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Introduction

Stromal cells are microenvironmental cells defined by their ability to support the development, maintenance, proliferation and differentiation of tissue-specific cell types. For example, supportive stromal cells are crucially involved in haematopoiesis. The supportive stromal cell compartment is established before the formation of the haematopoietic system; it remains dynamic, instead of being static once established, reacting to extrinsic signals that can either damage or enhance stromal cell function and number [START_REF] Muller-Sieburg | The stromal cells' guide to the stem cell universe[END_REF]. In non-haematopoietic tissues, organogenic processes are similarly driven by stromal cells that control parenchymal cell functions such as migration, proliferation, differentiation and programmed cell death [START_REF] Charbord | Analysis of the microenvironment necessary for engraftment: role of the vascular smooth muscle-like stromal cells[END_REF][START_REF] Lapidot | Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells[END_REF].

The mechanisms underlying supportive functions of stromal cells are incompletely understood. Stromal cells probably provide a complex molecular milieu that influences the behaviour of local stem cells, which have the choice of many fates, including quiescence, self-renewal, differentiation and apoptosis [START_REF] Charbord | Gene expression in stem cell-supporting stromal cell lines[END_REF]. The molecules in this milieu are not well defined but probably include a mixture of cytokines, extracellular matrix components and cell adhesion molecules [START_REF] Charbord | Gene expression in stem cell-supporting stromal cell lines[END_REF].

The spectrum of stromal cells is debated and remains ill defined [START_REF] Muller-Sieburg | The stromal cells' guide to the stem cell universe[END_REF]. Nevertheless, macrophages (MPs) constitute one definite cell type in this spectrum and were previously recognised to play a major role in tissue repair and homeostasis maintenance [START_REF] Gordon | The macrophage[END_REF]. In addition to their classical functions, including microbicidal activity, phagocytosis and antigen presentation, these multifaceted cells efficiently support growth and differentiation of other cell types [START_REF] Gordon | The macrophage[END_REF][START_REF] Laskin | Role of macrophages and inflammatory mediators in chemically induced toxicity[END_REF]. Their supportive effect was documented with respect to erythroblasts, hepatocytes, neurons, oligodendrocytes and myogenic cells [START_REF] Blasi | Regulation of bone marrow cell survival in short-term cultures: a new macrophage function[END_REF][START_REF] Cantini | Macrophages regulate proliferation and differentiation of satellite cells[END_REF][START_REF] Sadahira | Role of the macrophage in erythropoiesis[END_REF][START_REF] Takeishi | The role of Kupffer cells in liver regeneration[END_REF][START_REF] Polazzi | Microglial cells protect cerebellar granule neurons from apoptosis: evidence for reciprocal signaling[END_REF][START_REF] Gras | Regulated expression of sodium-dependent glutamate transporters and synthetase: a neuroprotective role for activated microglia and macrophages in HIV infection?[END_REF]Chazaud et al., 2003b).

In contrast to bone marrow, where stromal cells are in place to support an ever-changing haematopoietic compartment, skeletal muscle is normally a stable tissue that uses newly recruited MPs to support post-injury muscle regeneration [START_REF] Mclennan | Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions[END_REF][START_REF] Pimorady-Esfahani | Macrophages and dendritic cells in normal and regenerating murine skeletal muscle[END_REF][START_REF] Lescaudron | Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant[END_REF]. In a previous study, we found that, upon activation, a small myogenic stem cell population residing

The mechanisms underlying stromal cell supportive functions are incompletely understood but probably implicate a mixture of cytokines, matrix components and cell adhesion molecules. Skeletal muscle uses recruited macrophages to support post-injury regeneration. We and others have previously shown that macrophages secrete mitogenic factors for myogenic cells. Here, we focused on macrophage-elicited survival signals. We demonstrated that: ( 1 beneath the basal lamina of each adult myofibre, the so-called muscle satellite cells [START_REF] Mauro | Satellite cell of skeletal muscle fibers[END_REF], can attract circulating monocytes and interplay with MPs to enhance their growth (Chazaud et al., 2003b). In vitro studies suggested that MPs can support myogenic precursor cell (mpc) growth by stimulating their proliferation through soluble mitogenic factors, and by preventing their apoptosis through direct cellcell contacts involving unknown molecular systems (Chazaud et al., 2003b).

MP-derived soluble factors inducing mpc proliferation have long been reported [START_REF] Cantini | Macrophages regulate proliferation and differentiation of satellite cells[END_REF][START_REF] Cantini | Macrophage-released factor stimulates selectively myogenic cells in primary muscle culture[END_REF][START_REF] Massimino | ED2+ macrophages increase selectively myoblast proliferation in muscle cultures[END_REF], and the literature on myogenic cell growth factors is extensive (reviewed by [START_REF] Hawke | Myogenic satellite cells: physiology to molecular biology[END_REF]. By contrast, the significance of direct contacts between MPs and mpcs has not been previously explored in the setting of muscle regeneration. In fact, relatively little is known regarding the relevance of apoptosis to skeletal muscle homeostasis and repair, although evidence exists indicating that enhanced apoptosis plays a role during muscle aging, muscular dystrophy, muscle denervation and unloading (reviewed by [START_REF] Jejurikar | Satellite cell depletion in degenerative skeletal muscle[END_REF]. Normal adult myofibres are somewhat resistant to apoptosis. Their sarcoplasm is refractory to mitochondrial cytochrome cdependent activation of type II caspases [START_REF] Burgess | Human skeletal muscle cytosols are refractory to cytochrome c-dependent activation of type-II caspases and lack APAF-1[END_REF]. Caspase-3 protein, which acts on the execution of cell death, is absent in normal myofibres [START_REF] Ruest | Development-dependent disappearance of caspase-3 in skeletal muscle is post-transcriptionally regulated[END_REF]. Upstream protective mechanisms against apoptosis include blockage of the two caspase-3 activation pathways, as the caspase-8 inhibitor ARC is expressed [START_REF] Koseki | ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases[END_REF], and caspase-9 activator Apaf-1 is absent [START_REF] Burgess | Human skeletal muscle cytosols are refractory to cytochrome c-dependent activation of type-II caspases and lack APAF-1[END_REF], from skeletal muscle. The only physiological circumstance in which caspase-3 protein appears in adults is in regenerating muscle [START_REF] Ruest | Development-dependent disappearance of caspase-3 in skeletal muscle is post-transcriptionally regulated[END_REF]. Such an expression of caspase-3 protein in regenerating muscle is transient and might allow muscle to get rid of excess replicating satellite cells or to delete improperly innervated, newly formed myofibres [START_REF] Ruest | Development-dependent disappearance of caspase-3 in skeletal muscle is post-transcriptionally regulated[END_REF]. In addition to its role in apoptosis, caspase-3 also participates to myofibrillar proteolysis [START_REF] Du | Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions[END_REF]. Once regeneration is complete, caspase-3 mRNA remains detectable in the repaired muscle whereas caspase-3 protein becomes undetectable [START_REF] Ruest | Development-dependent disappearance of caspase-3 in skeletal muscle is post-transcriptionally regulated[END_REF]. Finally, from an evolutionary perspective, it seems important for skeletal muscle tissue to be protected from pro-apoptotic signals linked to exerciseassociated mitochondrial stress [START_REF] Burgess | Human skeletal muscle cytosols are refractory to cytochrome c-dependent activation of type-II caspases and lack APAF-1[END_REF] and, consequently, mechanisms promoting restoration of the protected status of myogenic cells after muscle damage must exist and could implicate stromal cells.

We examined if and how MPs could play a significant role in regulation of myogenic cell death during regeneration. We first extended our previous observations by analysing MP protective effects against spontaneous and staurosporine (STS)-induced apoptosis of human mononucleated myoblasts and multinucleated myotubes. Then, we selected candidate anti-apoptotic effector-counterligand molecular systems using DNA macroarray analysis, with confirmatory RT-PCR and immunodetection in human MPs and mpcs. Four systems previously implicated in cell-contact-mediated survival of other cell types were identified and shown to mediate in vitro MP anti-apoptotic effects on mpcs by functional studies: vascular cell adhesion molecule 1 (VCAM-1; CD106) binding to very late antigen 4 (VLA-4); intercellular cell adhesion molecule 1 (ICAM-1; CD54) binding to leukocyte function associated molecule 1 (LFA-1); chemokine CX3CL1 binding to CX3CR1; and platelet-endothelial cell adhesion molecule 1 (PECAM-1; CD31) homophilic binding to another PECAM-1. Finally, we used a mouse model of post-injury muscle regeneration to demonstrate spatiotemporal correlation between MP influx and fading of injury-induced mpc apoptosis.

Results

MPs inhibit both spontaneous and induced mpc apoptosis in a dose-dependent way

As assessed by annexin V labelling, the addition of human monocyte-derived MPs to primary mpc cultures inhibited spontaneous apoptosis of mononucleated myoblasts (Fig. 1A). The protective effect of MPs was dose dependent (P<0.05), apoptosis being inhibited by 75% at the 1:5 (mpc:MP) ratio (P<0.001) (Fig. 1A). Because the rate of spontaneous mpc apoptosis was low (7.1±1.3% of the cells), further experiments were performed after induction of mpc apoptosis by STS [START_REF] Dominov | Bcl-2 expression identifies an early stage of myogenesis and promotes clonal expansion of muscle cells[END_REF][START_REF] Columbaro | Staurosporine treatment and serum starvation promote the cleavage of emerin in cultured mouse myoblasts: involvement of a caspasedependent mechanism[END_REF]. The protective effect of MPs was strong enough to reduce STS-induced mpc apoptosis (Fig. 1B). At the 1:10 (mpc:MP) ratio, apoptosis was inhibited by 74% as assessed by annexin V labelling (P<0.001) (Fig. 1B) and by 60% as assessed by DIOC-6 staining (P<0.01). MPs inhibited STS-induced myoblast apoptosis in a dose-dependent and saturable way (P<0.001) (Fig. 1B).

The anti-apoptotic effect of MPs is more pronounced in myotubes In culture, mpcs proliferate and give rise to mononucleated myoblasts that subsequently fuse with each other to form multinucleated myotubes. It is well established that myoblast apoptosis occurs at times of serum deprivation used to boost myogenic differentiation. In addition, it has been shown that myotubes are at particular risk of undergoing apoptosis upon stimulation with extrinsic stimuli as a result of their poor Bcl-2 expression [START_REF] Dominov | Bcl-2 expression identifies an early stage of myogenesis and promotes clonal expansion of muscle cells[END_REF][START_REF] Mcardle | Apoptosis in multinucleated skeletal muscle myotubes[END_REF][START_REF] Ruest | Development-dependent disappearance of caspase-3 in skeletal muscle is post-transcriptionally regulated[END_REF]. Consistently, in our experiments, myotubes were 1.6-fold more sensitive to STS than myoblasts (P<0.05) (Fig. 1C,D). Because the large size of myotubes precluded flow cytometry analysis, determination of caspase-3 activity was used to compare the anti-apoptotic effect of MPs on STStreated myoblasts and myotubes [START_REF] Dominov | Bcl-2 expression identifies an early stage of myogenesis and promotes clonal expansion of muscle cells[END_REF]. MPs more efficiently rescued myotubes than myoblasts from STSinduced apoptosis, as they decreased caspase-3 activity by 21% in myoblasts and by 39% in myotubes [values at 5 hours, 1:2 (mpc:MP) ratio, P<0.005] (Fig. 1C,D).

The anti-apoptotic effect of MPs is associated with activation of survival signalling Expression of the Bcl-2 anti-apoptotic protein is important for survival of expanding myogenic cells [START_REF] Dominov | Bcl-2 expression identifies an early stage of myogenesis and promotes clonal expansion of muscle cells[END_REF]. As compared with mpc and MP cultures, co-cultures of mpcs with MPs showed enhanced expression of Bcl-2 (Fig. 2A). Prosurvival signalling pathways in myogenic cells include the mitogen-activated protein kinase and extracellular signalregulated kinase (MAPK-ERK1/2) cascade, and the phosphatidylinositol 3-kinase (PI 3-kinase) and serine/ threonine protein kinase Akt/PKB pathway [START_REF] Ostrovsky | The mitogen-activated protein kinase cascade promotes myoblast cell survival by stabilizing the cyclin-dependent kinase inhibitor, p21WAF1 protein[END_REF][START_REF] Reuveny | RhoA controls myoblast survival by inducing the phosphatidylinositol 3-kinase-Akt signaling pathway[END_REF]. These pathways operate through sequential phosphorylation events. Both pathways were activated in co-cultures, as assessed by increased phosphorylation of both ERK1/2 and Akt (Fig. 2A).

To evaluate to what extent MP phagocytosis of damaged cells [START_REF] Geske | The role of the macrophage in apoptosis: hunter, gatherer, and regulator[END_REF] could have participated in the decreased number of apoptotic cells in co-cultures, we used potent inhibitors of MP phagocytic activity, including H 2 O 2 at low concentrations and cytochalasin D [START_REF] Elliott | Treatment of alveolar macrophages with cytochalasin D inhibits uptake and subsequent growth of Legionella pneumophila[END_REF][START_REF] Rubartelli | The selective engulfment of apoptotic bodies by dendritic cells is mediated by the alpha(v)beta3 integrin and requires intracellular and extracellular calcium[END_REF][START_REF] Anderson | Oxidative stress inhibits the phagocytosis of apoptotic cells that have externalized phosphatidylserine[END_REF]. The addition of phagocytosis inhibitors to co-cultures did not significantly modify the decreased rate of apoptotic mpcs observed in the presence of MPs (Fig. 2B). Consistently, the total number of mpcs did not significantly vary during the 6 hour time of co-culture, as assessed both by cell count [35,400±600 cells/cm 2 in mpc culture versus 35,750±1300 cells/cm 2 in co-cultures of mpcs with MPs (1:2)] and creatine phosphokinase level determination [9.04±4.4 UI/ml in mpc culture versus 7.3±3.8 UI/ml in co-cultures of mpcs with MPs (1:2)]. Altogether, these results substantiate the view that MPs induce pro-survival signalling and decrease mpc apoptosis.

DNA array in MPs and mpcs allows identification of four anti-apoptotic systems

To select the cell-cell molecular systems at work in the transduction of anti-apoptotic signals in mpcs, we used an mRNA profiling technique that allows analysis of a huge number of genes at once. Among the 375 genes represented on the DNA macroarray membrane we used, 12 (Table 1) had products known to be involved in anti-apoptotic signals mediated by cell-cell contacts.

Four of these products were constitutively expressed by human mpcs and had their counterligands expressed by human MPs (Table 1), as follows: (1) VCAM-1 binding to VLA-4 (␣4␤1 integrin); this adhesion system mediates the protective effects of MPs to erythroblasts [START_REF] Hanspal | The association of erythroblasts with macrophages promotes erythroid proliferation and maturation: a 30-kD heparinbinding protein is involved in this contact[END_REF][START_REF] Sadahira | Role of the macrophage in erythropoiesis[END_REF], of stromal cells to haematopoietic stem cells, B cells and plasma cells [START_REF] Koopman | Adhesion through the LFA-1 (CD11a/CD18)-ICAM-1 (CD54) and the VLA-4 (CD49d)-VCAM-1 (CD106) pathways prevents apoptosis of germinal center B cells[END_REF][START_REF] Oostendorp | VLA-4 and VCAM-1 are the principal Macrophages and myogenic cell survival adhesion molecules involved in the interaction between blast colony-forming cells and bone marrow stromal cells[END_REF][START_REF] Wang | Rescue from apoptosis in early (CD34selected) versus late (non-CD34-selected) human hematopoietic cells by very late antigen 4-and vascular cell adhesion molecule (VCAM) 1-dependent adhesion to bone marrow stromal cells[END_REF][START_REF] Hayashida | Rheumatoid arthritis synovial stromal cells inhibit apoptosis and up-regulate Bcl-xL expression by B cells in a CD49/CD29-CD106-dependent mechanism[END_REF][START_REF] Minges Wols | The role of bone marrow-derived stromal cells in the maintenance of plasma cell longevity[END_REF][START_REF] Hall | Stromal cells expressing elevated VCAM-1 enhance survival of B lineage tumor cells[END_REF] and of endothelial cells to mast cells [START_REF] Mierke | Human endothelial cells regulate survival and proliferation of human mast cells[END_REF]. It is also involved in protection of T cells and retinal ganglion cells [START_REF] Rose | Soluble VCAM-1 binding to alpha4 integrins is cell-type specific and activation dependent and is disrupted during apoptosis in T cells[END_REF][START_REF] Leussink | Blockade of signaling via the very late antigen (VLA-4) and its counterligand vascular cell adhesion molecule-1 (VCAM-1) causes increased T cell apoptosis in experimental autoimmune neuritis[END_REF][START_REF] Leu | Integrin alpha4beta1 function is required for cell survival in developing retina[END_REF]. ( 2) ICAM-1 binding to LFA-1 (␣L␤2 integrin); this system mediates protective effects of endothelial cells to transmigrating lymphocytes [START_REF] Borthwick | Transendothelial migration confers a survival advantage to activated T lymphocytes: role of LFA-1/ICAM-1 interactions[END_REF]. Its implication in support of bone marrow stromal cells to T cells [START_REF] Winter | Enhanced T-lineage acute lymphoblastic leukaemia cell survival on bone marrow stroma requires involvement of LFA-1 and ICAM-1[END_REF], and of follicular dendritic cells to B cells [START_REF] Koopman | Adhesion through the LFA-1 (CD11a/CD18)-ICAM-1 (CD54) and the VLA-4 (CD49d)-VCAM-1 (CD106) pathways prevents apoptosis of germinal center B cells[END_REF] has been also reported, but in vitro experiments have yielded somewhat discrepant results [START_REF] Zen | Monocyte-derived macrophages prime peripheral T cells to undergo apoptosis by cell-cell contact via ICAM-1/LFA-1dependent mechanism[END_REF][START_REF] Wang | Essential lymphocyte function associated 1 (LFA-1): intercellular adhesion molecule interactions for T cell-mediated B cell apoptosis by Fas/APO-1/CD95[END_REF]. (3) CX3CL1 (fractalkine) binding to CX3CR1; CX3CR1 uniquely binds membraneanchored and shed soluble forms of CX3CL1 [START_REF] Bazan | A new class of membrane-bound chemokine with a CX3C motif[END_REF], which are respectively involved in firm cell-to-cell adhesion [START_REF] Fong | Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow[END_REF][START_REF] Umehara | Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1[END_REF] and in chemotaxis [START_REF] Chapman | Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage[END_REF]. MPs and neural cells reciprocally signal through this system to suppress apoptotic cell death [START_REF] Harrison | Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia[END_REF][START_REF] Boehme | The chemokine fractalkine inhibits Fas-mediated cell death of brain microglia[END_REF][START_REF] Meucci | Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival[END_REF][START_REF] Mizuno | Production and neuroprotective functions of fractalkine in the central nervous system[END_REF][START_REF] Deiva | Fractalkine reduces N-methyl-d-aspartate-induced calcium flux and apoptosis in human neurons through extracellular signal-regulated kinase activation[END_REF]. This system also prevents apoptosis in intestinal epithelium [START_REF] Brand | Fractalkine-mediated signals regulate cell-survival and immune-modulatory responses in intestinal epithelial cells[END_REF]. (4) Homophilic PECAM-1 interactions; endothelial cell PECAM-1 prevents apoptosis of both neighbouring endothelial cells [START_REF] Bird | Homophilic PECAM-1(CD31) interactions prevent endothelial cell apoptosis but do not support cell spreading or migration[END_REF][START_REF] Evans | Signaling through CD31 protects endothelial cells from apoptosis[END_REF][START_REF] Gao | PECAM-1 functions as a specific and potent inhibitor of mitochondrial-dependent apoptosis[END_REF] and transmigrating leucocytes [START_REF] Ferrero | Transendothelial migration leads to protection from starvation-induced apoptosis in CD34+CD14+ circulating precursors: evidence for PECAM-1 involvement through Akt/PKB activation[END_REF] through homophilic PECAM-1 interactions.

Exposure to MP-conditioned medium reinforced mRNA expression of all counterreceptors by mpcs (Table 1). Results of DNA macroarray were confirmed by RT-PCR. VCAM-1, ICAM-1, CX3CL1 and PECAM-1 mRNAs were detected in MPs (Fig. 3A). It was shown that mpcs, which are already known to express the counterreceptor ␤1 integrin [START_REF] Vachon | Integrins (alpha7beta1) in muscle function and survival. Disrupted expression in merosin-deficient congenital muscular dystrophy[END_REF], expressed ␣4, ␣L and ␤2 integrins, and CX3CR1 and PECAM-1 mRNAs (Fig. 3A). The corresponding proteins were immunodetected at the cell surface of MPs and mpcs, except PECAM-1, which could not be visualised in mpcs despite positive detection by immunoblotting in differentiated mpcs (Fig. 3B). Expression of all four receptors was much stronger in myotubes than in myoblasts (Fig. 3B).

CX3CL1-CX3CR1, VCAM-1-VLA-4, ICAM-1-LFA-1 and PECAM-1-PECAM-1 are functional at the mpc surface Adhesion assays were used to assess functional availability of the candidate molecular systems at the MP-mpc interface. It was found that mpcs adhered on a MP monolayer in a dosedependent, time-dependent and saturable fashion (Fig. 4A,B), allowing the involvement of specific receptor-ligand interactions to be assessed. Blocking antibodies against both CX3CL1-CX3CR1, VCAM-1-VLA-4, ICAM-1-LFA-1 or PECAM-1 failed to inhibit mpc adhesion on MPs significantly (data not shown), suggesting robust redundancy of cell adhesion systems involved in mpc-MP contacts. Therefore, adhesion assays using mpcs deposited on coats of immobilised ligands were used to test the functionality of each receptor. It was shown that mpcs adhered in a dose-dependent and saturable way to VCAM-1 (Fig. 4C), CX3CL1 (Fig. 4D), ICAM-1 (Fig. 4E) and PECAM-1 (Fig. 4F), as previously shown for other cell types [START_REF] Meyer | Characterization of intercellular adhesion molecule-1 ectodomain (sICAM-1) as an inhibitor of lymphocyte functionassociated molecule-1 interaction with ICAM-1[END_REF][START_REF] Imai | Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion[END_REF][START_REF] Bird | Homophilic PECAM-1(CD31) interactions prevent endothelial cell apoptosis but do not support cell spreading or migration[END_REF][START_REF] Goda | CX3C-chemokine, fractalkine-enhanced adhesion of THP-1 cells to endothelial cells through integrin-dependent and -independent mechanisms[END_REF]. These results strongly suggested that VLA-4, CX3CR1, LFA-1 and PECAM-1 expressed at the mpc surface were used to bind VCAM-1, membrane-bound CX3CL1, ICAM-1 and PECAM-1, respectively.

CX3CL1-CX3CR1, VCAM-1-VLA-4, ICAM-1-LFA-1 and PECAM-1-PECAM-1 mediate MP anti-apoptotic activity on mpcs Co-cultures of mpcs with MPs were incubated with blocking antibodies to assess anti-apoptotic effects of the selected molecules in our model. Blockage of each molecular system inhibited the beneficial effects of MPs on mpc survival (P<0.05) (Fig. 5), as assessed by increased annexin V labelling and caspase-3 activity, and decreased DIOC-6 staining following exposure to blocking antibodies. Consistently, caspase-3 activity was increased in myotubes in the presence of the different blocking antibodies (Fig. 5C). 

Journal of Cell Science 119 (12)

Influx of MPs and fading of mpc apoptosis are synchronous during post-injury muscle regeneration

To examine the relevance of in vitro results, we injected snake venom notexin in tibialis anterior muscle of adult mice [START_REF] Lefaucheur | The cellular events of injured muscle regeneration depend on the nature of the injury[END_REF]. At 3 hours post-injury, TUNEL-positive nuclei were abundant in damaged areas (Fig. 6A) (15.6 apoptotic cells/field). It was found that 60% (9.5 cells/field) of TUNEL-positive cells were desmin negative and presumably corresponded to non-muscle cells; 40% (6.1 cells/field) of apoptotic cells were desmin positive and probably corresponded to activated satellite cells, interstitial myoblasts or myotubes (Fig. 6A). As MP influx proceeded in the regenerating muscle, the number of both the overall apoptotic cell population and of TUNEL-desmin doublepositive cells dramatically decreased (Fig. 6A). At 48 hours post-injection, MP infiltration was massive and apoptotic mpcs were extremely rare, accounting for no more than 20% (0.12 cells/field) of the remaining apoptotic cells (0.62 cells/field) at this time (Fig. 6A). At this time point, both anti-apoptotic effectors VCAM-1, ICAM-1, CX3CL1 and PECAM-1, and their counterreceptors VLA-4, LFA-1, CX3CR1 and PECAM-1, were expressed by MPs and mpcs, respectively, in the regenerating areas (Fig. 6B). 

Discussion

In the present study, we demonstrate that: (1) MP influx is temporally correlated with fading of mpc apoptosis during in vivo post-injury muscle regeneration; (2) MPs rescue differentiating mpcs more than cycling mpcs from apoptotic cell death; (3) MPs deliver anti-apoptotic signals to mpcs through direct cell-cell contacts involving VCAM-1-VLA-4, ICAM-1-LFA-1, PECAM-1-PECAM-1 and CX3CL1-CX3CR1 interactions.

Muscle damage is known to induce massive MP infiltration of the injury site [START_REF] Mclennan | Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions[END_REF][START_REF] Pimorady-Esfahani | Macrophages and dendritic cells in normal and regenerating murine skeletal muscle[END_REF]. Initially, the role of these blood-borne cells was believed to be limited to clearance of necrotic fibres [START_REF] Mclennan | Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions[END_REF][START_REF] Pimorady-Esfahani | Macrophages and dendritic cells in normal and regenerating murine skeletal muscle[END_REF]. However, several in vivo and in vitro studies have shown that MPs are essential in orchestration of the muscle repair process [START_REF] Grounds | Phagocytosis of necrotic muscle in muscle isografts is influenced by the strain, age, and sex of host mice[END_REF][START_REF] Lescaudron | Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant[END_REF].

The decision of a cell to proliferate, differentiate or undergo apoptosis is an integrated response to its growth factors and adhesive environment [START_REF] Schwartz | Integrating with integrins[END_REF]. At the population level, mpc growth depends on both cell-cycling activity and cell survival. Previous studies on mpc-supporting cues have focused on MP-released soluble growth factors [START_REF] Robertson | The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis[END_REF][START_REF] Cantini | Macrophage-released factor stimulates selectively myogenic cells in primary muscle culture[END_REF][START_REF] Merly | Macrophages enhance muscle satellite cell proliferation and delay their differentiation[END_REF]. Some particular growth factors, such as insulin growth factor I (IGF-I), in addition to being a potent myogenic differentiation factor [START_REF] Tureckova | Insulin-like growth factor-mediated muscle differentiation: collaboration between phosphatidylinositol 3-kinase-Akt-signaling pathways and myogenin[END_REF], can both stimulate mpc proliferation in the presence of other soluble factors [START_REF] Napier | Insulin-like growth factor-I protects myoblasts from apoptosis but requires other factors to stimulate proliferation[END_REF] and promote mpc survival [START_REF] Lawlor | Insulin-like growth factor-mediated muscle cell survival: central roles for Akt and cyclin-dependent kinase inhibitor p21[END_REF]. However, our previous (Chazaud et al., 2003b) and present studies indicate that MP-derived soluble factors globally stimulate mpc proliferation, as assessed by thymidine incorporation, whereas direct MP cell contacts confer protection against apoptosis to mpcs.

Apoptotic cell death is a normal developmental event involving both proliferating myoblasts and postmitotic myofibres [START_REF] Garcia-Martinez | Internucleosomal DNA fragmentation and programmed cell death (apoptosis) in the interdigital tissue of the embryonic chick leg bud[END_REF][START_REF] Tidball | Apoptosis precedes necrosis of dystrophin-deficient muscle[END_REF][START_REF] Mcclearn | Muscle cell death during the development of head and neck muscles in the chick embryo[END_REF]. As shown in our in vivo study, apoptosis of myogenic cells also occurs during regeneration of postnatal muscle. In this setting, TUNEL-positive myogenic cells disappear as MP infiltration proceeds. Obviously, this might reflect both MP phagocytosis of dead cells and the delivery of an MP pro-survival signal to living mpcs.

In vitro, the protective effects of MPs were twofold stronger towards post-mitotic differentiating mpcs than towards cycling myoblasts. The physiological significance of this finding remains elusive. Furthermore, mpcs are at risk of undergoing apoptosis for different reasons during the proliferation and differentiation process. Fast-cycling myoblasts must face difficulties in maintaining adequate DNA repair that might constitute an intrinsic signal for apoptosis [START_REF] Wang | Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation[END_REF]. Then, as they withdraw from the cell cycle and begin to differentiate, mpcs are at particular risk of myoblast-fusion-associated apoptosis, induced by endoplasmic reticulum stress [START_REF] Nakanishi | Endoplasmic reticulum stress signaling transmitted by ATF6 mediates apoptosis during muscle development[END_REF]. Finally, myotubes elongate through additional myoblast fusion and must progressively stabilise their structure by establishing close association with the extracellular matrix (ECM) [START_REF] Huppertz | Apoptosis and syncytial fusion in human placental trophoblast and skeletal muscle[END_REF]. Myogenic cell adhesion to the microenvironment seems to be crucial for their survival, as demonstrated by increased muscle cell apoptosis associated with deficiencies in ECM-binding proteins such as ␣5 and ␣7␤1 integrins, and ECM proteins such as laminins [START_REF] Vachon | Merosin and laminin in myogenesis; specific requirement for merosin in myotube stability and survival[END_REF][START_REF] Vachon | Integrins (alpha7beta1) in muscle function and survival. Disrupted expression in merosin-deficient congenital muscular dystrophy[END_REF][START_REF] Miyagoe | Laminin alpha2 chain-null mutant mice by targeted disruption of the Lama2 gene: a new model of merosin (laminin 2)-deficient congenital muscular dystrophy[END_REF][START_REF] Taverna | Dystrophic muscle in mice chimeric for expression of alpha5 integrin[END_REF][START_REF] Montanaro | alpha-Dystroglycan is a laminin receptor involved in extracellular matrix assembly on myotubes and muscle cell viability[END_REF]. It is possible that MPsupportive cues help myotubes to achieve their adhesioninduced stabilisation safely. In line with this view, myotubes, which poorly express Bcl-2 and are therefore more sensitive than myoblasts to STS-induced apoptosis (Dominov et al., Journal of Cell Science 119 (12) VLA-4, but not LFA-1, PECAM-1 and CX3CR1, was previously reported to be expressed by mpcs and to increase with myogenic differentiation [START_REF] Rosen | Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis[END_REF]. The authors evaluated VLA-4 as an ECM receptor [START_REF] Rosen | Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis[END_REF], although this integrin, like LFA-1, is also involved in cell-cell adhesion and signalling. All four receptors expressed by mpcs, upon binding of their respective ligands VCAM-1, ICAM-1, PECAM-1 and CX3CL1, were previously shown to mediate anti-apoptotic signalling in a variety of non-muscle cell types (see Results section). VLA-4, PECAM-1 and CX3CR1 mediate activation of the PI 3-kinase/Akt survival pathway [START_REF] Meucci | Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival[END_REF][START_REF] Gao | PECAM-1 functions as a specific and potent inhibitor of mitochondrial-dependent apoptosis[END_REF][START_REF] Ferrero | Transendothelial migration leads to protection from starvation-induced apoptosis in CD34+CD14+ circulating precursors: evidence for PECAM-1 involvement through Akt/PKB activation[END_REF][START_REF] Deiva | Fractalkine reduces N-methyl-d-aspartate-induced calcium flux and apoptosis in human neurons through extracellular signal-regulated kinase activation[END_REF] and, in addition, CX3CR1 activates ERK1/2 [START_REF] Brand | Fractalkine-mediated signals regulate cell-survival and immune-modulatory responses in intestinal epithelial cells[END_REF][START_REF] Deiva | Fractalkine reduces N-methyl-d-aspartate-induced calcium flux and apoptosis in human neurons through extracellular signal-regulated kinase activation[END_REF]. These signalling pathways are both involved in mpc survival [START_REF] Lawlor | Insulin-like growth factor-mediated muscle cell survival: central roles for Akt and cyclin-dependent kinase inhibitor p21[END_REF]. Among many pro-survival effects, Akt phosphorylates BAD, causing its release from the complex it forms with Bcl-2, allowing Bcl-2 to exert its anti-apoptotic activity freely [START_REF] Song | The activation of Akt/PKB signaling pathway and cell survival[END_REF]. Both Akt and ERK1/2 pathways lead to inhibition of caspase-3 [START_REF] Allan | Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK[END_REF][START_REF] Song | The activation of Akt/PKB signaling pathway and cell survival[END_REF], the major effector of the last step of muscle cell apoptosis [START_REF] Tews | Apoptosis and muscle fibre loss in neuromuscular disorders[END_REF]. Consistently, co-cultures of MPs with mpcs showed increased Akt and ERK1/2 phosphorylation, increased Bcl-2 expression and decreased caspase-3 activity.

We previously showed that, early after activation, mpcs secrete a set of chemoattractants to initiate recruitment of circulating monocytes into damaged muscle (Chazaud et al., 2003b). Once recruited, monocytes differentiate into MPs, which are monocyte-derived MPs expressing VCAM-1, ICAM-1, PECAM-1 and CX3CL1, as shown herein. The newly recruited MPs release soluble factors that both amplify recruitment of MPs and stimulate mpc proliferation (Chazaud et al., 2003b). In addition, according to our DNA array, soluble factors produced by MPs reinforce mpc expression of VLA-4, LFA-1, PECAM-1 and CX3CR1 by 20-80%. Thus, when MPs enter into contact with mpcs, both cell types appropriately express anti-apoptotic ligands and counterreceptors.

In conclusion, the present study highlights the complex network of intercellular signalling and communication involved in the organisation of the stromal support of myogenesis. Our data indicating that inflammatory cells, i.e. macrophages, are beneficial for muscle regeneration are in accordance with in vivo studies showing that blocking inflammation with anti-inflammatory drugs might be deleterious for muscle regeneration and repair [START_REF] Mishra | Anti-inflammatory medication after muscle injury. A treatment resulting in short-term improvement but subsequent loss of muscle function[END_REF][START_REF] Shen | NS-398, a cyclooxygenase-2-specific inhibitor, delays skeletal muscle healing by decreasing regeneration and promoting fibrosis[END_REF]. Moreover, evidence that a set of Fig. 6. Apoptosis and muscle regeneration. Notexin-treated mouse muscle was labelled with a set of antibodies at different times after injury. (A) Example of apoptotic (red) and desmin + myogenic cells (green) at 3, 6 and 24 hours post-injury. MP infiltration was evaluated after F4/80 immunolabelling (blue curve) or CD11b immunolabelling (red curve) according to a 0-5 scale and the total number of apoptotic cells per field (black curve) was estimated. Among total apoptotic cells (white bars), apoptotic desmin-positive myogenic cells (black bars) was estimated at each time point. (B) Examples of immunolabellings of myogenic (desmin + ) and macrophagic (CD11b + ) cells for the antiapoptotic molecular systems 3 days after injury. Blue: DAPI nuclei staining. Bars, 10 m. adhesion molecules rescue mpcs from apoptosis might open the possibility of improving myoblast transfer therapy. A strong limitation of this therapeutic approach consists of early massive cell death of non-mechanical origin (Chazaud et al., 2003a), affecting >95% of transplanted mpcs [START_REF] Skuk | Progress in myoblast transplantation: a potential treatment of dystrophies[END_REF]. Moreover, mpcs induced to proliferate actively ex vivo to obtain a huge number of cells for transplantation was shown to increase their susceptibility to undergo apoptosis upon deprivation of extrinsic supportive cues [START_REF] Rehfeldt | Long-term growth selection of mice changes the intrinsic susceptibility of myogenic cells to apoptosis[END_REF]. It seems likely that the use of antiapoptotic cells or molecules could limit massive transplanted cell death, thus allowing appropriated mpc proliferation, differentiation and striated muscle repair.

Materials and Methods

Cell cultures

Unless indicated, culture media components were from Invitrogen (Gibco) and culture plastics from TPP AG (Trasadingen). Human mpcs were cultured from muscle samples as previously described (Chazaud et al., 2003b). Only cultures presenting over 95% CD56 + cells (immunolabelling using anti-CD56 antibodies, diluted 1/20; Sanbio/Monosan) were used. Growing medium [HAM-F12 medium containing 15% fetal calf serum (FCS)] was used for culturing mpcs. To obtain myotubes, medium was replaced by HAM-F12 medium containing 5% FCS (differentiating medium) at time of subconfluence and cells were further cultured during 10 days [START_REF] Lafuste | ADAM12 and alpha9beta1 integrin are instrumental in human myogenic cell differentiation[END_REF].

MPs were obtained from monocytes isolated from human blood as previously described (Chazaud et al., 2003b). Briefly, monocytes were seeded at 0.5ϫ10 6 cell/ml in Teflon bags (AFC) in RPMI medium containing 15% human AB serum for 8 days.

Cell treatments and co-cultures

In each series of experiments, the number of mpcs remained constant whereas the number of MPs varied. Undifferentiated mpcs were seeded at 10,000 cells/cm 2 . Differentiated myotubes were counted in order to seed the appropriate number of MPs, from 1:10 ratio. Co-cultures were incubated in growing or differentiating medium for 6 or 24 hours at 37°C. In some experiments, mpc apoptosis was first induced by staurosporine (STS) treatment (1 M for 6 hours). In some experiments, blocking antibodies were added in co-cultures of mpcs with MPs at saturating concentrations (calculated from IC50 or from previous studies): anti-CX3CL1 (3 g/ml, 51637.1 clone; R&D Systems) (Chazaud et al., 2003b), anti-CX3CR1 (15 g/ml, TP502; Torrey Pines Biolabs) [START_REF] Chapman | Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage[END_REF], anti-VCAM-1 (5 g/ml, 1G11 clone; Immunotech) [START_REF] Minges Wols | The role of bone marrow-derived stromal cells in the maintenance of plasma cell longevity[END_REF], anti-VLA-4 (5 g/ml, HP2/1 clone; Immunotech) [START_REF] Hayashida | Rheumatoid arthritis synovial stromal cells inhibit apoptosis and up-regulate Bcl-xL expression by B cells in a CD49/CD29-CD106-dependent mechanism[END_REF], anti-LFA-1 (5 g/ml, TS1/22 clone; Endogen) [START_REF] Hayashida | Rheumatoid arthritis synovial stromal cells inhibit apoptosis and up-regulate Bcl-xL expression by B cells in a CD49/CD29-CD106-dependent mechanism[END_REF], anti-ICAM-1 (5 g/ml, 84H10 clone; Immunotech) [START_REF] Winter | Enhanced T-lineage acute lymphoblastic leukaemia cell survival on bone marrow stroma requires involvement of LFA-1 and ICAM-1[END_REF], anti-PECAM-1 (5 g/ml, VM64 clone, Biodesign International). In other experiments, co-cultures were performed in the presence of hydrogen peroxide (0.2 mM; Sigma) [START_REF] Anderson | Oxidative stress inhibits the phagocytosis of apoptotic cells that have externalized phosphatidylserine[END_REF] or cytochalasin D (1 g/ml, Sigma) [START_REF] Elliott | Treatment of alveolar macrophages with cytochalasin D inhibits uptake and subsequent growth of Legionella pneumophila[END_REF][START_REF] Rubartelli | The selective engulfment of apoptotic bodies by dendritic cells is mediated by the alpha(v)beta3 integrin and requires intracellular and extracellular calcium[END_REF]. Controls included addition of whole IgGs from mouse and rabbit (3 g/ml; Vector Laboratories).

Measurement of mpc apoptosis by flow cytometry

Trypsin was used to detach mpcs and detection of apoptotic cells was performed using annexin V plus CD14 labelling and DIOC-6 plus CD14 staining. CD14 labelling was used to exclude MPs detached by the trypsinisation procedure (Fig. 7A). Cells were resuspended in 100 l buffer (140 mM NaCl, 2.5 mM CaCl 2 , 10 mM HEPES pH 7.4) containing either 2 l of annexin V (Roche Diagnostics) or 70 nM of DIOC-6 (Molecular Probes) and 10 l of TRITC-conjugated anti-CD14 antibodies (RMO52; Immunotech) for 30 minutes. Cells were washed before analysis by flow cytometry on a FACSCalibur (BD Biosciences). Apoptosis of mpcs was significantly increased by STS treatment, reaching 30±13% of the cells (annexin V detection) and 44±13% of the cells (DIOC-6 detection) (P<0.01) (Fig. 7B). As the range of apoptotic mpcs was 19-60% (annexin V detection) and 30-70% (DIOC-6 detection) of the cells, mpc apoptosis was expressed in percentage of apoptosis evaluated in STS-treated mpc cultures (without MPs). In co-cultures of MPs with untreated mpcs, CD14 expression was not affected (Fig. 7C); in cocultures of MPs with STS-treated mpcs, we observed no more than 4-5% of CD14 - cells among CD45 + cells (Fig. 7C), indicating that gating allowed exclusion of >95% of MPs.

Measurement of caspase-3 activity

Proteins from mpcs, MP cultures and mpc-MP co-cultures were extracted in lysis buffer (50 mM Hepes pH 7.4, 100 mM NaCl, 1% Nonidet P-40, 40 mM EGTA pH 8.0, 100 mM DTT, 2 g/ml leupeptin, 2 g/ml aprotinin, 1 g/ml pepstatin) and recovered after centrifugation at 4000 g for 10 minutes at 4°C. Protein concentration was determined using the BCA protein assay kit from Pierce. Aliquots corresponding to 30 g of proteins were diluted in caspase-3 reaction buffer (1 M Hepes pH 7.4, 40 mM EDTA pH 8.0, 100 mM DTT, 25% sucrose) and incubated during 8 hours at 37°C in a microplate with caspase-3 substrate (Ac-DEVD-AFC fluorogenic substrate, Biomol Research Laboratories). Enzymatic activity was measured every 30 minutes with a fluorescence plate reader FL600 (Bio-Tek) and was expressed in arbitrary units.

Adhesion of mpcs on MPs

Before being allowed to adhere on a confluent monolayer of MPs at various densities (5000 to 50,000 mpcs per well) and for various times (30 to 120 minutes), mpcs were labelled with 5-bromo-2-deoxyuridine (BrdU) for 72 hours. BrdU was then quantified using a colorimetric assay (Cell proliferation ELISA BrdU kit; R&D Systems). phosphate-buffered saline (PBS). Non-specific binding sites were blocked with 1% bovine serum albumin for 30 minutes at room temperature. 30,000 mpcs per well were allowed to adhere for 2 hours at 37°C. Non-adherent cells were removed by gentle PBS washes. Cells were fixed with acetone and methanol for 15 minutes and stained with 0.5% Violet Crystal for 15 minutes. The number of adherent cells was evaluated by reading the OD at 540 nm.

Adhesion of mpcs on ligand coats

DNA array

Total RNA was prepared from human mpcs and MPs using the RNeasy mini kit (Qiagen). All further steps were performed according to the manufacturer's instructions in the human cytokine array GA001 kit (R&D Systems). For mpc and MP samples, 5 and 7 g of total RNA gave labelled cDNA of 600,000 and 800,000 cpm, respectively, which was deposited on membranes. Results were read using a Phosphorimager (Amersham) after 72 hours exposure time. Analysis was performed using Image Quant software (Amersham), which allows background noise subtraction, correction for the variation of density for housekeeping genes and, finally, for comparison of densitometric signals. Results were expressed in arbitrary units.

RT-PCR

Total mpc or MP RNA (1.5 g) was reverse transcribed and amplified using OneStep RTPCR (Qiagen) and specific primers. For CX3CL1 [primers described in Lucas et al. [START_REF] Lucas | The transmembrane form of the CX3CL1 chemokine fractalkine is expressed predominantly by epithelial cells in vivo[END_REF]], amplification was performed at 94, 64 and 72°C for 30 seconds, 30 seconds and 1 minute, respectively, for 38 cycles. For CX3CR1 [primers described in Muehlhoefer et al. [START_REF] Muehlhoefer | Fractalkine is an epithelial and endothelial cell-derived chemoattractant for intraepithelial lymphocytes in the small intestinal mucosa[END_REF]], amplification was performed at 94, 55 and 72°C for 30 seconds, 30 seconds and 45 seconds, respectively. For VCAM-1 [primers described in Serradell et al. [START_REF] Serradell | Uremic medium causes expression, redistribution and shedding of adhesion molecules in cultured endothelial cells[END_REF]], amplification was performed at 94, 53 and 72°C for 30 seconds, 30 seconds and 45 seconds, respectively, for 38 cycles. For ␣4 integrin (GenBank # NM_000885), the sense primer used was 5Ј-CGA ACC GAT GGC TCC TA-3Ј and the antisense primer was 5Ј-AGT ATG CTG GCT CCG AAA AT-3Ј, amplification was performed at 94, 55 and 72°C for 30 seconds, 30 seconds and 45 seconds, respectively, for 40 cycles. For ICAM-1 [primers described in Besch et al. [START_REF] Besch | Specific inhibition of ICAM-1 expression mediated by gene targeting with Triplex-forming oligonucleotides[END_REF]], amplification was performed at 94, 65 and 72°C for 30 seconds, 30 seconds and 45 seconds, respectively, for 50 cycles. For ␣L integrin (GenBank # BC008777), the sense primer used was 5Ј-TTT GAG AAG AAC TGT GGG GAG GAC-3Ј and the antisense primer was 5Ј-GGT GGG CGA GAT GGA AGG T-3Ј, both amplification was performed at 94, 60 and 72°C for 30 seconds, 45 seconds and 2 minutes, respectively, for 40 cycles. Amplification products (10 l) were subjected to electrophoresis on 2% agarose gel containing ethidium bromide for visualisation.

Immunoblotting

Total proteins from mpc and MP cultures, and co-cultures of mpcs with MPs, were extracted as described in [START_REF] Davaille | Sphingosine 1-phosphate triggers both apoptotic and survival signals for human hepatic myofibroblasts[END_REF]. Protein concentration was determined using the BCA protein assay kit. Aliquots corresponding to 15 g of proteins were subjected to western blot. Anti-phosphorylated Akt (1/1000; Cell Signalling Technology), anti-phosphorylated ERK1/2 (1/1000; Promega), anti-Bcl-2 (1/500; Santa Cruz Biotechnology), anti-PECAM-1 (1/500, Dakocytomation) or anti-␤-actin (1/1000; Santa Cruz Biotechnology) antibodies were added overnight and revealed using peroxidase-conjugated anti-mouse, anti-rabbit or anti-goat antibodies (1/4000; Santa Cruz), which was detected using a chemiluminescence kit (Amersham Biosciences).

In vitro immunolabellings

Human cells cultured on coverslips were labelled with primary antibodies (same references as above) for 2 hours: anti-CX3CL1 (50 g/ml), anti-CX3CR1 (15 g/ml), anti-VCAM-1 (15 g/ml), anti-VLA-4 (15 g/ml), anti-ICAM-1 (15 g/ml), anti-LFA-1 (15 g/ml), anti-PECAM-1 (15 g/ml), revealed using biotinylated antibody (1/200), HRP-streptavidine (1/200) and DAB substrate kit for peroxidase (Vector Laboratories). Controls included incubation with whole IgGs from the species of the primary antibody (50 g/ml; Vector Laboratories).

In vivo toxic muscle injury

Notexin (10 l of 25 g/ml in PBS; Sigma) was injected into the tibialis anterior of adult C57/B6 mice. At various times after injection, muscles were removed, snap frozen in nitrogen-chilled isopentane (-160°C) and kept at -80°C until use. 7 mthick cryosections were treated for immunolabelling.

In situ detection of apoptosis

Muscle cryosections were incubated with rabbit polyclonal desmin antibodies (60 g/ml; Abcam) and further treated to detect apoptotic nuclei (Apoptag Red; Qbiogen). Slides were examined under an Axioplan 2 Zeiss microscope (Carl Zeiss) and images were captured with an Orca ER digital camera (Hamamatsu Photonics KK) using Simple PCI software (C-Imaging Compix). Apoptotic desmin -and desmin + cells were counted in at least 20 randomly chosen fields within the injured area (ϫ20 objective).

In vivo immunolabellings

Muscle cryosections were double labelled with either desmin antibodies (60 g/ml; Abcam) and anti-VLA-4 (15 g/ml, Chemicon International) or anti-LFA-1 (10 g/ml; Abcam) or anti-PECAM-1 (10 g/ml, Santa Cruz) or anti-CX3CR1 (10 g/ml; R&D Systems, using the MOM kit from Vector Laboratories) antibodies to detect mpc expression. Slides were treated with anti-CD11b antibodies (10 g/ml; BD Biosciences) and anti-CX3CL1 (15 g/ml; Abcam) or anti-VCAM-1 (15 g/ml; R&D Systems) or anti-ICAM-1 (50 g/ml; Chemicon International) or anti-PECAM-1 (10 g/ml; Santa Cruz) antibodies to detect MP expression. To evaluate MP infiltration after injury, slides were treated with anti-CD11b as above or anti-F4/80 antibodies (20 g/ml; Abcam). Primary antibodies were detected with either cy3-labelled or FITC-labelled secondary antibodies (Jackson ImmunoResearch Laboratories). Controls included incubation with whole IgGs from species of the primary antibody (Vector Laboratories). Slides were examined as described above.

Statistical analyses

Except DNA array, all experiments were performed using at least three different cultures or animals. The Student's t-test and ANOVA analysis were used for statistical analyses. P<0.05 was considered significant.
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  ) macrophage influx is temporally correlated with the disappearance of TUNEL-positive apoptotic myogenic cells during post-injury muscle regeneration in mice; (2) direct cell-cell contacts between human macrophages and myogenic cells rescue myogenic cells from apoptosis, as assessed by decreased annexin V labelling and caspase-3 activity, and by increased DIOC-6 staining, Bcl-2 expression and phosphorylation of Akt and ERK1/2 survival pathways; (3) four pro-survival cell-cell adhesion molecular systems detected by DNA macroarray are expressed by macrophages and myogenic cells in vitro and in vivo
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 12 Fig. 1. Inhibition of both spontaneous and induced mpc apoptosis by MPs. (A,B) untreated (A) and STS-treated (B) mpcs were co-cultured with MPs at various ratios and mpc apoptosis was evaluated by annexin V labelling (white bars) and DIOC-6 staining (black bars) after exclusion of CD14 + cells. In A, all mpc:MP ratios used were statistically different from mpcs (1:0 ratio) (Pр0.04); in B, all mpc:MP ratios used, except the 1:0.5 ratio, were statistically different from mpcs (1:0 ratio) (Pр0.07). (C,D) STS-treated myoblasts (C, Mb) and myotubes (D, MT) were co-cultured with or without MP (1:2 mpc:MP ratio). Apoptosis was evaluated by caspase-3 activity measurement. Results are means ± s.e.m. of at least three experiments.

Fig. 3 .

 3 Fig. 3. Expression of candidate effectors by human MPs and mpcs. (A) RT-PCR analysis of CX3CL1, VCAM-1, ICAM-1 and PECAM-1 mRNA in MPs, and of CX3CR1, ␣4, ␣L, ␤2 integrins, and PECAM-1 mRNA in mpcs. ␤2M is beta2microglobulin. (B) Immunolabelling of CX3CL1, VCAM-1, ICAM-1 and PECAM-1 on MPs (left panel) and of CX3CR1, VLA-4 and LFA-1 on mpcs (right panel), revealed by DAB substrate kit for peroxidase. Magnification, 300ϫ. PECAM-1 expression in mpcs was assessed by immunoblotting. MT, myotube; Mb, myoblast.
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 4 Fig. 4. Functionality of candidate effectors at the mpc cell membrane; adhesion assays. (A,B) Adhesion of mpcs on a MP monolayer according to incubation time (A) and mpc concentration (B). Adhesion of mpcs on VCAM-1 (C), CX3CL1 (D), ICAM-1 (E) and PECAM-1 (F) coats. Results are means ± s.e.m. of three experiments.

Fig. 5 .

 5 Fig. 5. Functionality of candidate effectors at the mpc cell membrane; apoptosis assays. STS-treated mpcs were co-cultured with or without MPs in the presence or absence of antibodies directed against CX3CL1 and CX3CR1, VCAM-1 and VLA-4, ICAM-1 and LFA-1, or PECAM-1 (see bottom of figure). (A,B) Apoptosis of mpcs was evaluated by annexin V labelling (A) and DIOC-6 staining (B) after exclusion of CD14 + cells. (C) Myoblast (white bars) and myotube (black bars) apoptosis was evaluated by caspase-3 activity measurement. Results are expressed as percentage of apoptosis in STS-treated mpcs and are means ± s.e.m. of at least three experiments.

Fig. 7 .

 7 Fig. 7. Measurement of mpc apoptosis. (A) Example of flow cytometric analysis of mpc apoptosis in co-cultures of mpcs with MPs. CD14 labelling is used to discriminate MPs from mpcs. The apoptotic mpc population is gated in red: annexin V + CD14 -cells and DIOC-6 -CD14 -cells. (B) Example of spontaneous (dotted lines) and STS-induced (continuous lines) apoptosis in mpc cultures. (C) Expression of CD14 by CD45 cells in co-cultures of mpcs with MPs.

  

Table 1 . Gene expression by human mpcs and MPs

 1 

	Expressed protein	GenBank accession number	mpcs	Intensity*	MPs	mpcs stimulated by MPs versus mpcs ‡
	Cadherin 5 (VE-cadherin) (homophilic)	X79981	ND		304	
	PECAM-1 (CD31) (homophilic)	M28526	106		602	1.5
	ALCAM (CD166) (ligand)	L38608	204		687	
	CD6 (receptor)	U34625	ND		221	
	Fractalkine (CX3CL1) (ligand)	U91835	90		89	
	CX3CR1 (receptor)	U20350	57		14	1.2
	VCAM-1 (CD106) (ligand)	X53051	160		162	
	VLA-4␣4 (CD49d) (receptor subunit)	X16983	74		355	1.8
	VLA-4␤1 (CD29) (receptor subunit)	X07979	464		929	1.2
	ICAM-1 (CD54) (ligand)	J03132	160		162	
	LFA-1␣L (CD11a) (receptor subunit)	Y00796	74		355	2.2
	LFA-1␤2 (CD18) (receptor subunit)	M15395	464		929	1.6
	ND: not detected.					

*Arbitrary units. ‡ Intensity detected in mpcs stimulated by MPs (24 hours incubation in MP-conditioned medium as described in

Chazaud et al., 2003b) 

versus intensity detected in mpcs.
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