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Abstract: We have designed honeycomb lattices for microwave photons with a frequency
imbalance between the two sites in the unit cell. This imbalance is the equivalent of a mass term
that breaks the lattice inversion symmetry. At the interface between two lattices with opposite
imbalance, we observe topological valley edge states. By imaging the spatial dependence of the
modes along the interface, we obtain their dispersion relation that we compare to the predictions
of an ab initio tight-binding model describing our microwave photonic lattices.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Even though static lattices for spinless particles that do not break time reversal symmetry
have band structures that only contain bands with zero Chern number, topological effects can
still be observed in such systems, with topological valley Hall edge (TVHE) states being a
prominent example [1-3]. In a honeycomb lattice with an on-site energy imbalance u between
the nonequivalents A and B sites in the unit cell, the inversion symmetry is broken and a gap
opens at the Dirac points, giving rise to an insulator [4,5]. By integrating the Berry curvature in
the neighbourhood of each Dirac point, one obtains that each valley carries a topological charge
+1/2, where the sign changes with the valley, the sign of y and the band index [1,3]. If one
considers two lattices with opposite imbalance u connected along a boundary, the difference of
topological charge for a given valley between the two sides of the boundary is one. The bulk-edge
correspondence principle implies that two branches of edge states, one for each valley, must exist
[6-8]. The states are spatially localized along the boundary and their direction of propagation is
correlated to the valley index, in a way similar to the quantum spin Hall effect, where the direction
of propagation is correlated to the spin [9]. The two branches cross the gap and intersect in its
center with a close to linear dispersion relation, whose slope is approximately given by the Fermi
velocity [2]. Artificial photonic, phononic and acoustic lattices offer a perfect playground to
design honeycomb lattices where TVHE states may be observed. The first experiments have been
realized with sound waves [10,11], elastic waves [12], microwaves [13,14] and optical waves
propagating in arrays of evanescently coupled waveguides [15].

Here, we report on the observation of TVHE states with microwave photons in lattices of
superconducting resonators in the linear regime [16-20]. We have designed two samples with
different boundaries, zigzag and armchair, between two lattices with an imbalance u, whose
absolute value is equal to half the hopping amplitude between neighbouring sites. This results
in the apparition of well localized TVHE states at the boundary that we image using a laser
scanning technique [21]. This allows us to reconstruct the dispersion relation of the states
and to show that it is approximately linear, with a slope which is close to the Fermi velocity,
independently of the type of boundary. We then compare our data to the more precise predictions
of tight-binding models. The model parameters are obtained from an ab initio model of the
lattice and its predictions are in good agreement with our experimental data.

#414517 https://doi.org/10.1364/OME.414517
Journal © 2021 Received 18 Nov 2020; revised 10 Mar 2021; accepted 10 Mar 2021; published 25 Mar 2021


https://doi.org/10.1364/OA_License_v1#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OME.414517&amp;domain=pdf&amp;date_stamp=2021-03-25

Research Article Vol. 11, No. 4/1 April 2021/ Optical Materials Express 1225

OPHCAINEENaISIEXPRES S

2. Experimental observation of topological valley Hall edge states

2.1. Lattice design

The design of the two different samples, where we observe TVHE states are shown in Fig. 1.
Locally, each sample is a honeycomb lattice, where each site is a spiral resonator. The site to site
distance is a = 377um. The nonequivalent A and B sites correspond to two spirals of slightly
different length. The longer spiral has a fundamental resonance wg ~ 27w X 6 GHz, while the
shorter one resonates at wg + 2u with u = 2x x 60 MHz. The spirals are made of Nb on a Si
wafer. More details about the resonator and fabrication techniques can be found in [21]. This
asymmetry breaks the lattice inversion symmetry and u plays the role of a mass imbalance. Both
samples are divided in two halves, with the lower and upper halves having an opposite imbalance.
The sign of y abruptly changes at a horizontal boundary in the center of the sample over one
lattice site. The two designs SI and SII differ by the nature of the boundary: zigzag in sample
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Fig. 1. (a) Design of the two lattices studied in this article. Each sample is a honeycomb
lattice where the A and B sites are occupied by spiral resonators with different lengths as
shown in (b). The type of spiral occupying the A or B site is permuted between the lower and
upper half of the sample at a horizontal boundary located close to the center of the sample.
The SI and SII designs respectively correspond to a zigzag and an armchair boundary, as
shown in (c) and (d). The SI design has 574 sites and the SII design has 480 sites. Four
coplanar waveguides, labeled 1 to 4, couple the lattice to microwave ports that are connected
to the measurement apparatus. Each waveguide is capacitively coupled to a single site
located on the edge of the lattice.
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SI and armchair in sample SII. Four coplanar waveguides are capacitively coupled to specific
sites located on the sample edges and connect to outer ports that are used to probe the sample
with a vector network analyzer. Ports 2&3 are connected to sites located on both ends of the
horizontal boundary, where TVHE states are expected, while ports 1&4 are connected to corner
sites. We also expect that edge states appear on the outer edges of the sample if they are zigzag
or bearded terminated [7]. In order to avoid hybridization between the TVHE states with these
outer boundary edge states, the samples were designed to have no such states on the left and right
edges, where the horizontal boundary begins and ends. This is the reason why the left and right
edges of the SII sample are not vertical.

2.2. Lattice transmission spectroscopy

Figure 2 shows different transmission spectra, for SI and SII samples, when the sample is cooled
around 1 K, way below the superconducting transition temperature of Nb. We observe a striking
difference between the transmission spectra from one site to an other, when the two sites located at
the corner of the sample (Fig. 2(a),(c)) or at the horizontal boundary (Fig. 2(b),(d)). In Figs. 2(a)
and 2(c), which respectively corresponds to sample SI and SII, the resonance peaks correspond
to bulk modes of the lattice: we clearly identify two bands separated by a gap with a width close
to the expected value 2u. The transmission maxima are much smaller than one, indicating that
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Fig. 2. (a) Transmission |Sl4|2 through corner sites of sample SI. This measurement
reveals the resonance frequencies of the lattice bulk modes that appear as sharp peaks. We
observe two bands separated by a gap, the shaded area indicates the expected gap width
2u/(27) = 120 MHz. (b) Transmission |Sy3|> through two sites at the extremities of the
boundary hosting TVHE states for the SI sample. The edge states appear as new resonant
peaks not visible in (a) that lie in the gap. (c),(d) Same as (a) and (b) for the SII sample.
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the modes are under-coupled: intrinsic losses dominate the coupling losses to the measurement
waveguides. In Figs. 2(b) and 2(d), we observe new resonances in the gap that we attribute
to TVHE states. Some of these peaks have a higher transmission maximum in comparison to
average bulk modes. This is a first hint that these states are localized at the boundary and have a
large weight on the two sites connected to ports 3&4. Boundary states are expected to couple
more to these ports than bulk modes, which results in a higher transmission at resonance because
the modes are under-coupled.

2.3. Edge state mode imaging

In order to confirm that the modes appearing in the gap are TVHE states, we use a laser scanning
technique to measure the spatial dependence of these modes across the lattice [17,22]. The
image of one mode is obtained by recording the transmission loss at the frequency of the mode
induced by a laser spot focused onto the sample as a function of the position of the spot. The
laser beam direction is steered by a motorized mount located outside the cryostat. The beam
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Fig. 3. Intensity maps of TVHE states for sample SI on the left (a-j) and sample SII on
the right (k-s). The intensity of a mode on a given pixel corresponds to the measured
transmission drop at the mode frequency, which is induced by a focused laser spot that is
scanned across the sample. Here, we only show the resulting images in a horizontal band
centered around the boundary. The frequency of the modes increases from 6.04 GHz to
6.13 GHz for images (a) to (j), and from 5.97 GHz to 6.08 GHz for images (k) to (s).
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is relayed by two lenses through the thermal shields and is focused onto the sample by a final
lens. The laser induces losses that are proportional to the local current density in the sample
and thus to the local mode intensity (see [21] for details). Figure 3 shows the intensity for the
modes that we identify as TVHE states, because they only appear in |S»3|?, are absent from the
bulk transmission |S14|> and resonate inside the gap. The images show that these modes are
indeed localized at the boundary. Along the longitudinal direction parallel to the boundary, the
mode profiles have a periodic behaviour. This standing wave pattern comes from the interference
of TVHE modes with the same energy and opposite wavevectors. These states are in different
valleys, but because the coupling to the excitation waveguide is not valley selective, modes
propagating in both directions along the boundary are excited.

An important prediction for the TVHE states is that their dispersion relation in the middle of
the gap is close to linear, with a velocity approximately equal to the Fermi velocity. In order
to experimentally test this prediction, we Fourier transform the longitudinal profiles obtained
from the images shown in Figs. 3. More precisely, we compute one spectrum for the average
intensity over the two lines of sites immediately below and above the boundary and a second
spectrum for the average intensity over the two lines which are one site away from the boundary
(one below and one above). We then average the square modulus of these two spectra and obtain
one spectrum per image. Because we measure the intensity of the modes and not the amplitude,
a superposition of modes with wavevectors k and —k results in peaks at 2k and —2k, which are
then eventually folded back in the first Brillouin zone if 2k>m/a;, where ay is the period of
the boundary. For example, an image with a low spatial frequency, as shown in Fig. 3(j), may
correspond to modes with +k ~ 0 or +k ~ +m/a,. In order to lift this ambiguity, we have to
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Fig. 4. Dispersion relation of the TVHE states observed in the SI (top) and SII (bottom)
sample. The wavevectors are obtained from a Fourier analysis of the images shown in
Fig. 3. Data points are shown as red triangles, an upwards triangle means that the measured
wavevector has been unfolded in the Brillouin zone (see text). The vertical dashed line
indicates the edge of the boundary Brillouin zone. The vertical dotted line indicates the
position of the lattice Dirac point and the horizontal dotted lines the gap. The tilted dotted
line corresponds to a linear dispersion around the Dirac points with a velocity vg. The black
solid line is the analytical prediction from a NN tight-binding model, while the black circles
correspond to a numerical simulation of the TVHE states including NNN coupling and finite
size effects.
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suppose that the observed modes have a spatial dependence close to the expected ones. For the
zigzag boundary, we expect that most peaks have a high wavevector and therefore we unfold all
the measured values. For the armchair boundary, we expect the opposite and do not unfold any
value. The results are shown as triangles in Fig. 4.

Finally, we compute a transverse profile for each mode in order to evaluate the decay length of
the TVHE states with the distance to the boundary. For each image, we obtain two transverse
profiles by averaging over the sites occupied by one or the other spiral. We then fit both profiles to
an exponential decay and obtain two decay lengths, one for each sublattice. The data are shown
with red markers in Fig. 5. In the zigzag case, we observe that the two decay lengths are almost
equal, but this is not the case for the armchair boundary. The same feature is observed in the
simulation of the sample, which we detail in the next section.
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Fig. 5. Decay length of the TVHE states observed in the SI (top) and SII (bottom) sample
as a function of their frequency. The data points are shown in red, the two different markers
identify the decay length for each sublattice. The vertical dashed lines identify the gap. The
dotted line is the prediction & /a = 3t1 /(4u) of the Dirac equation. The black solid line is the
analytical prediction from a NN tight-binding model, while the black symbols correspond to
a numerical simulation of the TVHE states of the two samples, including NNN coupling and
finite size effects. As for the data, the two different symbols correspond to the two different
sublattices.

3. Comparison with massive Dirac equation and tight-binding model predic-
tions

In [2], Semenoff ef al. derive the characteristics of the boundary states by using a massive Dirac
equation to describe the propagation in the lattice. Supposing that the states have a wavector g in
the longitudinal direction x along the boundary, the dispersion relation £(¢g) and the transverse
wavefunction ¢(y) is obtained by solving the eigenvalue problem

. 0
—sz®o'vaa—y +VFqTz® 0y £ UT, ® 07 | ©(y) = € () (1)
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where the o and 7; are the usual Pauli matrices used to describe Dirac matter [23] and the sign
of u changes at the boundary located at y = 0. One obtains two solutions
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with corresponding eigenvalues £, = +vpg. From these expressions, we obtain a linear dispersion
of the TVHE states with a velocity equal to v and a constant localization length & = vp/(2u).
We also note that the states have equal weights on the two sublattices.

These simple predictions are plotted as dotted lines in Figs. 4&5. In order to obtain values
for u and v, we use the tight-binding model that we developed in [21]. The parameters of the
model are computed from a coupled mode theory approach [24]: we look for a solution for the
electric and magnetic fields across the lattice as a linear combination of the fundamental mode of
the spirals. The coupling between the modes is given by the overlaps between the electric and
magnetic fields of the modes. In our lattice, the electric and magnetic couplings have similar
strength and add up to contribute to the coupling between neighboring sites. The resulting
eigenvalue problem can be transformed to a tight-binding form as usually done for electrons in
solid. We obtain a nearest-neighbour (NN) coupling # = 27 X 125 MHz, next nearest-neighbour
(NNN) coupling #, = 27 X 20 MHz and an imbalance u = 27 x 60 MHz. Neglecting the NNN
coupling, the analogue of the Fermi velocity is then given by vg = 3ta/2, which corresponds to a
group velocity of approximately 10® m/s. The decay length in unit of the lattice spacing is equal
to&/a =3t/(4u) ~ 1.6.

The Dirac equation approach is valid when &/a is large, which is not the case here. However,
we find that its predictions agree reasonably well with the data. The main discrepancies are
a slight overestimate of the group velocity for the zigzag edge states and the prediction of a
constant decay length, which is not observed in both samples. More refined predictions can be
obtained by considering a NN tight-binding description of the boundary problem and looking
for periodic solutions along the boundary, which exponentially decay away from the boundary,
as can be done for edge states in graphene [25,26]. Calculations for both the zigzag and the
armchair boundary are detailed in the Supplement 1 and the results are shown in Fig. 6. The
calculated band structure only depends on the ratio ¢/, which is here equal to 2.
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Fig. 6. Tight binding model predictions for the dispersion of TVHE states (red lines) for
the zigzag boundary (a) and the armchair boundary (b) as a function of the wavevector k,
along the boundary. The period of the boundary aj, is V3a for the zigzag boundary and 3a
for the armchair one. The NN coupling is such that # = 2u, NNN coupling is neglected. The
grey shaded area indicates the two bulk bands. The red lines for the edge states inside the

gap correspond to the solid black lines shown in Fig. 4.
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In the case of the zigzag boundary, two sets of edge states are obtained with only one that
crosses the gap and corresponds to the TVHE states predicted by the Dirac equation. Simple
analytical expressions are obtained for the dispersion relation and for the decay length as derived
in the Supplement 1. The frequency of the TVHE states as a function of the wavevector k, along
the boundary is given by

wlky) =1t - \/uz + 472 cos? V3kea/2 3)

Expanding this dispersion relation around k, = —27/(3V3a) + ¢ and k, = 27/(3V3a) + ¢, two
branches of states with linear dispersion are obtained

3
w:(q) =t~- \//12 +12+ ————qa 4)
24/ + 12

These branches coincide with the predictions of the Dirac equation model when /¢ is small
(&¢/a large), in which case w.(g) » £vpq. One also sees that the velocity is reduced below vg
taking into account corrections of order (u/t)>. The prediction for the localization length is

3a . u 3qa
f(q)— m with A =~ 1+7(1+7) (5)
where we already made the p/f expansion and the expansion around the Dirac point. At g = 0,
we recover £(0)/a = 3t/(4u). Away from the Dirac point, we find that A increases linearly with g,
leading to a decay length that linearly decreases with g as observed in Fig. 5. These predictions
(without any expansion) correspond to the solid black lines in the top plots of Figs. 4&S5.

In the case of the armchair boundary, four sets of states are obtained with two sets that
correspond to the expected TVHE states. The calculation of the dispersion and localization
lengths is more complicated and requires to numerically solve equations that can be found in
the Supplement 1. The results obtained for the two branches crossing the gap correspond to
the solid black lines in the bottom plots of Figs. 4&5. A specific feature of the armchair case
is that a small gap appears when the two branches of edge states cross at k, = 0 as can be seen
in Fig. 4&6. As argued in [15], this difference between the zigzag and armchair TVHE states
comes from the fact that the boundary mixes the valley in the armchair case but not in the zigzag
case. This valley mixing couples counter-propagating states near k, = 0 and a gap opens. This
gap is of order 4/t and tends to zero when 1/t becomes large and the Dirac equation predictions
are recovered. In our case, the gap, which is visible in the simulation, is on the order of the level
spacing between the different states. Therefore, except for the two states with zero wavevector, its
presence is barely visible, and most of the states follow an close to linear dispersion relation.

Finally, we have performed a full numerical simulation of the two samples including NNN
coupling and the exact sample geometry in order to take into account finite size effects. We
identify and analyze the TVHE states following the same procedure as for the experimental data
and obtain the black points shown in Figs. 4&5. These simulations confirm the pertinence of the
analytical calculation for an infinite lattice neglecting NNN coupling. In the case of the armchair
boundary, the simulations partly reproduce the variation of the decay length with frequency,
which we therefore attribute to finite size effects. These effects are more pronounced than for the
zigzag sample because of the cropped regions on the left and right sides of the sample.

4. Conclusion

In conclusion, we have observed topological valley Hall states with microwave photons in a lattice
of superconducting resonators. This work validates that lattices with well tailored properties can
be designed with this technology and that simple tight-binding models accurately describe their
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properties. The parameters entering the model are obtained from ab initio numerical simulations
of the electromagnetic field of a single resonator. In a future work, it could be interesting to
realize a valley selective excitation in order to observe the valley Hall effect where the direction of
propagation along the boundary could be selected via the valley index. This requires addressing
at least two sites on the two sublattices close to the boundary, which is challenging with a single
planar circuit as considered here but could be done with the recent multi-layer approach developed
in circuit QED. Finally, lattices of superconducting resonators offer the possibility to introduce a
controlled non-linearity, which can be as large as the hopping amplitude, with the perspective to
study the interplay between topological and non-linear effects [27-31].
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