) thanks to an MC resolution, every
terms can be computed provided some choices of L,α and of an additional equation for θ∗−θ agreeing
that we already implicitly chose û ≡ 0: those points will be tackled in the next section 3.5.
Regarding our instrumentation, it then becomes the on-the-fly numerical estimation of J(t, θ) =
J(θt) ≈ J(θtn) ≈ J(θn). The weights θn∗ such that J(θn∗) ≤ J(θn) ∀n ∈ {1, ..., nepoch} must be
kept in memory.

Remark 3.4 Note that if we attempt to cancel only the three first lines of (27), i.e. the equation
satisfied by u given by (29), we only solve the minimisation problem if the fluctuations û of u are
small, i.e. if u(t,X, θ) ≈ u(t, θ). An attempt to characterise more precisely the situation when this
property occurs will be made in section 4.

With the few above pages, we have a nice framework to solve our optimisation problem. Let us
compare it to what is commonly done in ML algorithms such as those available in TensorFlow, PyTorch,
SciKitLearn etc.

3.5 Back to ML algorithms and analogies with PDE resolutions

Let us go back to our ML framework and study the algorithms available in the most popular softwares.
Care will be taken to revisit them in the PDE framework discussed in the previous pages. Note that,
usually, the description of the optimisation algorithms in ML always begins with the description of one
iteration of a GD algorithm. Suppose there are N points in the training set (Xi, wi = 1

N )i∈{1,...,N},
then

θn+1 = θn−
γ

N

N∑
k=1

L′(Xk, θn)∇θu(Xk, θn), (33)

where γ is the learning rate, see [28].

Remark 3.5 If we choose
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– α = −∇θu(X, θ),

– and eliminate unknown θ∗ by considering an additional equation θ∗ − θ = 0, ∀θ ∈ RCard(θ),

– then for arbitrary loss function L,

we recover the GD algorithm and the learning rate γ is nothing more than a time step ∆t (this fact is
already commonly accepted, see [18, 31]). Note that according to the PDE framework of section 3.2,
averaging over (33) ensures solving (and instrumenting the resolution by computing J(t, θ))

0 = ∂tu(t, θ)−
Card(θ)∑
i=1

∂θiu(t, θ)

∫
∂θiu(t,X, θ)L′(t,X, θ) dPX ,

with u(t, θ) =

∫
u(t,X, θ) dPX ,

(34)

with an MC scheme. The above PDE remains quite far from what we were aiming at solving with
(29) for example. In a PDE framework, this is commonly called a lack of consistency of the numerical
method. But it does not mean the results with SGD are worthless. In many situations, GD does
give accurate enough results. This can be explained by the fact that (34) may imply, under several
suited conditions depending on α,L, θ∗ − θ, û, dPX , cancelling the gradient: under some conditions,
the solution of (27) may coincide with the solution of (34). Assume for example that α = −∇θu in
(27), and that

1. L′′ ∼ δ ∼ 0,

2. û ∼ δ ∼ 0,

3. and L′∇θu(θ∗ − θ) ∼ δ ∼ 0 with θ∗ − θ not necessarily zero,

then (27) degenerates16 toward (34). In this case (the next points are different ways to understand the
analysis we just made)

– solving (34) is equivalent to solving (27) in the regime δ ∼ 0,

– the solutions of (34) and of (27) coincides in the regime δ ∼ 0,

– if δ ∼ 0, it is enough solving (34) in order to recover the solution of (27).

We will come back more in details to such analysis, which is classical in computational physics (cf.
[68, 20, 1, 63] for examples) in section 4. Point 3 is interesting in the sense that it echoes the ’I am
feeling lucky’ error discussion of section 1: we can be far from the optimum, i.e. θ∗ − θ ∼ 1

δ � 1,
but if L′ and the gradient of u are small, i.e. if L′ ∼ δ and ∇θu ∼ δ, then point 3 is still fulfilled as
L′ ×∇θu× (θ∗ − θ) ∼ δ × δ × 1

δ ∼ δ ∼ 0 remains small.
Note that the reinterpretation of GD in a PDE framework implies a particular choice of α. Whether
this choice ensures equivalency with the ML problem we aim at solving (see the discussion in remark
3.1) is far from being obvious.

What may struck the numerician in this kind of presentation is that ML books almost (I may not be
enough familiar with the extremely (!!) furnished litterature) always begin by a discretised form of an
uncharacterised PDE. So, as briefly emphasized in remark 3.5, we are going to systematically perform
some kind of reverse engineering. Note that the behaviour of (33) has been briefly studied in example
3.1.3 for N = 1 and particular α, θ∗ − θ, û, L implicitly defined.

16In the sense of a Hilbert/Chapman-Enskog development [29, 15] but this will be more rigorously detailed later on,
cf. section 4.
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In general, in classical ML books, just after the description of GD comes the description of Stochastic
GD (SGD). It is justified by its efficiency. It can be described as follows: introduce a parameter
n ∈ {1, ..., N}, which is called the batch size, then, an iteration of SGD beginning at iteration/epoch
j is given by

Set θ0
j = θj

For l in {1, ..., Nn = K} (one iteration of this loop is called a batch)

sample (X l
k, w

l
k)k∈{1,...,n} points amongst the (Xi, wi)i∈{1,...,N} according to measure dPN,nX ,

θl+1
j+1 = θlj−γ

n∑
k=1

wlkL
′(X l

k, θ
l
j)∇θu(X l

k, θ
l
j),

Then θj+1 = θKj+1.

Once again, what may appear strange to a numerician is that (33) is already a discretisation of

θj+1 = θj−γ
∫
L′(X, θj)∇θu(X, θj) dPX = θj−γ

N∑
k=1

wkL
′(Xk, θj)∇θu(Xk, θj) +O(Nβ), (35)

where O(Nβ) is the asymptotic integration error17 of the quadrature (Xi, wi)i∈{1,...,N}. And now, with
SGD, we kind of introduced an approximation of the approximation as

θl+1
j+1 = θj−γ

N∑
k=1

wkL
′(Xk, θ

l
j)∇θu(Xk, θ

l
j),

= θlj−γ

[
n∑
k=1

wlkL
′(X l

k, θ
l
j)∇θu(X l

k, θ
l
j) +O

(
1√
n

)]
,

(36)

which holds under mild assumptions on dPN,nX from which are drawn the points (X l
i , w

l
i)i∈{1,..,n},l∈{1,..,K}.

Several remarks have to be made at this stage:

– first, it is not clear whether the quadrature weights and points (wlk, X
l
k)k∈{1,...n} are a consistent

approximation of (wi, Xi)i∈{1,...,N}. If wi = 1
N ,∀i ∈ {1, ..., N} and wlk = 1

n ,∀k ∈ {1, .., n}, l ∈
{1, ..,K} then it is enough. In the general case, this is not obvious.

– Of course, the term O(Nβ) is usually dropped (i.e. neglected) or, in a sense, is contained in the
generalisation gap, see section 1.

– Now assume the quadrature weights are as in the previous points, then we can asymptotically
characterise the MC error in (36): introduce an arbitrary probability measure dPN,nX with only
constraint that asymptotically with the number of batches K = N

n we have18 19

∫
L′(X, θj)∇θu(X, θj) dPN,nX =

K∼∞

1

N

N∑
k=1

L′(Xk, θj)∇θu(Xk, θj).

17different convergence rates for different experimental designs, see [60] and above all the references therein.
18For example, the following probability measure has the above properties:

– introduce

dPS(x) =
∑

i∈{X1,...,XN}\S

1

Card({X1, ..., XN} \ S)
δXi (x), where S is a set.

– Then we can build

dP(x1, ..., xN ) = dP{∅}(x1) dP{x1}(x2) dP{x1,x2}(x3)... dP{x1,x2,...,xN−1}(xN ),

and K groups of one sampling ((Xl
1, ..., X

l
n))l∈{1,...,K} from the above probability measure.

19Note that dPX is also a good candidate as it satisfies the conditions.
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Independently of the probability measure satisfying the above conditions, we have∫
L′(X, θlj)∇θu(X, θlj) dPN,nX =

1

N

N∑
k=1

L′(Xk, θj)∇θu(Xk, θj) +O
(

1√
n

)
,

=
1

N

N∑
k=1

L′(Xk, θ
l
j)∇θu(Xk, θ

l
j) +

σlj√
n
Gl,

where Gl is a vector of independent gaussian random variables (Gl1, ...,GlCard(θ))
T , where ∀i ∈

{1, ..., Card(θ)},∀l ∈ {1, ..,K},Gli ∼ G(0, 1) with zero mean, unitary variance. Furthermore,
[σσT ]lj ∈ RCard(θ)×Card(θ) is a symmetric matrix20 given by

[σσT ]lj =

∫
(L′(X, θlj))

2∇θu(X, θlj)∇Tθ u(X, θlj) dPN,nX

−
[∫

L′(X, θlj)∇θu(X, θlj) dPN,nX

] [∫
L′(X, θlj)∇Tθ u(X, θlj) dPN,nX

]
,

=
1

n

n∑
k=1

(L′(X l
k, θ

l
j))

2∇θu(X l
k, θ

l
j)∇Tθ u(X l

k, θ
l
j)

− 1

n2

n∑
k,p=1

L′(X l
k, θ

l
j)∇θu(X l

k, θ
l
j)L
′(X l

p, θ
l
j)∇Tθ u(X l

p, θ
l
j).

For one batch, we consequently have

θl+1
j+1 = θlj−

γ

N

N∑
k=1

L′(X l
k, θ

l
j)∇θu(X l

k, θ
l
j) +

γ√
n
σljGl. (37)

Remark 3.6 We suggest here doing the same as in remark 3.5, where we did some choices in
term of α, θ∗ − θ in order to rewrite GD in a PDE resolution framework, but for one batch of
SGD. If we choose,

– α = −∇θu(X, θ), we have the good first term in the drift.

– Due to the previous choice, the second term in the drift becomes∫
L′′(X, θ)∇θu(X, θ)∇Tθ u(X, θ)(θ∗ − θ) dPX ,

so that only remains θ∗ − θ as degree of freedom. In (37), the second term does not appear
so

∗ either θ∗ − θ = 0 but this forbids some stochasticity afterward,

∗ or L′′ = 0 and this implies L′ = cste and L is close to a L1-norm.

– For the above reason, let us assume that L is a (smooth21) L1−norm,

– then we can work on the choice of θ∗−θ to revisit SGD in our PDE framework. The general
term of matrix [σσT ]lj is

[
[σσT ]lj

]
p,q

=

∫
(L′(X, θj))

2∂θpu(X, θlj)∂θqu(X, θlj) dPN,nX

−
∫
L′(X, θj)∂θpu(X, θlj) dPN,nX

∫
L′(X, θj)∂θqu(X, θlj) dPN,nX ,

20Note that the results of these few lines are independent of the choice of dPN,nX .
21To avoid singular points where L′′ would not be zero. The attentive reader may now have a clue why we chose

L(x, y) = x− y in the fil rouge problem.
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which can be compared to (21)∫ [
σσT

]
p,q

dPX =

∫
2L′(X, θ)αp(θ

∗
q − θq) dPX ,

=

∫
2L′(X, θ)∇θpu(X, θlj)(θ

∗
q − θq) dPX .

If we choose

θ∗ − θ =
1

2
L′(X, θlj)∇Tθ u(X, θlj)−

1

2

∫
L′(X, θlj)∇Tθ u(X, θlj) dPN,nX , (38)

and dPN,nX ∼ dPX22 then we recover the general term of [σσT ]lj .

Once again, we can recast SGD in a PDE resolution framework by making some particular choices
for α, θ∗ − θ, L and dPN,nX (and û ≡ 0).

With remark 3.6, we revisited SGD as a combination of choices and numerical methods which al-
lows rewriting SGD in a PDE resolution framework. We can also revisit the reverse engineering we
performed earlier for GD: asymptotically as γ = ∆t goes to zero, SGD solves

0 = ∂tu(t, θ)

−
Card(θ)∑
i=1

∂θiu(t, θ)

∫
[∂θiu(t,X, θ)L′(t,X, θ)] dPX

+
1

2

Card(θ)∑
i,j=1

∂2
θi,θju(t, θ)

∫  (L′(t,X, θ))2∂θiu(t,X, θ)∂θju(t,X, θ)

−L′(t,X, θ)∂θiu(t,X, θ)

∫
L′(t,X, θ)∂θju(t,X, θ) dPN,nX

dPX ,

with u(t, θ) =

∫
u(t,X, θ) dPX .

(39)

Furthermore, if dPN,nX ∼ dPX , then (39) resumes to (remember we must have L′′ = 0)

0 = ∂tu(t, θ)

−
Card(θ)∑
i=1

∂θiu(t, θ)

∫
[∂θiu(t,X, θ)L′(t,X, θ)] dPX

+
1

2

Card(θ)∑
i,j=1

∂2
θi,θju(t, θ)

 +

∫
(L′(t,X, θ))2∂θiu(t,X, θ)∂θju(t,X, θ) dPX

−
∫
L′(t,X, θ)∂θiu(t,X, θ) dPX

∫
L′(t,X, θ)∂θju(t,X, θ) dPX

 ,
with u(t, θ) =

∫
u(t,X, θ) dPX .

(40)

With remark 3.6, we see that the consistency of SGD in order to solve the desired PDE (hence our
minimisation) depends on L. Now, once again, under some conditions, the solution of (27) may coincide

with the solution of (40): assume for example that α = −∇θu, θ∗ − θ as in (38) and dPN,nX ∼ dPX
in (27) together with

1. L′′ ∼ δ ∼ 0,

2. û ∼ δ ∼ 0,

then (27) degenerates toward (40). In this case, solving (40) is equivalent to solving (27) in the regime
δ ∼ 0. We will come back to such analysis, more rigorously, in section 4. Note that conditions of
adequacy for GD have been put forward in the previous lines of remark 3.5: from the two above points
for SGD, we can see that the adequacy conditions for SGD are less stringent than the ones for GD,
(cf. point 3. of remark 3.5 for GD for example).

22which is not always the case in SGD algorithms.
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Remark 3.7 Note that many other optimisation algorithms exist, see [65] for an overview. We can
not go through every of them in this document and study their conditional consistency.

Let us now revisit example 3.1.1 from the SGD point of view.

Example 3.5.1 (Stochastic Gradient Descent (SGD) as in ML optimisers) We here
suggest revisiting the fil rouge problem of examples 3.1.1–3.1.3 with the stochastic GD (SGD)
algorithm presented above. Once again, we assume that we do not have access to the hessian of
the functional we aim at minimising and we introduce some stochasticity by using minibatches.
Recall, see example 2.0.1, that the functional we minimise in our example can be related to a
particular architecture with two points N = 2 in the training set: (X1 = 0, X2 = 6) such that
(u(X1) = 0, u(X2) = 0). As a consequence, in this case, the only possibility here is to consider

minibatches of size n = 1. We here choose dPN,nX to be dPX .
Figure 4 presents the results obtained with SGD. The conditions are similar to the ones of

figures 1–2 in term of initial conditions and learning rates. For the first line of figure 4, the initial
point is θ0 = −5 and the learning rate is γ = 3.5. The results are close to the ones obtained
with GD because the stochasticity induced by the use of minibatching is not important enough to
significantly change the results. Still, on the right column of the first line, we can see that the
process slightly oscillates around the value θ∗ = 0: those oscillations are due to the introduction of
a stochastic ingredient and are not related to any numerical instabilities as in figure 3 for example.
The second line of figure 4 shows the results obtained for θ0 = 11 and γ = 3.5. It must be compared
to the third line of figure 2 with GD: the introduction of stochasticity via minibatching prevents
from remaining stuck in a cycle in this case as in figure 2. The process n→ θn comes closer to the
minimum of functional J . Once again, the oscillations we can observe on the right picture of this
same second line of figure 4 are only due to the introduction of stochasticity (and not numerical
instabilities). Note that in this case, the last point • is not necessarily the best point •. In this
sense, SGD is more an exploration algorithm than an optimisation algorithm. Now, assume that
we keep in memory the point (θn)n∈{1,...,nepoch=2000} having the smallest error (cf. the discussion
of section 3.3 about the instrumention of the simulation code solving a PDE for our ML problem),
then the results obtained with SGD are way better than for GD in this case.

The last line of figure 4 finally shows that if the learning rate is not finely enough tuned, the
process n→ θn may jump in regions where the gradient is zero and remain stuck there, just as for
GD. Once again, the last point is not necessarily the best point.

Finally, of course, the computation for SGD took N
n (here twice) as much time as for GD. In

this case N
n = 2 and one epoch/iteration stands for N

n = 2 time steps.

Example 3.5.2 (SGD as in ML optimisers, quantitative results) The results of example
3.5.1 related to figure 4 were mainly qualitative. We here suggest some quantitative ones.

The conditions are the same as in the previous (quantitative) examples 3.1.2–3.1.4. The prob-
abilities for SGD algorithm to reach the vicinities of the local/global minima are displayed in table
4 for several values of the learning rate. The SGD results of table 4 can be compared to GD results
of table 2:

– for γ = 0.05, SGD does not lead to significant improvements as attests the confidence inter-
vals for γ = 0.05 in tables 2–4.

– for γ = 3.50, SGD does
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Figure 4: These figures revisit the test-case of example 3.1.1 but with a SGD algorithm with learning
rates γ = 3.5, 25.0. In this case, the number of points N = 2, given by (0, 6) and the batch size can
only be n = 1. Except from the type of algorithm, the condition are similar to the ones of figures 2–1
in term of initial points or of learning rates. Note that the computations took twice the same amount
of time as for GD.

– preserve the behaviour of GD in the vicinity of θ∗ = 0,

– lead to statistically significative (cf. the confidence intervals for γ = 3.5 in tables 2–4)
but small improvements in the vicinity of θ∗ = 6: from less than ≈ 0.31% to a little
more than 0.705%.

– for γ = 25.0, it is not clear whether SGD provides better results than GD due to the inter-
secting confidence intervals (cf. the confidence intervals for γ = 25.0 in tables 2–4).

The last line of table 4 presents the probabilities for SGD to recover the narrower (ε = 10−4)
vicinities of the local/global minima: SGD does slightly improve the results with respect to GD (cf.
last line of table 2) in this case.
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Initialiser θ0 ∼ U([−15, 15]) Vicinity of θ∗ = 0 Vicinity of θ∗ = 6
SGD (Nseed = 104) P(θmin ∈ [−10−2, 10−2]) P(θmin ∈ [6− 10−2, 6 + 10−2])

γ = 0.05 25.4% ∈ [24.54%, 26.25%] 28.0% ∈ [27.10%, 28.86%]
γ = 3.50 32.1% ∈ [31.15%, 32.99%] 0.89% ∈ [0.705%, 1.075%]
γ = 25.0 0.27% ∈ [0.168%, 0.372%] 0.29% ∈ [0.184%, 0.396%]

SGD (Nseed = 104) P(θmin ∈ [−10−4, 10−4]) P(θmin ∈ [6− 10−4, 6 + 10−4])
γ = 0.05 0.01% ∈ [0.00%, 0.03%] 0.02% ∈ [0.00%, 0.05%]

Table 4: Probabilities for the Stochastic GD (SGD) algorithm to recover the local (θ∗ = 0) or the
global (θ∗ = 6) minimum of (4) for several learning rates γ. To compute the probabilities, we have
resort to Nseed = 104 multiple initialisations with θ0 ∼ U([−15, 15]). Confidence intervals for the
results are provided. Comments are provided in example 3.5.2.

In the next section, we suggest applying a consistent discretisation of (27) (neglecting the terms
with û just as classically done in ML algorithms) given by (32) and revisit the fil rouge example of this
paper.

3.6 A consistent optimiser inspired from a stochastic PDE resolutions

In the previous section, we chose α, θ∗ − θ, L and even dPN,nX (and assumed û ≡ 0) in expression

θn+1 = θn +

∫ [
αL′(X, θn) + L′′(X, θn)α∇Tθ uANN (X, θn)(θ∗ − θn)

]
dPN,nX

+
√

∆t

[∫
σ(X,α, θ∗ − θn) dPN,nX

]
G,

(41)

which recovers classical ML optimiser algorithms. From (41), we were able to build the PDE the
algorithm asymptotically solves, in the general case. It asymptotically solves23

0 = ∂tu(t, θ)

+

Card(θ)∑
i=1

∂θiu(t, θ)

∫ αiL′(t,X, θ) + L′′(t,X, θ)αi

Card(θ)∑
j=1

∂θju(t,X, θ)(θ∗j − θj)

 dPX

+
1

2

Card(θ)∑
i,j=1

∂2
θi,θju(t, θ)

∫ [
2L′(t,X, θ)αi(θ

∗
j − θj)

]
dPX ,

(42)

when the time step (learning rate) goes to zero and the number of simulated stochastic processes goes
to infinity.

We here suggest making some assumptions on α, θ∗ − θ, dPN,nX (and still û ≡ 0 for the moment),
different from the ones usually made for ML optimisers (GD or SGD), which allows (41) to remain
consistent with (42).

First, the choices for α, θ∗ − θ, dPN,nX (and still û ≡ 0 for the moment) are not unique, as already
testified the examples of the previous section with GD and SGD. Let us begin by one particular choice,
some others will be briefly studied afterward.

3.6.1 Particular choices for α, θ∗ − θ generalising SGD (and what we gain)

Let us choose

– α = −∇θu(X, θ) as for GD and SGD,

23(42) corresponds to (27) while cancelling the terms with û.
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– θ∗ − θ = Σ2(θ) with θ → Σ(θ) arbitrary at this stage of the discussion,

– dPN,nX ∼ dPNX .

In this particular case, (41) and (42) become

θn+1 = θn −∆t

N

N∑
i=1

[
∇θu(X, θn)L′(Xi, θn) + L′′(Xi, θn)∇θu(X, θn)∇Tθ uANN (Xi, θn)Σ(θn)

]
+

√
∆t

N

[
N∑
i=1

√
|L′(Xi, θn)∇θu(Xi, θn)|Σ(θn)

]
G,

(43)

which solves

0 = ∂tu(t, θ)

−
Card(θ)∑
i=1

∂θiu(t, θ)

∫ ∇θiu(t,X, θ)L′(t,X, θ) + L′′(t,X, θ)∇θiu(X, θ)

Card(θ)∑
j=1

∂θju(t,X, θ)Σj(θ)

dPX︸ ︷︷ ︸
µi(t,θ)

+
1

2

Card(θ)∑
i,j=1

∂2
θi,θju(t, θ)

∫
2|L′(t,X, θ)∇θiu(X, θ)|Σj(θ) dPX︸ ︷︷ ︸

[σ(t,θ)σT (t,θ)]i,j

,

(44)

provided a small enough time step. The question now is: what is the gain with respect to the choices
made with GD and SGD? The solution of (44) now coincides with the solution of (27) under even less
stringent conditions as SGD: we only need to have

1. û ∼ δ ∼ 0.

Furthermore, classical results from ODE24/PDE25 theory state that taking a time step at iteration n
of the form

∆tn = CFL× ε×min

 1

max
i∈{1,...,Card(θ)}

µi(tn, θn)
,

1

max
i∈{1,...,Card(θ)}

σi(tn, θn)

 , (45)

ensures having stability if CFL ≤ 1 and an accuracy O(ε) for process (θn)n∈N to approximate (θt)t∈R+ .
Note that the above upper bound for the time step is not optimal: it is obtained by analysing sepa-
ratedly the drift regime and the diffusion one and taking the most constraining value. More elaborate
time step criterion could lead to better efficiencies (same accuracy with bigger time steps). Still, let
us test this simple choice for the minimisation of functional (4) in example 3.6.1.

Example 3.6.1 (A consistent SGD as in a PDE framework) In this example, we once
again revisit the test-case of examples 2.0.1–3.1.3–3.5.1 but with the new PDE consistent solver
discretised with an MC scheme. We make particular choices of α, θ∗ − θ. For this example, (29)
resumes to

0 = ∂tu(t, θ) + ∂θu(t, θ)

∫
[αL′(t,X, θ) + L′′(t,X, θ)α∂θu(t,X, θ)(θ∗ − θ)] dPX

+
1

2
∂2
θ,θu(t, θ)

∫
[2L′(t,X, θ)α(θ∗ − θ)] dPX ,∀t ∈ [0, T ],∀θ ∈ Θ,

u(t = 0, θ) = u0(θ),∀θ ∈ Θ,
together with looking for t∗, θ∗ such that J(u(t∗, θ∗)) ≤ J(u(t, θ)),∀t ∈ [0, T ], θ ∈ Θ.

(46)

24as the equation on θt is an ODE.
25As the equation satisfied by E[u0(θ

θ
t )] is a PDE.
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First, in example 2.0.1, we do not have a test-set so that in this example we take J = J , cf. last
line of (46). Let us now choose

– L(x, y) = (x− y) as defined in example 2.0.1 (so that L′(x, y) = −1, L′′(x, y) = 0),

– α = −∂θu(X, θ) as for GD and SGD, with X, θ → u(X, θ) as defined in example 2.0.1.

– Let us choose furthermore dPX ∼ dPNX with dPNX as defined in example 2.0.1.

– With the above choices, we have
∫
αL′ dPX = −

∫
L′∇θudPX = −J ′(θ) with J given by (4).

– It remains to choose θ∗ − θ: the diffusion coefficient is αL′(θ∗ − θ) integrated over dPX .
Let us choose it such that∫

2αL′(θ∗ − θ) dPX = |J ′(θ)|Σ2, with Σ = cste.

This leads to taking (θ∗ − θ) = Σ(θ) = − 1
2Σ2 1

J′(θ) . This ensures

– having a wellposed drift-diffusion problem from the PDE point of view,

– going in the opposite direction of the gradient from an ML point of view.

Finally, with the above choices, we aim at solving
∂tu(t, θ)−J ′(θ)∇θu(t, θ) +

1

2
|J ′(θ)|Σ2∇2

θ,θu(t, θ) = 0,∀t ∈ [0, T ],∀θ ∈ Θ,

u0(θ) = u(t = 0, θ),∀θ ∈ Θ,
together with looking for t∗, θ∗ such that J(t∗, θ∗) ≤ J(t, θ) ∀t ∈ [0, T ], θ ∈ Θ.

(47)

In (47), due to the conditions of the different fil rouge examples of this document,

– we have Θ = R,

– T is some final time which remains to be defined. It is given by T = nepoch × γ for a fixed
learning rate γ and the choice of nepoch iterations/epochs.

– u0(θ) is the initial condition, related to the choice of the initialiser. In the following, de-
pending on the studies/figures, we choose:

– u0(θ) = δθ0(θ) with θ0 = −5 and θ0 = 11, cf. the results of figures 5–6,

– or, later on in example 3.6.2, we take u0(θ) = 1[−15,15](θ) corresponding to initialiser
θ0 ∼ U([−15, 15]).

– Finally J(t, θ) = J(u(t, θ)) must be computed during the resolution of the PDE.

Now, in order to solve (47), we can rely on several numerical methods. As we aim at being able to
tackle high dimensional problems (even if here, θ is scalar), we choose a numerical scheme whose
convergence rate is independent of the dimension, i.e. an MC scheme. For this, we rely on both
Ito’s lemma 1 and Kolmogorov’s theorem 2: averaging over realisations of the stochastic process
given by

dθt = −J ′(θt) dt+

√
|J ′(θt)|Σ(θt) dWt, (48)

ensures solving (47) as u(t, θ) = E[u0(θ
θ0
t )] with θ0 sampled according to the initialiser. In order to

instrument the resolution, it is enough evaluating J(t, θ) = J(t, θt = θ) = J(θt = θ), and keeping
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in memory θ∗ = θt∗ realising the minimum.
Now, (48) can not, in general, be solved analytically. Let us discretise (48) thanks to an explicit
Euler scheme of learning rate/time step γ = ∆t, then solving (47) resumes to averaging over the
discrete stochastic process given by

θn+1 = θn−∆tJ ′(θn) +

√
∆t|J ′(θn)|G(0,Σ2(θn)). (49)

Besides, J(θt∗) ≈ J(θn∗) where n∗ is defined by J(θn∗) ≤ J(θn) ∀n ∈ [0, NT ] where NT is such

that
∑NT
n=0 ∆tn = T . For constant learning rate/time step ∆t = γ, T = nepoch × γ where nepoch

is the number of iterations/epochs. In the next computations of figure 5 for example, we take
T = nepoch × γ = 2000× 3.5 = 7000. Now, stochastic process (49) is not harder to simulate than
an SGD one. We can discretise it and instrument its path in order to solve our minimisation of
functional (4), see figure 5. Note also that the PDE framework and the fact we use an explicit Euler
scheme allows proving that the optimiser error will be J(θt∗) = J(θn∗) +O(

√
∆t). Relying on this

PDE framework allows quantifying the error made during the discretisation of the optimisation
phase, see the discussion of section 1.

The first line of figure 5 presents results obtained simulating (49) with initialiser δθ0(θ) with
θ0 = −5, γ = ∆t = 3.5 and Σ = 1: the discretised stochastic process allows jumping from one
local minimum to the other and explores the whole space of the weight θ ∈ Θ = [−15, 15]. Even
if beginning at θ0 = −5, the process comes close to θ∗ = 6. Of course, once again, the stochastic
process explores more than optimises and the last point • is not necessarily the best point •. One
needs to keep in memory the set of weights having the lowest error during the exploration. On the
right column of the first line, we can see that the fluctuations of the process switch between the
vicinities of θ∗ = 0 and θ∗ = 6.

The second line of figure 5 presents the same results but with θ0 = 11. Once again, the process
explores the whole space Θ. What is interesting with such stochastic process is that the whole space
is explored with only one initialisation. In this simple example, the number of minima is only 2 but
classical ML problems are known to have exponentially many local minima [4] with the dimension
din and the number of training points N . Being able to explore several of them with the same
initialisation/stochastic process can be precious.

Of course, here, we have Σ = 1: this quantity pilots the stochasticity and allows (or not)
jumping from one local minima to the other. For example, in the case of SGD as in example
3.5.1 and figure 4, the stochasticity induced by minibatching was not enough to jump (and the only
possibility was 1 minibatch, cf. example 3.5.1). In a same manner, choosing Σ too small would
lead to the same results as SGD. We suggest postponing the discussion on the relevant choice of Σ
to another section/example, we just want here to insist on the fact that the PDE framework allows
being more general than SGD.

The two previous examples do not fully take advantage of the PDE framework we just worked on:
from this framework, we can derive stability conditions (to avoid spurious oscillations as in the
pictures of figure 3) and even accuracy conditions to make sure the error for the PDE resolution
remains proportional to a certain quantity. Let us detail this point now. Those are classical PDE
results [8]: equation (47) can be decomposed into two regimes, the advective one and the diffusion
one. To be stable and accurate with accuracy O(ε) in the advective regime, it is enough choosing
∆t proportional to CFL × ε

|J′(θ)| with CFL ≤ 1. To be stable and accurate with accuracy O(ε)

in the diffusion regime, it is enough having ∆t proportional to CFL × ε√
|J′(θ)||Σ(θ)|

. If now we

choose (particular case of (45))

∆t = CFL× ε×min

(
1

|J ′(θ)|
,

1√
|J ′(θ)||Σ(θ)|

)
, (50)
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the algorithm should be stable and O(ε) provided CFL ≤ 1. Of course, the above strategy is way
less easy to apply in high dimension and needs a (parallel) reduction to compute the minimum
over the whole set of components of the gradient. Still, let us see what can be expected from
such strategy. The results obtained with the PDE inspired SGD together with the above time step
strategy are displayed in figure 6: once again, the figures are obtained in the same conditions as
the previous ones but with this new time step/learning rate strategy. Independently of the starting
point, the stochastic process explores the whole space. Much less time is spent jumping from one
side to the other. Also, the noise, related to the error, is more homogeneous.

The last line of figure 6 must be compared to the second line of figure 3 for which numerical
instabilities made GD explode toward infinity. With the time step/learning rate strategy (50), the
stochastic process is stable and gives very good results. We insist on the fact that stability/accuracy
conditions can theoretically be derived for any choices of α, θ∗− θ (i.e. even for SGD as in section
3.5 for example) once characterised.

Furthermore, the computations took exactly the same amount of time as for GD with this PDE
inspired SGD (instead of ×Nn for SGD).

Finally, I hope the reader now understands why we chose such a simple functional (4): classical
SGD cannot be consistent if L′′(x, y) 6= 0 so we at least wanted to be able to compare the PDE
inspired SGD to SGD in favorable conditions for SGD.

PDE consistent SGD Through the iterations
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Figure 5: These figures revisit the test-case of example 3.1.1 but with a PDE consistent SGD algorithm
with time step ∆t = γ = 3.5. In this case, the stochasticity does not come from minibatching. Except
from the type of algorithm, the condition are similar to the ones of figures 2–1 in term of initial points.
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PDE consistent SGD + (50) Through the iterations
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PDE consistent SGD + (50) + L2-regularisation Through the iterations
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Figure 6: These figures revisit the test-case of example 3.1.1 but with a PDE consistent SGD algorithm
with adaptive time steps given by (50) chosen to ensure the stability of the stochastic process (43).
The last line is in the same conditions as the second line of figure 3 but with the PDE consistent SGD
and its CFL condition. Except from the type of algorithm, the condition are similar to the ones of
figures 2–1 in term of initial points.

Example 3.6.2 (A consistent SGD as in a PDE framework, quantitative results) The
results of example 3.6.1 related to figure 5 were mainly qualitative. We here suggest some
quantitative ones. The conditions are the same as in the previous (quantitative) examples
3.1.2–3.1.4–3.5.2. The probabilities for the PDE consistent SGD algorithm to reach the vicinities
of local/global minima are displayed in table 5 for several values of the learning rate/time step.
The PDE consistent SGD results of table 5 can be compared to the SGD results of table 4:

– first, for small learning rate, the PDE consistent SGD and SGD have statistically comparable
performances.

– On another hand, for γ = 3.50, the PDE consistent SGD presents an improvement and allows
reaching more often the global minimum θ∗ = 6 (with probability ≈ 40% instead of ≈ 0.89%
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for SGD). Figure 5 is representative of the behaviour of the algorithm in this configuration.

– The narrower vicinities are not better explored with the PDE consistent SGD than with
classical SGD, cf. last line of table 5.

– For γ = 25.0, the performances of SGD or of the PDE consistent SGD are statistically
equivalent. Table 6 presents results in the same conditions but with an L2-regularisation with
ξ = 0.029 and θguess = 0: the penalised PDE consistent SGD presents poor performances.
This is mainly due to the frequent appearance of numerical instabilities (as for SGD in figure
4 last line).

Now, as explained in example 3.6.1, the PDE consistent SGD comes with interesting numerical
tools such as the time step limitation (50). Table 7 presents the results obtained with the PDE
consistent SGD with time step limitation (50): independently of the initial choice of the learning
rate γ/time step ∆t, the results are statistically equivalent. This is because the time step is updated
on-the-fly on the path of the process (θn)n∈{1,...,nepoch=2000} (note that it means that not every
stochastic process ends at T in this case). Now, the PDE consistent SGD algorithm with time
step limitation (50) leads to a considerable improvement: the vicinity of the global minimum is
reached with a ≈ 70% probability, even in the penalised case. The narrow vicinities (ε = 10−4) are
significatively more explored than with SGD, see table 7.

Initialiser θ0 ∼ U([−15, 15]) Vicinity of θ∗ = 0 Vicinity of θ∗ = 6
PDE consistent SGD (Nseed = 104) P(θmin ∈ [−10−2, 10−2]) P(θmin ∈ [6− 10−2, 6 + 10−2])

γ = 0.05, Σ = 1 23.8% ∈ [22.96%, 24.63%] 29.0% ∈ [28.15%, 29.93%]
γ = 3.50, Σ = 1 0.10% ∈ [0.038%, 0.172%] 40.0% ∈ [39.08%, 41.02%]
γ = 25.0, Σ = 1 0.13% ∈ [0.059%, 0.201%] 0.29% ∈ [0.184%, 0.396%]

PDE consistent SGD (Nseed = 104) P(θmin ∈ [−10−4, 10−4]) P(θmin ∈ [6− 10−4, 6 + 10−4])
γ = 0.05, 0.00% ∈ [0.00%, 0.00%] 0.06% ∈ [0.012%, 0.108%]

Table 5: Probabilities for the PDE consistent SGD algorithm to recover the local (θ∗ = 0) or the global
(θ∗ = 6) minimum of (4) for several learning rates γ. To compute the probabilities, we have resort
to Nseed = 104 multiple initialisations with θ0 ∼ U([−15, 15]). Confidence intervals for the results are
provided. Comments are provided in example 3.6.2.

Initialiser θ0 ∼ U([−15, 15]) Vicinity of θ∗ = 0 Vicinity of θ∗ = 6
Penalised PDE

consistent SGD (Nseed = 104)
P(θmin ∈ [−10−2, 10−2]) P(θmin ∈ [6− 10−2, 6 + 10−2])

γ = 25.0, ξ = 0.029, Σ = 1 0.00% ∈ [0.000%, 0.000%] 0.00% ∈ [0.000%, 0.000%]

Table 6: Probabilities for the penalised PDE consistent SGD algorithm to recover the local (θ∗ = 0)
or the global (θ∗ = 6) minimum of (4) for γ = 25.0 and ξ = 0.029. To compute the probabilities, we
have resort to Nseed = 104 multiple initialisations with θ0 ∼ U([−15, 15]). Confidence intervals for the
results are provided. The 0.00% are not significative but attest for a small probability. Comments are
provided in example 3.6.2.

This section was mainly illustrative. We here would like to sum-up what we think might lead to
gains for ML algorithms:

– first, with the previous examples 3.6.1–3.6.2, we showed that
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Initialiser θ0 ∼ U([−15, 15]) Vicinity of θ∗ = 0 Vicinity of θ∗ = 6
PDE consistent SGD
+ (50) (Nseed = 104)

P(θmin ∈ [−10−2, 10−2]) P(θmin ∈ [6− 10−2, 6 + 10−2])

γ = 0.05, Σ = 1 3.30% ∈ [2.94%, 3.65%] 69.57% ∈ [68.66%, 70.47%]
γ = 3.50, Σ = 1 3.24% ∈ [2.89%, 3.58%] 70.44% ∈ [69.54%, 71.33%]
γ = 25.0, Σ = 1 3.09% ∈ [2.75%, 3.42%] 69.93% ∈ [69.03%, 70.82%]

PDE consistent SGD
+ (50) (Nseed = 104)

P(θmin ∈ [−10−4, 10−4]) P(θmin ∈ [6− 10−4, 6 + 10−4])

γ = 0.05, Σ = 1 0.02% ∈ [0.00%, 0.047%] 4.820% ∈ [4.400%, 5.240%]
Penalised PDE

consistent SGD + (50)
P(θmin ∈ [−10−2, 10−2]) P(θmin ∈ [6− 10−2, 6 + 10−2])

γ = 0.05, Σ = 1, ξ = 0.029 3.17% ∈ [2.82%, 3.51%] 69.89% ∈ [68.99%, 70.78%]

Table 7: Probabilities for the (penalised or not) PDE consistent SGD algorithm with adaptive time
steps provided by (50) to recover the local (θ∗ = 0) or the global (θ∗ = 6) minimum of (4) for several
learning rates γ. To compute the probabilities, we have resort to Nseed = 104 multiple initialisations
with θ0 ∼ U([−15, 15]). Confidence intervals for the results are provided. Comments are provided in
example 3.6.2.

– classical ML algorithms can be revisited in a PDE framework and can be resumed to model-
ing choices (of α, θ∗− θ, dPN,nX , û). More examples will come in the next sections, attesting
for its relevance and generality.

– New algorithms can be designed from the PDE framework we detailed above. The consistent
PDE framework can for example ensure a better control of the stochasticity without overcost
(with respect to SGD for example which only allows discrete diffusion coefficients depending
on the batchsize n and inducing an overcost ×Nn ).

– It introduces a notion which is classical for PDE: consistency. It helps understanding in
which situations the solution of one set of PDEs can coincide with the solution of another
set of PDEs (see the discussions of remark 3.5–3.6). Consistency can be ensured by astutely

choosing α, θ∗ − θ, dPN,nX , û so that (27) gets the closer possible to (7) without relying on
a particular regime (δ ∼ 0).

As a consequence, the framework is more general hence richer and may help understanding what
can be reached in term of solution for an ML algorithm.

– Second, the PDE framework comes with many theoretical results:

– the time step control for stability and accuracy is an example, probably the simplest one.
In examples 3.6.1–3.6.2, we even show that it is precisely this ingredient which induces an
important improvement. A relevant time step limitation could also have been applied to
GD and SGD now that we identified the PDE the stochastic processes asymptotically solve.
Example 3.6.3 is another immediate application of our PDE framework.

– We insist on the fact that in order to be able to exhibit a relevant time step control, we need
to be able to characterise the expressions of µ, σ depending on α, θ∗ − θ, dPN,nX . In order
to obtain their expressions, it is important being able to come back to the PDE solved by
the simulated stochastic process.

– Third, the test-cases in the different examples are simple, coded in small .py files. Those are
precious for an eventual verification of an implementation in more general ML frameworks.

With the above points, we briefly highlighted some possibilities from the PDE framework we introduced
for ML. Another example is presented below in example 3.6.3 and a limitation of the drift-diffusion
PDE framework is presented in example 3.6.4.
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Example 3.6.3 (The Fokker Planck equation of (47)) In this example, we consider the
Fokker-Planck equation of (47) given by

∂tp(t, θ) +∇θ [J ′(θ)p(t, θ)]−∇2
θ,θ

[
1

2
|J ′(θ)|Σ2p(t, θ)

]
= 0. (51)

For long times, the solution of the above equation is given by the Laplace distribution

p∞(θ) ∝ esgn(J′(θ)) 4
Σ2 θ. (52)

The above distribution is representative of where the process θt of example 3.6.1 spends some time.
The histogram of the stochastic path of (θn)n∈{1,...,50000} is displayed in figure 7: it has important
probabilities of sampling in the vicinities of the modes θ∗ = 0 and θ∗ = 6. With the choice of
α, θ∗ − θ of example 3.6.1, the stochastic process, on average, spends as much time around θ∗ = 0
as around θ∗ = 6. Other choices may guaranty different behaviours. By controlling (via the choices
of α, θ∗−θ etc.) the asymptotical solution of the Fokker-Planck equation, we may build algorithms
which, by construction, can have desired properties.
Finally, once α, θ∗− θ, dPN,nX chosen, building the Fokker Planck equation and approximating p∞
may be at hand. The asymptotical distribution p∞ could then be used as an initialiser.
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Figure 7: Distribution of the sampled path (θn)n∈{1,...,nepoch=20000} in the same conditions as example
3.6.3. The discretised distribution recovers the one predicted by the stationary solution (52) of the
Fokker-Planck equation (51).
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Example 3.6.4 (Two local minimum separated by a large flat spot) In this example, we
revisit the results of the new consistent SGD algorithm obtained from a PDE framework on a
modification of functional (4) given by

θ ∈ R −→ J(θ) = −e−
(θ+10)2

4 − 2e−
(θ−6)2

4 . (53)

The function has the same performance as (4) but its two minima are located at θ∗ = −10 and
θ∗ = 6 with J(6) < J(−10) and are separated by a flat spot with a gradient which is almost zero.
The results obtained with the PDE consistent SGD with adaptive time steps given by (50) are
displayed in figure 8 in the same conditions (same initial guess etc.) as in the previous examples.
For both initialisations, θ0 = −5 and θ0 = 11, the algorithm finds accurately the locations of the
minima. But the algorithm seems to lose its exploration property in the sense that the process
does not jump from one local minima to the other. In fact, even a fine tuning of the parameters
∆t,Σ does not allow jumping for this example. In this situation, which is extremely difficult to
detect in practice when we do not have access to the functional J (i.e. in high dimensions for
example), the only way to be sure to jump is to change the guess θ0, i.e. to perform a new
initialisation, i.e. to rely on the initialiser. We recover the con of deterministic methods such as
the Newton algorithm, see example 3.1.1, but with non optimal steps. From a pessimistic point of
view, one could argue that we have the cons of a stochastic solver and the cons of a deterministic
one. From an optimistic point of view, we recover the behaviour of a deterministic algorithm but
with a stochastic one. Indeed, with the time step control, we can ensure a certain accuracy: this
means that if we choose the accuracy (a threshold under which we would consider the gradient is
satisfactory, let us say ε = 10−7) as a parameter, we can trigger a reinitialisation from a different
θ0. We will see in section 4 that such idea was intrisically embedded in the learning framework
based on transport hinted at in [54].

Example 3.6.5 (Two minima separated by a large flat spot, quantitative results)
The results of example 3.6.4 related to figure 8 were mainly qualitative. We here suggest some
quantitative ones. The conditions are the same as in the previous (quantitative) examples
3.1.2–3.1.4–3.5.2–3.6.2.

The probabilities for the (penalised or not) PDE consistent SGD algorithm to reach the vicinities
of the local/global minima θ∗ = −10 and θ∗ = 6 are displayed in table 8. In both cases (penalised or
not), we have an important probability (64.52% and 55.59%) of recovering the vicinity of the global
minimum θ∗ = 6. The probability of recovering the vicinity of the local minimum θ∗ = −10 is also
important (35.47% and 41.87%) attesting for a small probability for the algorithm to remain stuck
in zero-gradient regions (2.53% and 0.01%). But the stochastic process almost never jumps from
one vicinity to the other (cf. behaviour displayed in figure 8). Note that in this same configuration,
a modified Newton algorithm (as in example 3.1.1) gives similar probabilities.

Finally, SGD or the PDE consistent SGD briefly presented in this section, by introducing stochastic-
ity in order to introduce a second order diffusion term with respect to GD, enters a class of methodology
denoted by ’noise injection methods’, see [49]. Dropout, tackled in the next section 3.6.2, also enters
this class.
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PDE consistent SGD + (50) Through the iterations
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Figure 8: These figures revisit the test-case of example 3.1.1 but with local minima further away
from each others and a large almost zero-gradient vicinity between them with a PDE consistent SGD
algorithm with adaptive time steps given by (50) chosen to ensure the stability of the stochastic process
(43). The last line is in the same conditions as the second line of figure 3 but with the PDE consistent
SGD and its CFL condition. Except from the type of algorithm, the condition are similar to the ones
of figures 2–1 in term of initial points.

Initialiser θ0 ∼ U([−15, 15]) Vicinity of θ∗ = −10 Vicinity of θ∗ = 6
PDE consistent SGD
+ (50) (Nseed = 104)

P(θmin ∈ [−10− 10−2,−10 + 10−2]) P(θmin ∈ [6− 10−2, 6 + 10−2])

γ = 3.50, Σ = 1 41.87% ∈ [40.90%, 42.83%] 55.59% ∈ [54.61%, 56.56%]
PDE consistent SGD
+ (50) (Nseed = 104)

P(θmin ∈ [−10− 10−4,−10 + 10−4]) P(θmin ∈ [6− 10−4, 6 + 10−4])

γ = 3.50, Σ = 1 8.59% ∈ [8.040%, 9.139%] 9.53% ∈ [8.954%, 10.105%]
Penalised PDE consistent

SGD + (50)
P(θmin ∈ [−10−2, 10−2]) P(θmin ∈ [6− 10−2, 6 + 10−2])

γ = 3.50, Σ = 1, ξ = 10−4 35.47% ∈ [34.53%, 36.40%] 64.52% ∈ [63.58%, 65.45%]

Table 8: Probabilities for the (penalised or not) PDE consistent SGD algorithm with adaptive time
steps provided by (50) to recover the local (θ∗ = −10) or the global (θ∗ = 6) minimum of (53)
for several learning rates γ. To compute the probabilities, we have resort to Nseed = 104 multiple
initialisations with θ0 ∼ U([−15, 15]). Confidence intervals for the results are provided. Comments are
provided in example 4.2.2.

3.6.2 Examples of other particular choices for α, θ∗ − θ: dropout

In this section, we want to insist on the fact that dropout (and certainly many other ML ingredients)
can be recast into the same PDE framework as GD and SGD. During the training, dropout is nothing
more than an additional ingredient which artificially adds fluctuations, stochasticity, but without
considerably affecting the computational time such as minibatching. It is nothing more than another
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’noise injection technic’ [49], at least during the training. In other word, in our framework, dropout

(for the training) only consists in a particular choice of dPN,nX (see the SGD analysis above).
What is astonishing and new with respect to what we previously analysed is rather how dropout is

used during the testing phase (i.e. when evaluating J), not during the training: let us introduce, for an
epoch/iteration j, a vector Bj ∈ RCard(θ) of independent identically distributed random26 samplings
of a random variable having mean p. Dropout suggests replacing (33) (for GD) by

θj+1 = θj−
γ

N
Bj ⊗

N∑
k=1

L′(Xk, Bj ⊗ θj)∇θu(Xk, Bj ⊗ θj),

= θj−γ
∫
Bj ⊗ L′(X,Bj ⊗ θj)∇θu(X,Bj ⊗ θj) dPN,pX ,

(54)

where ⊗ denotes the element-wise product. Note that equation (54) implicitly introduces a new

distribution dPN,pX depending on random vector Bj at epoch j. Now, we would like to focus on one
particularity of dropout: the weights θ learnt by the optimiser are not the ones used during the testing
phase. During the testing phase, it is common using p⊗ θj , the mean27 of Bj ⊗ θj instead of θj . The
reason why is not obvious as, due to the nonlinearity of J , the mean of the gradient is not equal to
the gradient of the averaged weights, i.e.∫

Bj ⊗ L′(X,Bj ⊗ θj)∇θu(X,Bj ⊗ θj) dPN,pX 6= p⊗ L′(X, p⊗ θj)∇θu(X, p⊗ θj), in general.

Let us try to understand what happens here. By definition, we have28 Bj ∼ L(p), so that E[Bj ] = p.
We also introduce the centered fluctuation of Bj , εj = Bj − p. This means that εj ∼ L(0). Now,
assume that the support of the fluctuations is small: we abusively write εj ∼ 0. Let us consider any
transformation x→ T (x), then

T (Bj) = T (p+ εj) ∼
εj∼0

T (p) + εj∇xT (p) + εTj ∇2
x,xT (p)εj +O(ε3j ).

This means that we have29

θj+1 = θj−γ
∫
Bj ⊗ L′(X,Bj ⊗ θj)∇θu(X,Bj ⊗ θj) dPN,pX ,

=
εj∼0

θj−
γp

N

N∑
i=1

L′(Xi, pθj)∇θu(Xi, pθj)

−γεj
N

N∑
i=1

L′(Xi, pθj)∇θu(Xi, pθj)

−γεj
p

N

N∑
i=1

[
L′′(Xi, pθj)∇θu(Xi, pθj)∇Tθ u(Xi, pθj) + L′(Xi, pθj)∇2

θ,θu(Xi, pθj)
]

︸ ︷︷ ︸
=p∇2

θ,θJN (pθj) →
p→1
∇2
θ,θJN (θ)

+O(ε2j ).

From the above equation, we can see how dropout can implicitly, without explicitly computing it,
estimate the hessian of JN when εj ∼ 0 and p → 1. The regime p → 1 echoes the regime δ ∼ 0 of
the previous sections. Dropout can be understood as a way to estimate ∇θ,θJN (θ) without explicitly
computing it. We will see in section 4 that Papanicolaou [54] already understood this possibility.

26In dropout, Bernouilli random variables are usually chosen but in practice, arbitrary laws can be used.
27As be definition we have

∫
Bj ⊗ θj dPN,pX = p⊗ θj .

28Here, Bj ∼ L(p) means that Bj follows an arbitrary distribution of law L having mean p and finite variance.
29By taking Bj → T (Bj) = Bj ⊗ L′(X,Bj ⊗ θj)∇θu(X,Bj ⊗ θj) such that T (p+ εj) ∼

εj∼0
pL′(X, pθj)∇θu(X, pθj) +

εj

[
L′(X, pθj)∇θu(X, pθj) + pL′′(X, pθj)∇θu(X, pθj)∇Tθ u(X, pθj) + pL′(X, pθj)∇2

θ,θu(X, pθj)
]

+O(ε2j ).
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3.7 Reminder of the pros and cons of the different presented approaches

So far, we have attempted to rewrite classical ML algorithms (Newton, GD, SGD, SGD+Dropout) into
a PDE framework. We also intensively exploited this PDE framework in order to suggest new learning
algorithms (a new SGD, control of the learning rate for stability/accuracy...), a new way to define a

consistent optimiser which leads to new possible consistent heuristics (by choosing α, θ∗−θ, dPN,nX , û).
We also have highlighted a certain number of pros and cons of those (non-exhaustive) list of examples.
Let us recall them here:

1. Deterministic Newton algorithm:

pro Optimal number of iterations in order to reach a local minimum.

pro Stable.

pro Does ensure cancelling the gradient.

pro Consistent with the problem we want to solve.

con Intractable in high dimension: impossible to compute the (absolute value of the) hessian.

con Remains stuck if initialized where the gradient is zero. Penalisation can be used in order
to avoid zones with zero-gradient but at the cost of a loss of performance: the bigger the
penalisation coefficient, the faster the algorithm drifts toward the region of interest but the
worse the performances.

con Does not natively take into account negative eigenvalues of the hessian: existence of saddle
points and need for the computations (or approximations) of the absolute value of the
hessian.

con Does not natively take into account the important number of local minima (exponentially
many local minima with din and N , see [4]): the algorithm needs several initialisations at
several different starting points and this deterministic algorithm can not face its exponential
growth with din and N , see [4].

2. Gradient Descent (GD)

con sub optimal number of iterations in order to reach a local minimum: the (absolute value of
the) hessian is only coarsely approximated.

pro tractable in high dimension: no need to compute the (absolute value of the) hessian.

con May be inconsistent with the problem we want to solve (see the δ ∼ 0 discussions).

con Remains stuck if initialized where the gradient is zero. Penalisation can be used in order to
avoid zones with zero-gradient but at the cost of a loss of performance (same as above for
Newton).

pro Natively tries to take into account negative eigenvalues of the hessian: it makes sure the
algorithm goes in the opposite direction of the gradient.

con Does not natively take into account the important number of local minima (exponentially
many local minima with din and N , see [4]): the algorithm needs several initialisations at
several different starting points.

con Does not ensure cancelling the gradient.

con may be instable: with bounded oscillations or unbounded ones which go to infinity.

con Remains stuck if the process jumps into a ’flat spot’ (close to zero gradient vicinity).

3. Stochastic Gradient Descent and its modifications (we also put noise injection methods inthere)

con sub optimal number of iterations in order to reach a local minimum.
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pro tractable in high dimension (no need to compute the hessian).

con May be inconsistent with the problem we want to solve (see the δ ∼ 0 discussions) but still,
more consistent than GD.

pro may not remain stuck if initialized where the gradient is zero.

pro Natively takes into account negative eigenvalues of the hessian: it makes sure the algorithm
goes in the opposite direction of the gradient.

pro Natively takes into account the important number of local minima (exponentially many, see
[4]): the stochasticity may help jumping from one region with a local minima to another
one.

con Sometimes, the stochasticity is not enough to jump and ’more’ noise has to be injected.

con Does not ensure cancelling the gradient.

con may be instable: with bounded oscillations or unbounded ones which go to infinity.

con Some algorithms inducing stochasticity (such as minibatching for example) lead to higher
computational times.

con Need to finely tune the amount of stochasticity (if too low =⇒ same as GD, if too important
=⇒ bad performances, if well-tuned =⇒ good exploration of the space of the weights θ).

con Remains stuck if the process jumps into a ’flat spot’ (close to zero gradient vicinity).

pro Allows implicitly estimating the hessian of JN (cf. the dropout discussion) if the parameters
of the noise injection method are well suited.

4. The new PDE consistent SGD

pro interesting number of iterations in order to reach a local minimum.

pro tractable in high dimension (no need to compute the hessian).

con May be inconsistent with the problem we want to solve (see the û ∼ δ ∼ 0 discussions) but
still, more consistent than GD and SGD.

pro may not remain stuck if initialized where the gradient is zero.

pro Natively takes into account negative eigenvalues of the hessian.

pro Natively takes into account the important number of local minima (exponentially many, see
[4]): the stochasticity may help jumping from one region with a local minima to another
one.

pro stability/accuracy conditions on the learning rate can be derived and are efficient ...

con ... but the stability/accuracy conditions and accuracy conditions are computationally in-
tensive (in general, i.e. in high dimension, it will need a reduction, i.e. a parallel commu-
nication).

con Does not ensure cancelling the gradient.

con Need to finely tune the amount of stochasticity (if too low =⇒ same as GD, if too important
=⇒ bad performances, if well-tuned =⇒ good exploration of the space of the weights θ)...

pro ... but at least, the stochasticity can be chosen simply, arbitrarily, continuously and do not
lead to higher computational times.

con Remains stuck if the process jumps into a ’flat spot’ (close to zero gradient vicinity).

pro Implicitly estimates the hessian of JN (cf. the dropout discussion) if the parameters of the
noise injection method are well suited.

45



pro Offers a simple and clear formalism: every existing algorithms can be recast in this frame-
work. They can be analysed thanks to this framework (consistency mainly). Building new
algorithms resume to particular choices of α, θ∗ − θ, dPNX , û and their respective effects are
clearly30 identified.

Up to this point, we can not really say that we improved a lot existing algorithms. We only improved
our understanding of the learning algorithms, we also have a better idea of what we want from them,
and we put them in a well-known and convenient framework. For example, some desired behaviours
for our optimiser are listed below:

– it should not go uphill or remain stuck on saddle points (mandatory),

– it should try to cancel the gradient (mandatory) or at least ensure having the gradient under a
certain threshold,

– it should be able to jump from one local minimum to another and do not spend to much time in
a vicinity of interest, i.e. it must have good exploration properties (mandatory),

– it should be able to use big time steps far from local minimum and automatically refine it in the
interesting vicinities,

– it should be stable (mandatory),

– a control of the error would be a plus,

– it should not have too many hyperparameters to tune which could have contradictory effects and
could be hard to understand (mandatory),

– it should estimate the hessian of JN without explicitly computing it.

None of the previous algorithms gathers all the above properties, not even the mandatory ones. But
before tackling some new algorithms, there remains one important question: the question of u and û.
So far, every presented algorithms aimed at solving a PDE of solution u(t, θ) whereas u is only the
mean component of u(t, θ,X)31. In which case fitting parameters θ on u is enough? Probably if the
two last lines of (27) are negligible. Is it possible to characterise when those lines are negligible? If
those lines are negligible then we can expect the best result θ∗ of a learning session on u(θ) to give
satisfactory results on u(θ,X). But otherwise? Can we know if the two last lines of (27) are negligible
or not?

3.8 Shall we consider û 6= 0? And how?

At this stage of the discussion, the question of what we can do to take û 6= 0 into account remains
an open problem. The problem is not even well-posed in the sense that with equation (27), even once
θ∗ − θ chosen, we only have 1 equation on u but 2 unknowns u and û. Of course, we can

– try to cancel the whole solution by arbitrarily choosing a closure equation for û based on some
additional heuristics (as done in turbulence modeling for example [46]). But this closure must
not interfere with the case when we do not need it (i.e. when the two last lines of (27) are
negligible). It may lead to a new consistency problem which we tried to solve so far with the
introduction of our new SGD algorithm. In other words, being able to detect when the two last
lines of (27) are negligible or not would be very convenient.

30Or at least, it is clearer for the numerician, familiar with such PDE framework.
31Recall we have u(t, θ,X) = u(t, θ) + û(t, θ,X) with u(t, θ) =

∫
u(t, θ,X) dPX .
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– We can also try to consider weights parametered by X, i.e. θ(X), see (22). The work of [24]
can be reinterpreted as an attempt to work on û, and in this sense, is singular with respect to
what can be found in the ML literature. In order to take into account the dependence with
respect to X of the weights θ, the author tries to identify their probabilistic distributions from
the dataset. A better understanding of the work of [24] in a PDE framework would certainly be
really interesting (several complex questions remain and must be more thoroughly studied: for
example, if θ(X), then the architecture is of the form u(θ(X), X), etc.).
Still, thanks to the PDE framework we previously derived, we can rely on quite a number of
publications suggesting ways to deal with such additional dimensions X (which can be reinter-
preted as uncertain parameters). The MC schemes used in an uncertainty propagation context,
cf. [59, 57, 55, 73, 12, 62, 61], could certainly be of interest in this ML context due to the similar
structures/formalisations of the problems.

In brief, there are probably many other heuristic solutions but before relying on them, we would like
to investigate on a remark made in [54] and the relation between transport in the diffusion limit and
learning theory. We will see that it allows, in a way, understanding under which conditions u is enough
and under which conditions something must be done on û in order to improve the performances of our
ML architecture.

4 Transport and the diffusion limit

In this section, we try to bridge the gap between transport and diffusion for machine learning, as put
forward in [54]. So far, we have listed a serie of pros and cons of ML algorithms and recast some of
them in a PDE framework. We now would like to investigate on how solving the transport equation
instead of the drift-diffusion one (as suggested in [54]) may help us in our ML context.
The next section 4.1 is only a reminder of how the transport equation can degenerate toward the drift-
diffusion one in a specified regime/limit. The analysis and the calculations performed in this section
are classical in photonics and neutronics, see [72, 16, 48, 17, 42, 13]. The reader familiar with this
topic can easily skip the section. But the paragraph is still interesting on many points with respect to
ML algorithms (see the remarks within).
Finally, in section 4.2, we perform some analogies between the transport framework suggested in [54]
and PDE based ML algorithms. We even design a transport based learning algorithm which gathers
many of the desired properties tackled in section 3.7. We apply it to the fil rouge problem of this
document and to a 3-layer Deep Neural Network approximating Runge’s function (see example 3.1.1).

4.1 Transport and diffusion limit: the steps on a classical example

This section aims at bridging the gap between the notations of [54, 26] and ours. The idea is to identify
the different steps allowing to recover the diffusion limit from the transport equation. We will then
apply the same material to a better-chosen transport equation in order to solve an ML problem in
section 4.2.
Let us here consider the transport equation given by

∂tu(x, t, v) + FT (x, t, v)∂xu(x, t, v) + σ(x, t)u(x, t, v) = σ(x, t)

∫
P (x, t, v, v′)u(x, t, v′) dv′. (55)

In the above equation, x ∈ Rn, t ∈ R+, v ∈ Rdin and u ∈ R (i.e. dout = 1). We also assume
that F ∈ Rn,

∫
F (x, t, v′) dv′ = 0,∀x, t. We furthermore have σ(x, t, v, v′) = σ(x, t)P (x, t, v, v′) and∫

P (x, t, v, v′) dv′ = 1,∀x, t, v et
∫
P (x, t, v, v′) dv = 1,∀x, t, v′. If we rewrite the above transport
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equation with respect to the non-dimensional quantities

t∗ = t
T ,

x∗ = x
X ,

F ∗ = F
F ,

σ∗ = σ
Λ ,

(56)

we get (the ∗ upperscripts have been dropped for conciseness)

∂tu(x, t, v) + FT (x, t, v)
FT
X

∂xu(x, t, v) + T Λσ(x, t)u(x, t, v) = T Λσ(x, t)

∫
P (x, t, v, v′)u(x, t, v′) dv′.

Suppose now that

FT
X
∼ 1

δ
and T Λ ∼ 1

δ2
. (57)

In appendix A, we perform a Hilbert developpement [27, 64, 29] of u with respect to32 δ ∼ 0, i.e. we
develop u = u0 +δu1 +δ2u2 +O(δ3), and build the equation satisfied by u0. We obtain that u0 satisfies

∂tu0(x, t)− ∂x
[(∫

F (x, t, v)b(x, t, v) dv

)
∂xu0(x, t)

]
= 0, (58)

where b is closely related to σ, P and F (see appendix A for more details). For photonics for example,∫
F (x, t, v)b(x, t, v) dv =

∫
vb(x, t, v) dv can be explicited and is given by |v|

3σ(x,t) , see [60, 72, 16, 48,

17, 42, 13].
The proof for obtaining the diffusion limit of the transport equation is recalled in appendix A but we
insist it is very classical and can be found in many publications, see [54, 39, 72, 16, 48, 17, 42, 13, 63, 60].
Let us assume some smoothness on x→ b(x, t, v). Then we can expand the above expression to get

∂tu0(x, t)−
[
∂x

(∫
F (x, t, v)b(x, t, v) dv

)]
︸ ︷︷ ︸

µ(x,t,v)=∂xγ(x,t,v)

∂xu0(x, t)−
(∫

F (x, t, v)b(x, t, v) dv

)
︸ ︷︷ ︸

γ(x,t,v)

∂2
x,xu0(x, t) = 0.

What is interesting here is that by solving the transport equation (55) in a particular regime, we are
able to compute the solution of a drift-diffusion equation involving ∂xγ, the derivative of γ: in practice,
we do not need to compute this derivative with MC schemes (see [54, 63]) during the resolution of the
transport equation. MC schemes built in order to solve the transport equation, even in the diffusion
limit, only need the evaluation of γ, see [54]. This is typically what we need in our ML algorithm: an
MC scheme which implicitly computes |∇2

θ,θJN (θ)|, the absolute value of the hessian of J , but only
needs evaluating numerically ∇θJN (θ). Furthermore, the transport framework also offers interesting
properties which could be useful in an ML context, see for example the next remark.

Remark 4.1 Let us assume that

– P (x, t, v, v′) is invariant by orthogonal transformations (rotations). This means that

P (x, t,Qv,Qv′) = P (x, t, v, v′),∀ rotation Q,∀x, t.

This hypothesis is verified for example if P (x, t, v, v′) = P (x, t, v · v′).

– Let us also assume that dv verifies the invariance property∫
g(Qv) dv =

∫
g(v) dv,∀g ∈ C0,∀ rotation Q.

This hypothesis is verified for example on the uniform sphere of dimension n − 1. This is also
verified for m(v) dv if m(v) = m̃(|v|).

32Here, δ should recall the quantity δ introduced in section 3.5: the analysis is here more detailed.
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– Under the above two hypothesis, bi(v) = b̃(|v|)vi,∀i ∈ {1, ..., n} and∫
vibj(x, t, v) dv =

1

n

∫
|v|2b̃(|v|) dvδi,j .

This means the diffusion term is characterised by a scalar.

In ML algorithms, invariance by rotation or translation (or by any arbitrary bijective transformation)
can be of interest. The scattering kernel of the transport equation can, at least theoretically, be built in
order to satisfy some invariance properties. It is intensively used in neutronics for example (scattering
angle and velocity in the center of mass reference frame [25, 40, 10, 9]). The question here is: is such
a framework relevant in order to make ML algorithms bear interesting invariant properties? Ongoing
researches will be carried out in this direction.

The previous lines aimed at recovering the classical diffusion limit for neutronics or photonics. We are
going to apply the material to our fil rouge problem and give an idea of what can be expected from
the transport equation in order to build learning processes (idea briefly developed in [54]).

4.2 A transport equation degenerating toward an ML consistent diffusion
equation

From the previous developpements, we suggest revisiting transport equation (55) and its diffusion limit
(58) from an ML point of view. Let us first simply take (58) and replace x by θ, v, dv by X, dPX and
u0 by u. We get

∂tu(t, θ)− ∂θ
[(∫

F (t,X, θ)b(t,X, θ) dPX
)
∂θu(t, θ)

]
= 0. (59)

If we do the same in the transport equation from which (59) is the limit, we get

∂tu(t,X, θ) + FT (t,X, θ)∂θu(t,X, θ)

+σ(t, θ)u(t,X, θ)) = σ(t, θ)

∫
P (t, θ,X,X ′)u(t,X ′, θ) dP ′X .

(60)

The equation (59) echoes (27) with the two last lines (the ones involving û) cancelled whereas the
solution u(t,X, θ) of equation (60) depends also on X. In other words, the regime (57) defined by
δ → 0 characterises under which conditions u(t,X, θ) behaves as u(t, θ) (i.e. under which conditions
we have û ∼ 0). If we expand the summation (i.e. if we avoid the matricial form), (59) becomes

0 = ∂tu(t, θ)

−
Card(θ)∑
i=1

∂θiu(t, θ)

Card(θ)∑
j=1

∂θj

[∫
Fi(t, θ,X)bj(t,X, θ) dPX

]

−
Card(θ)∑
i,j=1

[∫
Fi(t,X, θ)bj(t,X, θ) dPX

]
∂2
θi,θju(t, θ),

which is to be compared to the three first lines of (27) recalled below
(but rewritten slightly differently in order to make the analogy explicit)
0 = ∂tu(t, θ)

+

Card(θ)∑
i=1

∂θiu(t, θ)

Card(θ)∑
j=1

∂θj

[∫
αiL

′(t,X, θ)(θ∗j − θj) dPX
]

+

Card(θ)∑
i,j=1

[∫
αiL

′(t,X, θ)(θ∗j − θj) dPX
]
∂2
θi,θju(t, θ).

49



Now, b is related to σ, F and P : it is solution of (see appendix A)
(I −K)b(t,X, θ) = b(t,X, θ)−

∫
P (t, θ,X,X ′)b(t,X, θ) dP ′X =

F (t,X, θ)

σ(t, θ)
,∫

b(t,X, θ) dPX = 0.
(61)

From the above expressions, we can identify some compatibility conditions33 in order to identify the
different terms such that:

Fi(t,X, θ)bj(t,X, θ) = αiL
′(t,X, θ)(θ∗j − θj).

Assume

– an arbitrary choice for Fi (but such that
∫
F (t,X, θ) dPX = 0, see appendix A),

– and an arbitrary choice for σ,

– then bj can be obtained thanks to a pretreatment of the data, see (61),

Assume furthermore that

– αi = −∂θiu(t,X, θ) (just as in GD, SGD etc.),

– then we have that the equation satisfied by θ∗j − θj , mandatory to close our system of equations,
is given by

− Fi(t,X, θ)bj(t,X, θ)

∂θju(t,X, θ)L′(t,X, θ)
= (θ∗j − θj).

Of course, one could first choose θ∗ − θ and deduce b afterward.

In brief, the analysis of the transport equation may help us make some choices in order to solve our
learning problem. Note that transport equation (60) may be even more complex (with an acceleration
term for example etc., see [54]). But discussing the gain with such more complex transport models is
beyond the scope of this paper and will certainly be tackled in further publications.

Let us now apply the above idea to our fil rouge problem in the next example 4.2.1: we revisit
example 3.6.4 with a quickly built transport based learning algorithm.

Example 4.2.1 (Two local minimum separated by a large flat spot with transport)
In this last example, we consider the same situation as in example (3.6.4) for which we had a
large flat spot between the two local minima. This time, instead of solving a diffusion equation
by choosing particular α, θ∗ − θ as in the previous example, we suggest choosing particular F, σ
which will, in regime (57), solve a particular diffusion equation.
We suggest considering equation

∂tu(t,v, θ) + F (t,v, θ) · ∂θu(t,v, θ) + σ(t, θ)u(t,v, θ) = σ(t, θ)

∫
P (t, θ,v,v′)u(t, θ,v′) dv′, (62)

in which

– F (t,v, θ) = F (t, θ)v, with v = vω. The term F (t, θ)v is a velocity.

33The set of choices is not unique, other possibilities can be considered, the following ones are only stated as examples.
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– Besides, ω is a direction in Sn (i.e. in the unit sphere such that ω ∈ Rn and |ω| = 1). Of
course, in this example, n = 1 and dω = 1

21[−1,1](ω) dω so that
∫
ω dω = 0 and

∫
ω⊗ω dω =∫

ω2 dω = 1
3 , but ω can easily be generalised to arbitrary dimensions.

This particular form for F makes sure we have

∀(t, θ) ∈ [0, T ]×Θ,

∫
F (t, θ,v) dv =

∫
F (t, θ)vω dv dω,

=

∫∫
F (t, θ)vω dv dω,

= F (t, θ)

∫
v dv

∫
ω dω︸ ︷︷ ︸
=0

= 0,

as necessary (see appendix A),

– The terms of the collisional part of (62), σ(t, θ), P (t, θ,v,v′), are the total and scattering
cross-sections/opacities.

We want to choose the above quantities such that asymptotically in a specified regime defined by
δ ∼ 0, (62) degenerates toward a diffusion equation given by

∂tu(t, θ) + ∂θ

[
F (t, θ)v

3σ(t, θ)
∂θu(t, θ)

]
= 0. (63)

Let us now try to build a diffusion coefficient F (t,θ)v
3σ(t,θ) adapted to a learning problem:

– First, let us set α = −∂θu(t,X, θ) just as GD, SGD, dropout, in order to get:∫
αL′(t,X, θ)(θ∗ − θ) dPX = −

∫
∂θu(t,X, θ)L′(t,X, θ)(θ∗ − θ) dPX ,

= −
∫
J ′(t, θ)(θ∗ − θ) dPX .

– Now, by identification, this leads to

F (t, θ)v

3σ(t, θ)
= −J ′(t, θ)

∫
(θ∗ − θ) dPX ,

− F (t, θ)v

3J ′(t, θ)

∫
(θ∗ − θ) dPX

= σ(t, θ).

From the above expression, either we choose F, σ and θ∗ − θ is set or we choose θ∗ − θ and
F in order to set σ.

– Let us set

θ∗ − θ = − vF (t, θ)

3J ′(t, θ)
[

1
|J′(t,θ)| + σacc

] .
This choice (but many others could be done) makes sure having a positive cross-section σ
having the general form

σ(t, θ) = σgrad(t, θ) + σacc,

=
1

|J ′(t, θ)|
+ σacc where σacc is a parameter.
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– Furthermore, we choose

F (t, θ) =
1√

|J ′(t, θ)|
.

This choice may appear unconventional at this stage as it means that the closer to zero the
gradient, the higher the velocity. But this astonishing choice will be justified few lines below.

– Let us now tackle the scattering term P . We choose it such that:

P (t, θ,v,v′) dv′ = P (t, θ, vω, v′ω′) dv′ dω′,

=

 +
σgrad(t, θ)

σgrad(t, θ) + σacc
δvmin(v′) δ0

(
− J ′(t, θ)

|J ′(t, θ)|
− ω′

)
+

σacc
σgrad(t, θ) + σacc

δvmax
(v′) 1

21[−1,1](ω
′)

 dv′ dω′.

In P , the scattering term, v ∈ {vmin, vmax} where vmin, vmax are parameters. Of course, a
continuous velocity distribution (just as for physical phenomena) could be built but this will
be explored in further publications.

The above choices were certainly quite abruptly introduced. Let us justify them in the next lines:

– σ has been chosen such that σ(t, θ) = O( 1
δ2 ) when |J ′(θ)| = O(δ2) → 0. Having σ ∼ 1

δ2 ∼
1

|J′(θ)| ensures we will have a small mean time between two collisions in the vicinities where

J ′(θ) ∼ δ2 ∼ 0.

– F has been chosen such that F (t,v, θ) = v√
|J′(θ)|

= O( 1
δ ) when |J ′(θ)| = O(δ2)→ 0. Having

F ∼ 1
δ (together with

∫
F = 0, see appendix A) makes sure a diffusion limit exists for the

transport equation of interest. It is then given by (63).

=⇒ The two above choices, such that F ∼ 1
δ and σ ∼ 1

δ as |J ′| ∼ δ2 ∼ 0, ensures the diffusion
limit (63) of (62) will be valid in the vicinities of vanishing gradients.

– P is quite an arbitrary parameter, at least with respect to the diffusion limit and the regime
characterised by δ ∼ 0. It has been chosen so that it behaves as a reaction kernel with
two reactions, reaction ’grad’ and reaction ’acc’, and is inspired from what can be found in
neutronics for example (see [25] for example):

– reaction ’grad’ occurs with probability
σgrad(t,θ)

σgrad(t,θ)+σacc
. It is less and less probable as

|J ′| ∼ 0. Still, when reaction grad occurs, the velocity of the stochastic process θt is
vmin and its direction ω′ is the opposite to the direction of the gradient.

– Reaction ’acc’ occurs with probability σacc
σgrad(t,θ)+σacc

. It is more and more probable as |J ′|
comes close to zero: the stochastic process has reached a vicinity in which the gradient is
under a certain accuracy and a jump is triggered with an immediate increase of velocity
to vmax together with an isotropic change of direction. The stochastic process is kind of
teleported further away from the sufficiently explored vicinity.

Solving (62) can be done applying the material the material of [60] (see for example how to built
the non-analog MC scheme). We do not detail the construction of the stochastic process solving
(62), and capturing the limit (63), but we insist on the fact that the resolution does not need the
computation of J ′′.

Now, if we come back to our transport equation, we can certainly imagine even more relevant
choices of F, σ, P which could help solve our problem. But let us focus on the choices made above:
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figure 9 presents the results obtained with the non-analog MC scheme (see [60]) solving (62) for
functional (53) with the flat spot between the two local minima (top pictures) and on a DNN
architecture (bottom pictures).

Let now comment on the behaviour of the algorithm observable on figure 9:

– once initialised, the algorithm takes stochastic time steps τ sampled from an exponential law,

i.e. τ = − log(U)
σ(θn) with U ∼ U([0, 1]). Those are τ ∼ δ2 small if J ′ ∼ δ ∼ 0 and larger

otherwise.

– If J ′ ∼ ε � 1, the probability of triggering an ’acc’ reaction becomes more important: the
process has an important probability of jumping to another location.

– Reaction kernel P ensures not spending too much time in the vicinity of a local minimum,
once the gradient under a certain chosen threshold ε, and jumping more or less far from it.

– We insist the MC resolution of the linear transport equation we solve here is inconditionally
stable, see [60].

– Finally, we insist this is an exploration algorithm, more than an optimisation one. This
means that we must keep in memory the vector θn∗ for iteration n∗ such that J(θn∗) < J(θn)
because nothing ensures the error will keep going down as n > n∗.

The jumps of the simulated stochastic process on figure 9 are observable for both applications on
the pictures of the left column. The steps are further apart in the vicinities of big gradients and
closer where the gradient comes close to zero. On the right column of figure 9, we can see that
the process never spends too much times (iterations) in the vicinities of the minima: a jump is
triggered once a small gradient vicinity explored. Let us now consider some more quantitative
results in example 4.2.2.

Example 4.2.2 (A large flat spot with transport, quantitative results) The results of
example 4.2.1 related to figure 9 were mainly qualitative. We here suggest some quantitative
ones. The conditions are the same as in the previous (quantitative) examples 3.1.2–3.1.4–3.5.2–
3.6.2–4.2.2.

The probabilities for the (penalised or not) transport algorithm to reach the vicinities of local/-
global minima θ∗ = −10 and θ∗ = 6 are displayed in table 9. In both cases (penalised or not),
we have a very important probability (98.75% and 97.58%) of recovering the vicinity of the global
minimum θ∗ = 6. The probability of recovering the vicinity of the local minimum θ∗ = −10 is
negligible and the probability of being outside the interval of interest remains small (1.25% and
2.42%). The probability for the solution to live in an even narrower vicinity [6 − 10−4, 6 + 10−4]
around the global minima is still very important (≈ 98.76%). With this transport based algorithm,
we can even try to reach narrower regions such as [6− 10−6, 6 + 10−6] around the global minima:
the last line of table 9 shows that the algorithm still presents a 27.07% probability of scoring within
this narrow region.
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Figure 9: Top line: the figure revisit the test-case of example 3.6.4 but with the transport process
solving (62). Bottom line: a cut along a certain direction of loss function used in order to tune a
DNN. The DNN has 3 layers of one ReLU neuron except for the last layer which is linear, the loss
function is the L2 one with L2 penalisation with ξ = 10−7, and the architecture aims at approximating
the Runge function. We choose σacc = 1

ε with (top) vmin = 103, vmax = 108, ε = 10−5, (bottom=
vmin = 103, vmax = 108, ε = 10−7.

Initialiser θ0 ∼ U([−15, 15]) Vicinity of θ∗ = 0 Vicinity of θ∗ = 6
Transport SGD (Nseed = 104) P(θmin ∈ [−10− 10−2,−10 + 10−2]) P(θmin ∈ [6− 10−2, 6 + 10−2])

As in example 4.2.1 0.0% ∈ [0.0%, 0.0%] 98.75% ∈ [98.53%, 98.97%]
ξ = 10−5 + as in example 4.2.1 0.0% ∈ [0.0%, 0.0%] 97.58% ∈ [97.28%, 97.88%]
Transport SGD (Nseed = 104) P(θmin ∈ [−10− 10−4,−10 + 10−4]) P(θmin ∈ [6− 10−4, 6 + 10−4])

As in example 4.2.1 0.0% ∈ [0.0%, 0.0%] 98.76% ∈ [98.54%, 98.98%]
Transport SGD (Nseed = 104) P(θmin ∈ [−10− 10−6,−10 + 10−6]) P(θmin ∈ [6− 10−6, 6 + 10−6])

As in example 4.2.1 0.0% ∈ [0.0%, 0.0%] 27.07% ∈ [26.20%, 27.94%]

Table 9: Probabilities for the (penalised or not) transport based SGD algorithm to recover the local
(θ∗ = −10) or the global (θ∗ = 6) minimum of (53). To compute the probabilities, we have resort to
Nseed = 104 multiple initialisations with θ0 ∼ U([−15, 15]). Confidence intervals for the results are
provided. The 0.00% are not significative but attest for a small probability. Comments are provided
in example 4.2.2.

5 Conclusion

Let us finish by concluding remarks. The present document aims at helping numericians and peo-
ple familiar with partial differential equations (PDEs) understanding how the most classical machine
learning (ML) algorithms are built. The basic desired properties of optimisers are illustrated. An
original (PDE based) framework built in order to design some new ML algorithms is suggested. Sev-
eral classical ML algorithms are rewritten, reinterpreted in this PDE framework, which attests for its

54



generality. Of course, many ML algorithms from the dense and furnished literature are not tackled.
From the PDE based framework we defined in this document, ML optimisation codes can be com-
pared to instrumented Monte-Carlo codes solving drift-diffusion equations classically used in industrial
contexts. The PDE based framework allows understanding, characterising (see the δ ∼ 0 discussions)
and explaining when and why classical ML algorithms give satisfactory results despite some lacks of
consistency. An analogy with transport and diffusion (based on the remark of [54]) is made and a new
transport based algorithm is constructed and applied on simple examples. Some efforts remain to be
done for those algorithms to be generalised and developped in a more classical ML context. Still, the
results are statistically significative and promising enough for counting the design of new transport
based ML algorithms amongst the perspectives of this work.
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[50] Paul Novello, Gaël Poëtte, David Lugato, and Pietro M Congedo. Explainable Hyperparameters
Optimization using Hilbert-Schmidt Independence Criterion. working paper or preprint, February
2021.
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A Formal proof of transport equation degenerating toward the
diffusion equation

Plugging the Hilbert development u = u0 + u1δ + u2δ
2 +O(δ3) defined in section 4.1 into (55) yields

δ2∂t(u0 + δu1 + δ2u2) + δF∂x(u0 + δu1 + δ2u2) + σ(x, t)(u0 + δu1 + δ2u2) =

σ(x, t)

∫
P (x, t, v, v′)(u0 + δu1 + δ2u2) dv′ +O(δ5).

Let us identify the terms in factor of 1, δ, δ2 and cancel them. This ensures having
u0(x, t, v) =

∫
P (x, t, v, v′)u0(x, t, v′) dv′,

v∂xu0(x, t, v) = −σ(x, t)u1(x, t, v) + σ(x, t)

∫
P (x, t, v, v′)u1(x, t, v′) dv′,

∂tu0(x, t, v) + v∂xu1(x, t, v) + σ(x, t)u2(x, t, v) = σ(x, t)

∫
P (x, t, v, v′)u2(x, t, v′) dv′.

(64)

59



The first line of the above equation (I−K)u0 = 0 = u0(x, t, v)−
∫
P (x, t, v, v′)u0(x, t, v′) dv′ tells that,

cf. theorem 3 (Fredholm’s alternative), u0(x, t, v) = u0(x, t) is independent of v (constant function are
in the kernel of operator I −K).

Theorem 3 (Fredholm’s alternative [26]) Consider operator

(I −K)f(x, t, v) = f(x, t, v)−
∫
π(x, t, v, v′)f(x, t, v′) dv′,

where π satisfies
∫
π(x, t, v, v′) dv′ = 1,∀x, t, v and

∫
π(x, t, v, v′) dv = 1,∀x, t, v′. The kernel of I −K

is given by ker(I −K) = {f(x, t, v) = f(x, t), i.e. constant function with respect to v}.
Furthermore, a solution f of

(I −K)f(x, t, v) = S(x, t, v), (65)

exists if and only if
∫
S(x, t, v) dv = 0. Besides, if f is solution, then f −

∫
f dv is also solution so

that the uniqueness comes from the fact that it exists a unique solution f such that
∫
f dv = 0. The

unique solution of (65) has the form f(x, v, v) = f0(x, t, v) + C1(x, t).

With the result given by Fredholm’s alternative (theorem 3), i.e. the fact that u0(x, t, v) = u0(x, t),
(64) becomes

u0(x, t, v) = u0(x, t),

F (x, t, v)∂xu0(x, t) = −σ(x, t)u1(x, t, v) + σ(x, t)

∫
P (x, t, v, v′)u1(x, t, v′) dv′,

∂tu0(x, t) + F (x, t, v)∂xu1(x, t, v) + σ(x, t)u2(x, t, v) = σ(x, t)

∫
P (x, t, v, v′)u2(x, t, v′) dv′.

The second line of the above equation can be recast as

−F (x, t, v)

σ(x, t)
∂xu0(x, t) = (I −K)u1(x, t, v). (66)

Once again, theorem 3 ensures that the solution exists as by hypothesis,
∫
F (x, t, v) dv = 0,∀x, t

(otherwise, no solution). Besides, according to theorem 3, the solution u1 is unique and has the form34

u1(x, t, v) = C1(x, t)− b(x, t, v)∂xu0(x, t),

where C1 satisfies (I −K)C1 = 0, and b(x, t, v) is such that (I −K)b(x, t, v) = +F (x,t,v)
σ(x,t) ,∫

b(x, t, v′) dv′ = 0.
(67)

We then have
u0(x, t, v) = u(x, t),
u1(x, t, v) = C1(x, t)− b(x, t, v)∂xu0(x, t),

∂tu0(x, t) + F (x, t, v)∂xu1(x, t, v) + σ(x, t)u2(x, t, v) = σ(x, t)

∫
P (x, t, v, v′)u2(x, t, v′) dv′.

The last equation has once again the form (I −K)u2 = g with

g(x, t, v) = − 1
σ(x,t)∂tu0(x, t)− F (x,t,v)

σ(x,t) ∂xu1(x, t, v) = u2(x, t, v)−
∫
P (x, t, v, v′)u2(x, t, v′) dv′.

34It is easy verifying it is a solution of (66). The uniqueness comes from both theorem 3 and the constraint in (67).
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Let us apply Fredholm alternative. For u2 to exist, we must have∫
g(x, t, v) dv = 0 = − 1

σ(x, t)
∂tu0(x, t)− 1

σ(x, t)

∫
F (x, t, v)∂xu1(x, t, v) dv.

Furthermore, we have∫
F (x, t, v)∂xu1(x, t, v) dv =

∫
F (x, t, v)∂x [C1(x, t)− b(x, t, v)∂xu0(x, t)] dv,

=

[∫
F (x, t, v) dv

]
︸ ︷︷ ︸

=0

∂xC1(x, t)− ∂x
[(∫

F (x, t, v)b(x, t, v) dv

)
∂xu0(x, t)

]
,

= −∂x
[[∫

F (x, t, v)b(x, t, v) dv

]
∂xu0(x, t)

]
.

Hence, u2 exists if and only if∫
g(x, t, v) dv = 0 = − 1

σ(x, t)
∂tu0(x, t) +

1

σ(x, t)
∂x

[[∫
F (x, t, v)b(x, t, v) dv

]
∂xu0(x, t)

]
.

The above line (already) implies

∂tu0(x, t)− ∂x
[[∫

F (x, t, v)b(x, t, v) dv

]
∂xu0(x, t)

]
= 0.

But let us check that u2 remains in agreement with the above expression. To obtain u2, we need to
solve

− 1
σ(x,t)∂x

[[∫
F (x, t, v)b(x, t, v) dv

]
∂xu0(x, t)

]
− F (x,t,v)

σ(x,t) ∂xC1(x, t) + 1
σ(x,t)∂x [F (x, t, v)b(x, t, v)∂xu0(x, t)] =

u2(x, t, v)−
∫
P (x, t, v, v′)u2(x, t, v′) dv′.

−F (x,t,v)
σ(x,t) ∂xC1(x, t) + 1

σ(x,t)∂x

[(
F (x, t, v)b(x, t, v)−

∫
F (x, t, v)b(x, t, v) dv

)
∂xu0(x, t)

]
= (I −K)u2(x, t, v).

Let us now once again apply Fredholm’s alternative. Let us introduce Σ such that
(I −K)Σ(x, t, v) = F (x, t, v)b(x, t, v)−

∫
F (x, t, v)b(x, t, v) dv,∫

Σ(x, t, v) dv = 0,

and C2(x, t) such that (I −K)C2(x, t) = 0. We obtain

u2(x, t, v) =
1

σ(x, t)
∂x [Σ(x, t, v)∂xu0(x, t)]− 1

σ(x, t)
b(x, t, v)∂xC1(x, t) + C2(x, t).

If we now replace u1 and u2 in the last equation of (64), we get the diffusion limit:

∂tu0(x, t) + F (x, t, v)∂xu1(x, t, v) + σ(x, t)u2(x, t, v)− σ(x, t)

∫
P (x, t, v, v′)u2(x, t, v′) dv′ = 0,

∂tu0(x, t) + F (x, t, v)∂x [C1(x, t)− b(x, t, v)∂xu0(x, t)] + σ(x, t)u2(x, t, v) =

∫
σ(x, t, v, v′)u2(x, t, v′) dv′,

∂tu0(x, t) + F (x, t, v)∂x [C1(x, t)− b(x, t, v)∂xu0(x, t)] + σ(x, t)(I −K)u2(x, t, v) = 0,

∂tu0(x, t)− F (x, t, v)∂x [b(x, t, v)∂xu0(x, t)] + ∂x

[(
F (x, t, v)b(x, t, v)−

∫
F (x, t, v)b(x, t, v) dv

)
∂xu0(x, t)

]
= 0,

∂tu0(x, t)− ∂x
[(∫

F (x, t, v)b(x, t, v) dv

)
∂xu0(x, t)

]
= 0.

This ends the proof.
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