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Abstract 

Europe is the historical cradle of viticulture, but grapevines have been increasingly threatened by 

pathogens of American origin. The invasive oomycete Plasmopara viticola causes downy 

mildew, one of the most devastating grapevine diseases worldwide. Despite major economic 

consequences, its invasion history remains poorly understood. Comprehensive population 5 

genetic analyses of ~2000 samples from the most important wine-producing countries revealed 

very low genetic diversity in invasive downy mildew populations worldwide. All the populations 

originated from one of five native North American lineages, the one parasitizing wild summer 

grape. After an initial introduction into Europe, invasive European populations served as a 

secondary source of introduction into vineyards worldwide, including China, South Africa and, 10 

twice independently, Australia. Invasion of Argentina probably represents a tertiary introduction 

from Australia. Our findings provide a striking example of a global pathogen invasion resulting 

from secondary dispersal of a successful invasive population. It will help designing quarantine 

regulations and efficient breeding for resistance against grapevine downy mildew.  
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Introduction 

Global changes (e.g., climate warming and international exchanges) are favoring increases in the 

numbers of emerging diseases caused by invasive pathogens on crops worldwide, incurring 

substantial economic, social and environmental costs (1-3). Infamous recent examples include the 

emergence of new races of the stem rust fungus in Eastern Africa (4) and of the fungus causing 5 

wheat blast disease in Bangladesh (5), both threatening wheat production and becoming invasive. 

Most emerging diseases result from biological invasions bringing the native host-parasite 

association back together after crop introduction into new areas, or host shifts following pathogen 

introductions (6, 7). An understanding of the evolutionary processes responsible for emerging crop 

diseases is important for preventing further devastating biological invasions and for controlling 10 

introduced populations. This requires elucidation of the invasion mechanisms, pathways and 

demographic processes occurring during pathogen invasions (e.g., bottlenecks and hybridization). 

Important questions include whether pathogen invasions result from host shifts, whether limited 

genetic variation has been introduced, whether multiple introductions and admixture are required 

for successful invasions (7), and whether the invaded areas are colonized directly from native 15 

populations or whether an initial successful invasive population serves as the source for secondary 

introductions. 

 

Grapevine downy mildew, caused by the oomycete Plasmopara viticola, is one of the most 

damaging diseases of grapevine, and is found in all grape-growing regions of the world (8). 20 

Plasmopara viticola is native to eastern North America (9), and was introduced into Europe in the 

1870s (10), probably with American Vitis species used as rootstocks resistant to phylloxera, an 

insect pest (Daktulosphaira vitifoliae) (9, 11). After its first description in France (1878 in 
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Coutras), the disease rapidly reached Southern and Central Europe and was soon reported in nearly 

all wine-producing countries worldwide (12, 13).  

 

Advances in P. viticola -omics (14-19) and population genetic studies (20-35) have improved our 

knowledge of the grapevine downy mildew pathosystem. In its native range, five cryptic species 5 

(also called formae speciales) have recently been identified in the P. viticola species complex, with 

genetic differentiation and contrasting host ranges on various Vitis and related species (33, 34). 

The five P. viticola formae speciales (f. sp.) are found on wild Vitis species across North America 

(33, 34), and it remains unknown which lineages were responsible for grapevine downy mildew 

invasions in vineyards across the world. In most temperate regions, P. viticola populations present 10 

widespread footprints of recombination, indicating the occurrence of frequent sexual reproduction 

(21, 24, 26, 27, 29, 31, 36). European invasive populations display little genetic diversity and have 

a weak but significant population structure at the continental scale (22, 25). Despite some notable 

advances, however, these studies have been restricted to a small number of countries and were 

performed with different markers, making it difficult to develop a comprehensive understanding 15 

of the pathways of P. viticola invasion worldwide.  

 

 

In this study, we used phylogenetic and population genetic approaches, together with scenario 

testing by approximate Bayesian computation (ABC), to infer the routes of P. viticola invasion 20 

worldwide. We analyzed almost 2,000 P. viticola samples, collected from wild and cultivated 

grapes in Northeast America, and from the main grape-growing regions in which grapevine downy 

mildew occurs. Using nuclear and mitochondrial gene sequences, we found that all invasive 

grapevine downy mildew populations worldwide belonged to a small clade of the species P. 
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viticola f. sp. aestivalis, which parasitizes the V. aestivalis summer grape in Northeast America 

(Supplementary Photo S1). Using microsatellite markers on P. viticola f. sp. aestivalis, we found 

that there was little admixture between populations and that invasive populations had a low genetic 

diversity. The European populations had the highest level of diversity of all invasive populations 

and harbored all but one of the haplotypes present in other invaded areas. Using ABC scenario 5 

testing, we confirmed that P. viticola f. sp. aestivalis was first introduced into Western Europe, 

whence it spread to Central and Eastern Europe. The successful invasive populations in Europe 

then served as the source for secondary introductions into other grape-growing regions of the 

world, such as Northeast China, South Africa, and Australia. A third bridgehead effect occurred 

later, with the spread of the disease from Southeastern Australia to Argentina. All grapevine downy 10 

mildew invasions therefore stem from an initial single introduction event in Europe, followed by 

secondary and tertiary introductions via bridgehead effects. These introductions were probably 

mediated by the transfer of grapevine material by humans, as settlers imported European cultivars 

for the establishment of  “New World” vineyards during the 19th century (37). Our findings of a 

strong bottleneck following the introduction into Europe and the common origin of all introduced 15 

populations worldwide provide essential knowledge for guiding breeding for resistance to 

grapevine downy mildew. The identification of these historical pathways also improves our 

understanding of biological pest and pathogen invasions. 

 

Results	20 

The cryptic species Plasmopara viticola f. sp. aestivalis is the origin of all invasive downy 

mildew populations worldwide 

We reconstructed the genetic relationships between an extensive set of P. viticola strains collected 

from wild or cultivated grape species in native areas and areas of introduction, by sequencing DNA 
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fragments from the mitochondrial cytochrome-b (cytb, n = 1,299), β-tubulin (tub, n = 424 samples) 

and ribosomal 28S (r28S, n = 536) genes (Fig. 1, Supplementary Fig. S1 and Table S1). The β-

tubulin tree provided the highest resolution (Fig. 1A, with 56 distinct haplotypes versus 32 

haplotypes for cytb and 9 haplotypes for r28S, Supplementary Fig. S2). Nevertheless, all the trees 

presented highly differentiated lineages with contrasting host ranges (Fig. 1A, Supplementary Fig. 5 

S2), consistent with the previously demonstrated existence of five cryptic species (33, 34). Three 

formae speciales were found on cultivated grapes in North America, but only P. viticola f. sp. 

aestivalis was found in introduced populations worldwide (Fig. 1 and Supplementary Fig. S2). In 

North America, this forma specialis was found on V. aestivalis and on V. labrusca sensu lato (i.e. 

including V. labrusca and its main artificial hybrids), two Vitis species that have recently diverged 10 

(38). 

 

A host shift from V. aestivalis at the origin of the invasive downy mildew populations and 

population subdivision in invasive populations 

We used highly polymorphic microsatellite markers to obtain a finer resolution of the population 15 

structure within P. viticola f. sp. aestivalis, to elucidate its worldwide population structure and 

invasion routes. We genotyped 1,974 diploid strains with eight microsatellite markers 

(Supplementary Table S2), which, together with the three sequenced fragments (Supplementary 

Table S1), revealed 1,383 distinct genotypes with this 11-marker dataset. We found that the native 

and introduced P. viticola f. sp. aestivalis populations were strongly differentiated, along the first 20 

axis of a discriminant analysis on principal components (DAPC) (39) (Supplementary Fig. S3). 

The second axis revealed a strong differentiation in North America between P. viticola f. sp. 

aestivalis populations collected on different Vitis species (Supplementary Fig. S3). Indeed, we 

identified specific genetic clusters on V. aestivalis (in yellow), V. labrusca (in black), and two 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.22.307678doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.22.307678
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

8 

differentiated clusters (brown and red) on the cultivated grape V. vinifera (Supplementary Fig. S3). 

The cluster on cultivated grapes (in brown) was genetically close to the cluster on the wild species 

V. labrusca (in black), probably indicating a host shift from V. labrusca in the native range. We 

inferred that the invasive populations originated from a host shift from V. aestivalis, as the 

population from this wild summer grape (yellow cluster) appeared genetically closest, and even 5 

overlapping in the DAPC, with the invasive populations (Supplementary Fig. S3A). However, the 

eight microsatellite markers had a low power to resolve the genetic structure between invasive 

populations (Supplementary Fig. S3C).  

 

We therefore genotyped a subset of strains (n = 181) with 32 microsatellite markers, focusing on 10 

invasive populations and on the native P. viticola f. sp. aestivalis clusters that may have served as 

origin of the invasive populations (Supplementary Table S3, 174 unique genotypes). This 32-

marker dataset confirmed the genetic patterns observed in the native range based on the 11-marker 

dataset, and, in particular, confirmed that the cluster on V. aestivalis (yellow) was the likely origin 

of all invasive populations worldwide (Fig. 2). This cluster was, again, the closest to all the 15 

invasive populations on the DAPC (Fig. 2D). Furthermore, using the 32-marker dataset, we 

showed that the cluster on V. aestivalis was the only cluster having common genetic ancestry with 

the invasive populations in the STRUCTURE Bayesian clustering analysis (40, 41) (see the light 

blue, green or pink ancestry from K = 2 to K = 6 in genotypes collected from V. aestivalis on Fig. 

2A). With the 32-marker dataset, we also showed that this was the closest cluster to all the invasive 20 

populations in the distance-based neighbor-joining tree (Fig. 2C). The 32-marker dataset further 

identified two genetic clusters on V. aestivalis in the native range (Fig. 2A): the yellow cluster 

identified above, genetically close to the invasive populations found on cultivated grapes 

worldwide (Fig. 2D), and the red genetic cluster, corresponding to strains collected on cultivated 
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grapes in North America (Fig. 2A). This suggests the occurrence of two distinct host shifts from 

the wild summer grape V. aestivalis to cultivated grapes, one in the native range, from the red 

genetic cluster, and the other, from the yellow cluster, giving rise to all invasive populations 

worldwide. 

 5 

The 32-marker dataset also revealed genetic differentiation between invasive populations in the 

main wine-producing regions worldwide (Fig. 2). The two distinct genetic groups of P. viticola 

previously identified in Western and Eastern European vineyards (22), respectively, were also 

detected here in STRUCTURE clustering analyses (Fig. 2A) and with the DAPC (Fig. 2E). 

Furthermore, the populations in the different invaded areas also displayed significant 10 

differentiation, as shown by the significant FST values (Supplementary Table S4 and S5), 

STRUCTURE analyses (Fig 2A) and the DAPC analyses focusing on invasive populations (Fig. 

2E). We also found two differentiated populations in Australia (Fig. 2).  

 

Lower diversity in invasive P. v.  f. sp. aestivalis populations 15 

Genetic diversity in invasive P. v. f. sp. aestivalis populations worldwide was much lower than 

that in native populations. Only a few closely related haplotypes of the three sequenced DNA 

fragments were present in the invaded areas, whereas considerable diversity was detected in the 

native P. v. f. sp. aestivalis populations (Fig. 1, Supplementary Fig. S2, Table S1). The resulting 

low nucleotide (π) and haplotype (H) diversities in the invasive populations (Fig. 3A, 20 

Supplementary Table S1) indicated the occurrence of severe bottlenecks during the invasion 

process. European populations displayed a smaller decrease in genetic diversity than the 

populations of other invaded areas (Figs. 1 and 3A, Supplementary Fig. S2, Table S1), suggesting 

that the bottlenecks occurring in Europe were milder. Furthermore, all but one of the invasive 
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haplotypes worldwide were present in Europe, for the three DNA fragments analyzed (Fig. 1 and 

Supplementary Fig. S2). Together, these findings suggest that Europe may have acted as a 

bridgehead for secondary invasions in the rest of the world.  

 

Both microsatellite datasets confirmed the much lower levels of genetic diversity in invasive 5 

populations than in native populations, as shown by the compact clustering of invasive genotypes 

in the DAPC (Fig. 2D, Supplementary S3A), and by diversity indices (Fig. 3B, Supplementary 

Tables S2, S3, and S6 to S11). For example, private allelic richness was one order of magnitude 

lower in the invasive populations worldwide than in the native range. Microsatellite genetic 

diversity was also much lower in introduced than in native populations, with European populations 10 

having intermediate values (Fig. 3B, Supplementary Tables S2 and S3).  

 

This pattern of diversity is, thus, consistent with the hypothesis that Europe acted as a bridgehead, 

with a first wave of invasion to Europe originating from the yellow P. v. f. sp. aestivalis cluster 

(Fig. 2 and Supplementary Fig. S3) occurring on the wild summer grape in the native Northern 15 

American range, and a second wave of invasions subsequently occurring from Europe to other 

vineyards throughout the world. 

 

Worldwide invasion history of P. viticola reconstructed by ABC-RF scenario testing  

We formally compared the likelihoods of alternative invasion history scenarios involving the most 20 

likely population of origin in the native range (i.e., the yellow genetic cluster on V. aestivalis), as 

identified based on previous analyses, and all the invasive introduced populations, using the 32-

microsatellite marker dataset and an approximate Bayesian computation random forest (ABC-RF) 

statistical framework (42). In ABC-RF, genetic data are simulated under different demographic 
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scenarios, and summary statistics from the resulting simulated data are statistically compared with 

those obtained from the observed data (43-45). We used an iterative process to infer the various 

invasion events while keeping a tractable number of scenarios to be compared with the ABC-RF 

(46). We first identified the most likely demographic scenario(s) composed of bifurcation and 

admixture events considering the native populations and the invasive populations that 5 

corresponded to the most ancient introduction events (i.e., with dates of first disease records 

outside the native range between 1878 and 1889, Fig. 4B). We then considered the other invasive 

populations successively following increasing dates of first disease records and tested using ABC-

RF what was their population of origin. 

 10 

As a first step, we considered 18 scenarios of introduction from the most likely population-of-

origin in the native range (the yellow cluster on V. aestivalis) and the first reported invasive 

populations from historical records (i.e., in Western and Eastern Europe, in ~1878 and ~1887, 

respectively, and in China, in ~1889; Supplementary Table S12 and Fig. S4). The most likely 

scenario identified (S11 in Supplementary Table S12 and Fig. S4) involved an initial introduction 15 

into Western European vineyards, followed by a spread to Eastern Europe (as previously shown 

(22)), and then an expansion to Eastern China from Eastern Europe. This scenario was the most 

strongly supported, with a posterior probability of 0.42 ± 0.01 (Supplementary Table S12).  

 

The disease was later reported in South Africa in ~1907 and in eastern Australia in ~1917. For 20 

these two introduction events (steps 2 and 3 in Supplementary Table S12, Fig. S5 and S6), the 

ABC-RF again identified Eastern Europe as the most likely population of origin, with posterior 

probabilities of 0.78 ± 0.03 and 0.71 ± 0.02, respectively. The disease was then reported in 

Argentina in ~1920, and the ABC-RF analysis suggested that this introduction was probably from 
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Eastern Australia, with a posterior probability of 0.70 ± 0.02 (step 4 in Table S1, Supplementary 

Fig. S7). The most recent first report of the disease was in Western Australia in ~1917, for which 

an Eastern Australian origin has been suggested (28). However, the ABC-RF statistical framework, 

based on a larger set of microsatellite markers and more extensive sampling of P. viticola 

populations worldwide, again identified Eastern Europe as the most likely population of origin for 5 

the pathogen in Western Australia, with a posterior probability of 0.73 (step 5 in Supplementary 

Table S12 and Fig. S8).  

 

The most likely global invasion history is summarized in Figure 4. The classification error rate 

(i.e., prior error rate) for the first step was relatively high (38%), reflecting the difficulty 10 

distinguishing between a first introduction into Eastern or Western Europe, as these populations 

are genetically very close. By contrast, all subsequent steps in the ABC-RF analysis were well 

resolved, with a low prior error rates, ranging from 7% to 12% (Supplementary Table S12). The 

final global scenario (Fig. 4) was strongly supported by the genetic data, as shown by the low prior 

error rate of 7% (Supplementary Table S12). Posterior model checking and goodness-of-fit 15 

assessment of the model-posterior distributions showed that the inferred global invasion scenario 

generated genetic summary statistics consistent with the observed data, providing high confidence 

in the inferred scenario. The 10,000 simulations from posterior parameter distributions under the 

best model produced summary statistics very close to those obtained from the observed dataset 

(Supplementary Fig. S9), with only 24 of 256 statistics falling in the tail of the predictive 20 

probability distribution of statistics calculated from the posterior simulations (i.e., P < 0.05 or P < 

0.95). Moreover, none of the P-values remained significant after correction for multiple 

comparisons (47). The inferred invasion scenario (Fig. 4) thus fitted the observed genetic data 

well. 
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Discussion 

Using extensive sampling and a powerful statistical framework, we have elucidated the worldwide 

invasion history of grapevine downy mildew. We show here that a specific genetic cluster of P. v. 

f. sp. aestivalis, which parasitizes the wild summer grape V. aestivalis in the native range, was the 5 

source of the invasion responsible for a devastating pandemic on cultivated grapevines in Europe 

at the end of the 19th century (9, 12). Severe bottlenecks occurred, with very few haplotypes from 

the native lineage introduced into Europe. In the inferred invasion scenario (Fig. 4), Europe then 

served as a bridgehead for a second wave of invasions worldwide, spreading the disease further 

afield, to Eastern China, South Africa and Eastern Australia. A third wave of expansion probably 10 

occurred from Eastern Australia to Argentina. The much more recent introduction in Western 

Australia (1998) also seems to have originated from Europe, raising questions about the efficacy 

of quarantine regulations. The contribution of European populations to grapevine downy mildew 

invasions worldwide reflects the key role of Europe in the trading of plant material during the 

development of “New World” viticulture. The phylloxera crisis intensified the importation of plant 15 

material from North America to Europe and from Europe to “New World” vineyards (48). A role 

for Europe as a hub for the invasion of “New World” vineyards by grapevine pathogens has also 

been suggested for phylloxera and for the soil-born nematode vector of the fanleaf degeneration 

virus (48, 49).   

 20 

Controlling the introduction of pests and diseases is one of the greatest challenges in viticulture, 

with important economic and environmental consequences. The genetic relationships and diversity 

inferred here could be used to guide quarantine regulations for grape-growing countries, to prevent 

further invasions. Introducing new strains or lineages of P. viticola would significantly increase 
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the diversity of invasive populations and create opportunities for genetic admixture. Indeed, we 

found that, in North America, the cultivated grape (V. vinifera) was parasitized by a P. viticola 

lineage (f. sp. vinifera) other than the one identified here as invasive (f. sp. aestivalis). The P. 

viticola f. sp. vinifera lineage has not yet been found on other continents, but could also become 

invasive should it be introduced. An increase in genetic variation through migration and/or 5 

admixture would probably facilitate the adaptation of P. viticola to pesticides and resistant 

cultivars (50). New invasions by additional P. viticola strains or lineages would have a major effect 

on the wine industry, by destabilizing grapevine protection and canceling out the sustained efforts 

of breeders to obtain good-quality grapevine varieties resistant to downy mildew. The rich 

historical records available for grape diseases make these diseases excellent case studies for 10 

obtaining fundamental insight into the processes underlying biological invasions, showing that 

worldwide biological invasions can result from the secondary dispersal of a particularly successful 

invasive population, as for grape phylloxera (48, 51). Our findings show that even pathogens 

subject to very strong bottlenecks and without admixture as a means of generating diversity can 

achieve successful invasions worldwide, by retaining an ability to evolve rapidly, and thus to 15 

develop new virulence against plant resistance (52-54) and resistance to fungicides (21, 55, 56).  

 

Materials and methods 

Plasmopara viticola sample collection and DNA extraction. Plasmopara viticola isolates were 

collected as sporulating lesions from 163 sites in the native (North America) or invasive (Europe, 20 

China, South Africa, Australia, and Argentina; Fig. 1B and 1C, Supplementary Fig. S1; Table S1, 

S2 and S3) range. This sampling covers the main grape-growing regions in which the climate is 

favorable for the disease. In Northeast America, samples were collected from five wild Vitis 

species (V. riparia, V. labrusca, V. aestivalis, V. vulpina and P. quinquefolia), and cultivated 
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grapevines (V. vinifera and interspecific hybrids). In invaded areas, all samples were collected 

from diseased V. vinifera cultivars. Sampling was performed as previously described (22). Oil 

spots were freeze-dried overnight, and DNA was extracted with standard CTAB and phenol-

chloroform methods (55, 57). 

 5 

DNA sequencing and analysis. For the identification of cryptic P. viticola species, three DNA 

fragments, from the 28S ribosomal RNA (r28S), β-tubulin (tub) and mitochondrial cytochrome-b 

(cytb) genes, were amplified by polymerase chain reaction (PCR) and sequenced (Supplementary 

Table S1). DNA amplification, sequencing and assembly were performed as described by Rouxel 

et al.(34) for r28S and tub, and as described by Chen et al.(55) and Giresse et al.(58) for cytb. 10 

Sanger sequencing was performed at the Genoscope (French national sequencing center, Evry, 

France). For each DNA fragment, sequences were aligned with Muscle (59) implemented in 

Seaview v.4.6.2 (60). Final alignment lengths after cleaning were 499 base pairs (bp) for tub, 685 

bp for cytb and 703 bp for r28S. Distinct haplotypes were identified with DnaSP v5.10.1 (61). For 

each sequence alignment, genetic relationships between haplotypes were inferred with a maximum 15 

likelihood (ML) method and a GTR substitution model implemented in PhyML v.3.0 (62). Node 

support was estimated by calculating 1,000 bootstraps. Each phylogeny was rooted with 

Plasmopara hasltedii sequences obtained from a recent genome assembly (63). Nucleotide (π, per 

site) and haplotype (H) genetic diversities were estimated with the DnaSP program. 

 20 

Microsatellite genotyping. We constructed two different microsatellite datasets for analysis of 

the genetic structure and diversity of P. viticola f. sp. aestivalis populations across the main 

vineyards worldwide, identification of the most likely host-of-origin, and elucidation of the 

invasion routes followed. The first dataset included an extensive sampling of 1,974 strains 
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genotyped for eight microsatellite loci (ISA, Pv7, Pv13, Pv14, Pv16, Pv17, Pv31 and Pv39) (23, 

57) (Supplementary Table S2). Microsatellite PCR amplification and genotyping were conducted 

as previously described (57). The repeatability of genotype scoring was checked by genotyping 

5% of the samples twice. For the analyses, genotypes were built by combining the eight 

microsatellite markers and the three DNA sequences. Genotypes with more than 60% missing data 5 

were discarded. A single genotype was retained when putative clone-mates (i.e., repeated 

multilocus genotypes or MLGs within a given vineyard) were identified. The final first genotype 

dataset encompassed 1,314 MLGs for the eight microsatellite markers and 1,383 MLGs for the 11 

markers (combining the eight microsatellite markers with haplotypes for the three DNA fragments) 

from 105 localities (Supplementary Table S1).  10 

 

The second dataset consisted of 181 samples genotyped for 34 microsatellite markers: ISA, Pv7, 

Pv14, Pv16, Pv17, Pv39, Pv65, Pv67, Pv74, Pv76, Pv83, Pv87, Pv88, Pv91, Pv93, Pv101, Pv103, 

Pv104, Pv124, Pv126, Pv127, Pv133, Pv134, Pv135, Pv137, Pv138, Pv139, Pv140, Pv141, Pv142, 

Pv143, PvEST2, PvEST9 and PvEST10 (35, 57). The repeatability of genotype scoring was 15 

checked by genotyping 5% of the samples twice. The mean error rate was ≤ 0.020 ± 0.005. 

Genotypes with missing data for more than 16 markers (≥ 50%) were discarded. Significant 

linkage disequilibrium (LD) was detected between two pairs of microsatellite markers (Pv87 and 

Pv104; Pv124 and Pv133) with a permutation test (1,000 permutations) implemented in 

GENEPOP v.4.2 (64). A single marker for each pair was therefore retained for data analyses 20 

(Pv104 and Pv124). After filtering for missing data and LD, the final dataset included 174 MLGs 

for 32 markers from 35 sites (Supplementary Table S3).  
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Inference of population genetic structure and diversity. We used the two datasets to investigate 

genetic structure: one with 11 markers (combining the eight microsatellite markers with haplotypes 

for the three DNA fragments), and the other with 32 microsatellite markers. We ran similar 

analyses on the two datasets. We used two complementary individual-based methods to estimate 

the population structure: the Bayesian model-based clustering method implemented in 5 

STRUCTURE v.2.3.4 (40, 41) and a discriminant analysis on PCA (DAPC) (39). We ran 

STRUCTURE with an admixture model with correlated allele frequencies, and uniform priors for 

the individual cluster of origin (40, 41). We performed simulations with a number of putative 

clusters (K) ranging from 1 to 10. For each K value, we conducted 10 independent replicates and 

checked for convergence. Each analysis included a burn-in period of 50,000 Markov chain Monte 10 

Carlo (MCMC) iterations followed by 500,000 MCMC iterations for the estimation of model 

parameters. We determined the most relevant number of clusters (K) using (i) the log likelihood 

of the data for each K value (40), (ii) the rate of change of the log likelihood of the data with 

increasing K (65), and (iii) the visual inspection of clusters newly generated with increases in K 

(66). We used STRUCTURE HARVESTER v.0.6.94 (67) to visualize the likelihood and its rate 15 

of change across K values and replicated runs. For the identification of potentially different 

clustering solutions, results were summarized and displayed with CLUMPAK v.1.1 (68). This 

analysis was performed on the two datasets combining native and introduced populations, and also 

on each area separately, to explore finer genetic structure. 

 20 

DAPC(39) does not make  any specific assumptions about mating system or mode of reproduction. 

It provides a visualization of the genetic structure complementary to that provided by 

STRUCTURE, by summarizing the variance in allele frequencies summarized using principal 

components (PCs) and partitioning it between populations relative to the within-group variance. 
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This analysis was performed on the two datasets, and on the native and introduced populations 

separately, to explore the finer genetic structure in the two areas. We used the ADEGENET v.2.0.1 

R package (69) for conducting the DAPC. In accordance with the recommendations of the user 

guide, missing data were replaced by the mean value, the number of PCs used in the analysis was 

identified by the alpha-score optimization procedure and was set to 20 and 10 for the 11- and 32-5 

marker datasets, respectively. A priori groups were defined according to host plant or continent, 

and further partitioning was implemented in accordance with the findings of STRUCTURE or 

previous studies (e.g. split between Eastern and Western Europe (22)). We assessed how distinct 

or admixed the clusters of the DAPC were, using scatter plots along the top discriminant axes (DA) 

and bar plots of individual membership probabilities for each group. 10 

 

Genetic relationships between clusters were estimated with NJ population trees based on pairwise 

Cavalli-Sforza chord genetic distances (70) between populations computed with the program 

POPULATIONS v.1.2.32 (71). The node supports were estimated with 1,000 bootstraps over loci. 

The trees were drawn with FigTree v.1.4.4 (72).  15 

 

Allelic frequency differentiation between clusters was estimated with the Weir and Cockerham 

FST estimator (73) implemented in FSTAT v.2.9.4 (74). The significance of pairwise FST values 

was assessed with 100 random data permutations in FSTAT. We assessed the levels of 

microsatellite genetic diversity within clusters, using allelic richness (Ar) and private allelic 20 

richness (PAr), both standardized by a rarefaction method (75), to account for differences in sample 

size. We also calculated observed and expected heterozygosities (Ho and He, respectively), and the 

FIS fixation index (73). These statistics were calculated with ADZE v.1.0 (76), GENETIX v.4.05.2 
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(77), and FSTAT. Wilcoxon signed-rank tests were performed in the R statistical environment 

(78), to assess the significance of differences in genetic diversity between clusters. 

 

ABC-RF-based inferences of global invasion history 

We reconstructed the worldwide invasion history of P. viticola f. sp. aestivalis using an 5 

approximate Bayesian computation (ABC) (43-45) random forest (RF) analysis (42, 79, 80). This 

ABC-RF analysis used the 32-microsatellite dataset and included eight populations: the seven 

genetic clusters identified outside the native range on the basis of the 32-microsatellite dataset and 

the wild population sampled in the native range on the summer grape V. aestivalis, which was the 

population genetically closest to the invasive clusters (Fig. 2). ABC-RF can estimate posterior 10 

probabilities of historical scenarios, based on historical data and massive coalescent simulations 

of genetic data. We used historical information (i.e., dates of first observation of invasive 

populations, Fig. 4) to define five sets of competing introduction scenarios, which were analyzed 

sequentially (Supplementary Table S12, Fig. S4 to S8). Step-by-step, each analysis made use of 

the results of the previous analyses, until the most recent invasive populations were considered. 15 

The scenarios for each analysis are detailed in Supplementary Table S12 and Figs. S4 to S8. 

 

The scenario parameters (i.e., effective population size N, effective number of founders NF, 

admixture rate Ra, duration of the bottleneck DB, and time of population split and admixture T) 

were considered as random variables drawn from prior distributions (Supplementary Table S13). 20 

We assumed a generalized stepwise mutation process with possible single-nucleotide insertion, to 

model a realistic mutation process of microsatellite loci in the coalescent simulations (81). We 

used DIYABC v.2.1.0 (82) to simulate genetic data for ABC-RF analyses. Simulated and observed 

datasets were summarized using the whole set of summary statistics proposed by DIYABC for 
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microsatellite markers, describing  the genetic variation for each population (e.g., mean number of 

alleles per locus, and mean genetic diversity), pair of populations (e.g., pairwise genetic diversity, 

mean FST across loci between two populations, and shared allele distance), or trio of populations 

(e.g., maximum likelihood admixture estimates) (see the full list and details of the summary 

statistics in Supplementary Table S14). Linear discriminant analysis (LDA) components were also 5 

used as additional summary statistics (83). The total number of summary statistics ranged from 70 

to 256, depending on the analysis (Supplementary Table S12). 

We used the random forest (RF) classification procedure to compare the likelihood of the 

competing scenarios at each step with the R package abcrf v1.8.1 (42). RF is a machine-learning 

algorithm that uses hundreds of bootstrapped decision trees to perform classification, using the 10 

summary statistics as a set of predictor variables. Some simulations are not used in tree building 

at each bootstrap (i.e., the out-of-bag simulations), and are used to compute the “prior error rate,” 

which provides a direct method for estimating the cross-validation error rate. We built a training 

set ranging from 10,000 to 50,000 simulated microsatellite datasets for each scenario, with the 

same number of loci and individuals as the observed dataset (Supplementary Table S12). We then 15 

grew a classification forest of 500 or 1,000 trees based on the simulated training datasets. The size 

of the training set and number of decision trees was increased until the results converged over ten 

independent replicated RF analyses. The RF computation applied to the observed dataset provides 

a classification vote (i.e., the number of times a model is selected from the decision trees). We 

selected the scenario with the highest classification vote as the most likely scenario, and we 20 

estimated its posterior probability (42). We assessed the global performance of our chosen ABC-

RF scenario, by calculating the prior error rate based on the available out-of-bag simulations and 

we repeated the RF analysis 10 times to ensure that the results converged. 
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We then performed a posterior model checking analysis on the final scenario, including all 

eight populations, to determine whether this scenario matched the observed genetic data well. 

Briefly, if a model fits the observed data correctly, then data simulated under this model with 

parameters drawn from their posterior distribution should be close to the observed data (84). The 

lack of fit of the model to the data with respect to the posterior predictive distribution can be 5 

measured by determining the frequency at which the observed summary statistics are extreme with 

respect to the simulated summary statistics distribution (hence, defining a tail-area probability, or 

P-value, for each summary statistic). We simulated 100,000 datasets under the full final scenario 

(256 summary statistics), and obtained a “posterior sample” of 10,000 values of the posterior 

distributions of parameters through a rejection step based on Euclidean distances and a local 10 

regression post-treatment (43). We simulated 10,000 new datasets with parameter values drawn 

from this “posterior sample,” and each observed summary statistic was compared with the 

distribution of the 10,000 simulated test statistics; its P-value was computed, and corrected for 

multiple comparisons (47). The simulation steps, the computation of summary statistics, and the 

model checking analysis were performed in DIYABC v2.1.0. All scenario comparisons were 15 

carried out in R, with the abcrf v1.8.1 package (42) 

 

 

Data availability 

Unique haplotypes from the β-tubulin, cytochrome b, and ribosomal 28S sequence data were 20 

deposited in NCBI-Genbank under the accession codes: [to be announced, TBA]. The two 

microsatellite datasets and the sequence alignments are available via the INRAE Grapevine 

Downy Mildew Genomics Dataverse (https://data.inra.fr/dataverse/gdmg; doi: [TBA]). 
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Figure legends 

 

Figure 1. Phylogenetic relationships, sampling, and geographic distribution of Plasmopara 

viticola haplotypes of the β-tubulin (tub) gene. A: The maximum likelihood phylogenetic tree is 

rooted with the Plasmopara hasltedii tub sequence. Nodes with a star (*) are supported with a 5 

bootstrap value greater than 90%. The branches of the tree are color-coded according to the five 

P. viticola formae speciales (ff. spp.). Colored and empty boxes on the right side of the tree show 

the host plant on which the haplotype was found in the native area or its geographic location on 

the introduced areas. Geographic codes include Europe (EU), Australia (AU), Argentina (AR), 

South Africa (ZA) and China (CN). The number of isolates carrying a given haplotype is indicated 10 

by the number within the boxes. Photos on the right show the grapevine downy mildew pathogen, 

P. viticola, infecting young grape berries (top) and typical lesions on a leaf (bottom) of Vitis 

vinifera in Europe. B: Map showing the sample size (N) and geographic location of origin of the 

strains from the five formae speciales occurring in Northeast America. C: Distribution of the 

sampling sites of the P. v. f. sp. aestivalis strains across the main wine-producing regions 15 

worldwide. 

 

Figure 2. Worldwide population genetic structure of Plasmopara viticola inferred from the 

32-microsatellite marker dataset. A: Estimated individual ancestry according to the Bayesian 

clustering approach of STRUCTURE, for two to eight clusters (K). Each individual is represented 20 

by a thin vertical line, partitioned into K colored segments representing the estimated genome 

ancestry fractions for each cluster. Individuals from different continents (labeled at the top of the 

figure) are separated by black continuous lines; strains from different host species (labeled at the 

bottom of the figure) are separated by black dotted lines; within these categories, individuals are 
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sorted by increasing longitude. The figure shown for each K corresponds to the highest probability 

run from 10 replicates, with the best-fitting K value indicated by a star. B: STRUCTURE 

admixture proportions for samples averaged across populations for K = 8. Pie chart size is 

proportional to sample size. C: Neighbor-joining (NJ) tree based on the Cavalli-Sforza chord 

distance. Population branching with high bootstrap support (i.e., >75%), indicated by large widths. 5 

Wild and cultivated grapes are represented by different symbols. North America and other 

continents are separated into different gray circles. D and E: Scatterplot of the first two 

discriminant functions (DFs) from the discriminant analysis on principal components (DAPC), 

showing P. viticola individual genotypes for the full dataset (D) and for the subset excluding 

populations from the native North American range (E). The histogram insets of each DAPC scatter 10 

plot show the proportion of variance explained by each DF, according to their respective 

eigenvalues. The bar plots below each scatter plot represent the probability of the strain belonging 

to each group, based on all DFs of the DAPC. The populations studied are as follows: North 

American P. viticola strains collected on wild V. labrusca, V. aestivalis group 1 (yellow) and 2 

(red); North American strains collected on cultivated V. vinifera. Strains from the rest of the world 15 

collected on cultivated V. vinifera including, strains from Western and Eastern Europe (WEUR 

and EEUR), Western and Eastern Australia (WAUS and EAUS), China (CN), South Africa (ZA), 

and Argentina (AR). 

 

Figure 3. Lower diversity in invasive populations of Plasmopara viticola forma speciale 20 

aestivalis. A) Bar plot showing the nucleotide diversity (π, per site) of the β-tubulin (tub) gene 

sequence. B) Box plot showing the distribution of expected heterozygosity (Hexp) for the 32 

microsatellite markers. 
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Figure 4. Worldwide invasion history of Plasmopara viticola forma speciale aestivalis inferred 

by the approximate Bayesian computation random forest (ABC-RF) approach. (A) The best 

population divergence scenario inferred by ABC-RF (Supplementary Table S12). (B) Geographic 

representation of the invasion scenario with the highest likelihood based on the ABC-RF analysis; 

areas are shown in color, based on their population assignment, as identified in Figure 2. Dates 5 

represent the first report of the disease in each area of introduction. Arrows indicate the most likely 

invasion pathways. Vineyards in other regions of the world not included in this study are indicated 

in black. 
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Figure 4. 
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