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Abstract

The present work sheds light on the stresses generated in a spherical particle

subjected to phase transformations during ion-insertion. In order to account

for the physical process that occur during electrochemical cycling, the models

used are those of small deformation and account for the effects of phase trans-

formation, chemo-mechanical coupling and concentration-dependent material

properties. The two-phase lithiation is modeled by the Cahn-Hilliard equation.

It is found that the DISs arise from the inhomogeneous volume expansions re-

sulting from Li concentration gradients and the hydrostatic stress facilitates

the diffusion of Li-ions under elastic deformation while it hinders diffusion in

the plastic case. When the elastic modulus is reduced the magnitude of the

diffusion-induced stress decreases but the strain increases under elastic defor-

mation whereas the opposite occurs for the plastic case. Furthermore, if the

electrode is assumed to undergo strain softening during plastic deformation,

smaller stresses and higher plastic strains are predicted than when strain hard-

ening is assumed. The models highlight the importance of chemo-mechanical

coupling effects, concentration-dependent material properties and plastic defor-

mation on diffusion-induced stresses. These findings render prospective insights
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for designing next-generation mechanically stable phase transforming electrode

materials.

Keywords: Electrodes, Phase transformation, Chemo-mechanical coupling,

Concentration-dependent elastic modulus

1. Introduction

Lithium ion batteries (LIBs) are currently widely used in portable electron-

ics and will continue to play a significant role in next generation electric vehi-

cles, utility grids and electric/hybrid-electric airplanes. To fulfill the practical

requirements, LIBs should have an optimal electrochemical and mechanical per-5

formance, i.e, high energy density, high power density, and long cycle life. The

operation of LIBs involves the continuous diffusion of Li-ions between the an-

ode and cathode and therefore the performance of LIBs depends largely on the

electrode active materials (materials that react with Li+).

The cathode is the source of lithium ions (Li+), and the anode should have10

the ability to host the Li+ during charge and vice versa for the discharge pro-

cess. Lithium insertion and de-insertion are accompanied by changes in lattice

spacing. As a result, the lattice structure can be altered, and phase transforma-

tions can occur, resulting in volume changes. Consequently, diffusion-induced

stresses (DISs) are generated. The energy density, power density and cycle life15

of LIBs are closely related to DISs. Excessive stresses result in pulverization of

the electrode materials and their detachment from the current collector. As a

result, fracture of the electrode and capacity decay occurs.

For instance, commercially used cathode materials (LiMn2O4 and LiCoO2)

for LIBs have achieved only half of the theoretical capacity, due to the mechan-20

ical stresses that arise from phase transformations and changes in the crystal

structures/lattice parameters during the charging/discharging processLiu et al.

(2004); Venkatraman et al. (2000); Amatucci et al. (1996); Aifantis & Hack-

ney (2003). Similarly, high-capacity anode materials (Si and Sn) cannot retain

their initial capacity ( 900-4000 mAh/g) due to the fracture that results from25
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the lithiation-induced volume expansions (300%-400%) He et al. (2012); Wang

et al. (2013). Therefore, understanding the stress evolution process is crucial

for revealing the degradation mechanisms of LIBs and thus, improving their

performance. Initial models considered the stress evolution Aifantis & Hackney

(2003) and fracture Aifantis et al. (2005, 2006) in active electrode particles by30

using a purely mechanical approach. Since then, multiple models have been

developed to determine the DIS in material systems. The phenomenon of DIS

was first studied by employing an analogy between thermal stress and DIS to

analyze the transverse stresses introduced by solute lattice contraction of boron

and phosphorus in a thin silicon plate during mass transport Prussin (1961). A35

number of analytical solutions to DIS problems in elastic media of simple spheri-

cal and cylindrical geometries were provided in Li (1978), while the DISs arising

from inhomogeneous concentration in materials was in investigated in Larcht’e

& Cahn (1982); Larche & Cahn (1984). The effect of DISs on diffusion in hollow

cylinders Lee et al. (2000); Wang et al. (2002) and square sandwich composites40

Ko et al. (2005) has also been studied. Later on, numerous researchers followed

this analogy approach to investigate the DISs in nanowire electrodes Deshpande

et al. (2010a), spherical electrode particles Verbrugge & Cheng (2009); Cheng &

Verbrugge (2010, 2008), cylindrical electrodes Deshpande et al. (2010b); Song

et al. (2012) and layered electrode plates Zhang et al. (2012).45

For intercalation-induced stresses, one-dimensional (1D) models have been

developed by to investigate the stress generation due to Li+ insertion into a

spherical carbon anode Christensen & Newman (2006b), but instead of ther-

mal analogy, the governing equations were derived based on lattice deformation

analysis. Given that analytical solutions to diffusion equations under specific50

conditions are available Crank (1979); Jaeger & Carslaw (1959), analytical ex-

pressions have been obtained to study the stress evolution in spherical electrode

particles Cheng & Verbrugge (2009, 2010).

Most of these studies are centered on single-phase reactions, assuming that

the electrode particle phase does not change during Li+ insertion/de-insertion.55

However, it’s well known that lithium-ion insertion often leads to the forma-
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tion of different phases. Phase transformations have been experimentally ob-

served during Li+ insertion/de-insertion and could play an important role in the

stress evolution during the discharging/charging process Shin & Pyun (1999a,b);

Zhang & White (2007). Multiple models have been constructed to capture the60

effect of phase transformations on DISs. The “shrinking core” model Srinivasan

& Newman (2004) considers that the core and shell would consist by lithium-rich

and lithium-poor phases, respectively, during Li+ insertion and vice-versa for

de-insertion. This model leads to an abrupt change (jump) in the concentration

at the phase boundary which also results in a stress discontinuity at the inter-65

face between the two phases. By using this model and extending the theoretical

framework for a single-phase reaction Christensen & Newman (2006b), the stress

generation in a spherical LiMn2O4 particle was estimated Christensen & New-

man (2006a). This “shrinking core” model has also been applied to study other

spherical electrode particles and other configurations Deshpande et al. (2011);70

Liu et al. (2014); Esmizadeh et al. (2019). Due to the sharp interface, concen-

tration and stress discontinuities appear at the interface. It is noted that the

moving phase boundary needs to be tracked and specific boundary conditions

need to be applied during insertion and de-insertion. Therefore, this sharp in-

terface model poses numerical difficulties for practical applications. A possible75

alternative approach would be phase field modeling of the diffusion. By em-

ploying a diffusive interface model, the ion distributions can be modeled with a

continuous concentration field. As a result, the reaction front does not need to

be explicitly tracked. Such phase field models have been successfully applied to

study the stress generation of LiFePO4 Zhang & Kamlah (2018) and LiMn2O480

Huttin & Kamlah (2012) particles.

Phase field models, aside from the work in Hu et al. (2019a) focus on the

DISs of cathode materials. Due to the generally small volume expansions that

cathodes experience during lithiation, infinitesimal/small strain continuum me-

chanics formulations can be used. For example, LiFePO4 shrinks approximately85

7% after full delithiation Yamada et al. (2005); Wang et al. (2005), and therefore

cathodes are assumed to undergo linear elastic deformation during the interca-
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lation/deintercalation process Woodford et al. (2010); Hao & Fang (2013a,b).

However, all high capacity anodes, such as Si, are well known for large volume

expansions during lithiation, which can reach 420% upon maximum lithiation90

(Si4.4Li). The deformation is so large that plastic deformation can take place.

Although linear elastic studies of the DISs Jagannathan & Chandran (2014);

Tsagrakis & Aifantis (2018); Golmon et al. (2010) in these anodes can provide

some insights on the stress evolution, plastic models Hu et al. (2010); Zhao et al.

(2011b) would be more reasonable since the volume change is large enough that95

yielding can occur. Both in-situ measurementsSethuraman et al. (2010) and

first-principle studies Zhao et al. (2011a) of the stress evolution in thin-film

amorphous Si anodes during lithiation/delithiation have revealed that yielding

and plastic flow occur. Elastoplastic and viscoplastic models have been adopted

to study the DISs in Si and Sn anodes during lithiation Chen et al. (2017);100

Huang et al. (2013); Liu et al. (2012); Chen et al. (2014). An important find-

ing in these aforementioned studies is that the tangential stress transits from

compressive to tensile during lithiation when plasticity is taken into account,

which is believed to be the cause of the experimentally observed fracture of Sn

nanoparticles Aifantis et al. (2012), Si spherical particles Liu et al. (2012) and105

Si nanowires Ryu et al. (2011) during lithiation. Elastic models predict a com-

pressive hoop stress on the outer surface at all times while plastic models can

capture this transition (compression in the core to tension in the shell) since the

hoop tension is the crack driving force of the observed surface cracking Huang

et al. (2013); Liu et al. (2012); Chen et al. (2014); Chang et al. (2018).110

Despite the fact that there have been a lot of models on DISs of electrode

materials, a comprehensive understanding has yet to be achieved. One aspect

is the chemo-mechanical (CM) coupling effect. Initial works, particularly those

using the “shrinking core” model, did not consider CM coupling. Subsequent

models considered the coupling effect between chemical diffusion and mechan-115

ical deformation Christensen & Newman (2006b); Liu et al. (2014); Zhang &

Kamlah (2018); Hao & Fang (2013a,b); Tsagrakis & Aifantis (2018); Zhao et al.

(2011a); Chen et al. (2014). However, few works have taken into considera-
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tion the change that occurs in the elastic modulus of electrode materials during

Li+ insertion. A decrease or increase in the elastic modulus during Li-insertion120

(lithation), as a function of Li-concentration, have been observed experimentally

Sethuraman et al. (2010); Hertzberg et al. (2011) and calculated through first

principle calculations Maxisch & Ceder (2006); Qi et al. (2014, 2010). Table 1

shows the Young’s modulus of the lithiated and delithiated phases of some elec-

trode materials. The effect of a concentration dependent elastic modulus on DIS125

was systematically examined using linear and gradient elasticity Natarajan &

Aifantis (2020), showing that there was a negligible difference in DISs when the

variation of the elastic modulus due to Li insertion was only 10% and a single-

phase reaction during Li-insertion occurred. In such cases, constant moduli may

be used for modeling DISs in a single-phase battery system. However, very few130

studies examined the effects of the concentration-dependent material proper-

ties on DISs in phase-transformation electrode materials, and there isn’t much

work comparing plastic and elastic models. Herein we present a new formula-

tion that can account for chemomechanical coupling, concentration dependent

elastic moduli for two phase transitions and large volume expansions, for both135

electrodes that undergo either pure elasticity or also plasticity during lithiation.

By performing such a comprehensive study of the DIS, more accurate predic-

tions of the stress fields in the electrodes can be provided, allowing for a better

selection of the materials and microstructure that will result in improved elec-

trochemical performance. It should be noted that this work can be applied to140

other electrochemical systems that operate under the diffusion of ions, such as

Na-ion batteries.

2. Phase field modeling of DISs

As mentioned earlier, a core-shell model is often used to model the diffusion

process of electrode materials that exhibit phase segregation into Li-rich and145

Li-poor phases, respectively, during Li-ion insertion and de-insertion. It’s often

assumed that during insertion the phase boundary moves in the radial direction
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Table 1: Young’s modulus of some active electrode materials in lithiated and

delithiated phases

Delithiated

phase

Method Young’s

modu-

lus(GPa)

Lithiated

phase

Young’s

modu-

lus(GPa)

CoO2 Computation

Qi et al.

(2014)

59.8 LiCoO2 264

C(graphite) Computation

Qi et al.

(2010)

32 LiC6 109

Si(amorphous) Computation

Shenoy et al.

(2010)

96 Li3.75 Si 41

Si(crystaline) Experiment

Hertzberg

et al. (2011)

90 Li3.75Si 12

Sn(crystaline) Computation

Stournara

et al. (2012)

51 Li3.5Sn 24.7

and the expansion is isotropic. To model the sharp phase boundary, the Cahn-

Hilliard type diffusion equation can be used. The effect of chemo-mechanical

coupling on DISs can be incorporated into the model via a variational formu-150

lation approach. As for the electric field, the conductivities of the electrode

materials are high enough in most cases so that the electric potential inside the

electrode particles are regarded as uniform, therefore, the influence of electric

field on DIS can be neglected Zuev & Tsvetkov (2017).

Both, the concentration and temperature fields are governed by the diffusion155

equation. Therefore, it’s naturally to deduce that a change in concentration

will cause DIS in a similar manner as a change in temperature would lead to
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thermal stresses, as has been done in most of the aforementioned articles, and the

constitutive relations from thermo-elasticity can be adopted without too much

adjustment. For plastic models, either viscoplastic or elastoplastic models can160

be used. Viscoplastic models for thermal-induced stress have been implemented

into commercial finite element software such as ABAQUS and COMSOL. When

using such software, the DIS due to (de-)insertion can be modeled easily just

by replacing the temperature with the concentration and the thermal expansion

coefficient with the chemical expansion coefficient. For implementation in open-165

source finite element codes such as deal.II and FEniCS, elastoplastic models are

much more convenient and are therefore implemented in FEniCS in this work.

2.1. DISs for elastic solids

2.1.1. Phase field model for elastic solids

Based on a variational formulation, a theoretical framework for DIS can be

established. The basic idea is energy minimization of the total potential energy.

For the cathode with small volume variations, the deformation is assumed to

remain in the elastic stage. The system (total) free energy of the domain Ω

under consideration is

Ψ =

∫
Ω

ψdΩ (1)

where Ψ is the free energy density, i.e., free energy per unit reference volume

and is comprised of two parts:

ψ = ψ (ε, c,∇c) = ψe + ψc (2)

where ψe is the bulk elastic energy density solution, c is the actual species

concentration, given in terms of moles per unit reference volume (the molar

concentration per unit volume in the reference configuration), and ψc is the

energy contribution due to changes in the concentration solution. The strain

and displacement are related as:

ε =
1

2

[
∇u+ (∇u)

T
]

(3)
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where u is the displacement field. The elastic strain energy density is

ψe (εe) =
1

2
εe : C : εe (4)

where the elastic strain tensor is εe = ε−εc. εc is the chemically induced strain

tensor and is given by :

εc = α (c∗ − c∗0) I (5)

where I is a 2nd-order identity tensor, C is a 4th-order elasticity tensor, given

by C = λδijδkl + Λ (δikδjl + δilδjk), δij describes the Kronecker delta, λ and

Λ are the Lamé constants, and c∗ is the relative concentration. The normal-

ized concentration c∗ is used to characterize the relative saturation level of Li

in an electrode. It’s normalized by the maximum concentration cmax in the

Li/electrode system, ranging from 0 (no ions) to 1 (full ion insertion), given

by:c∗ = c/cmax . c∗0 is a reference concentration, usually set as 0. α is a di-

latation coefficient (analogous to the thermal expansion coefficient), given by:

α = 3
√

1 + Ξcmax - 1
.
=

1

3
Ξcmax (6)

where Ξ is the partial molar volume of Li-ions. Due to the presence of a sharp

interface, the energy contribution due to a concentration gradient on diffuse

interfaces cannot be neglected. It should be noted that for phase transformation

materials, there is a sharp interface, however, phase field modeling uses diffusive

interfaces with a finite thickness (but very thin) to approximate it, resulting in

a continuous concentration. In traditional sharp interface models, the thickness

is assumed to be zero, and as a result, the concentration is discontinuous across

the interface. The chemical energy density can be split into two parts:

ψc = ψc (c,∇c) = ψch + ψcg (7)

where ψch is the homogeneous chemical free energy density (free energy density

of a homogeneous system of uniform concentration) and ψcg is the chemical

gradient energy density due to the concentration gradient ∇c. The chemical

stored free energy (chemical contribution to the stored energy) is assumed to
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have the form:

ψch = ψch (c) = RTcmax [c∗ ln c∗ + (1− c∗) ln (1− c∗) + χc∗ (1− c∗)]+µ0cmaxc
∗.

(8)

Here R is the gas constant, T is the absolute temperature, and RT denotes the

specific molar energy. µ0 is a reference value of the chemical potential of the

diffusing species, set as 0 since it will not affect the diffusion behavior. χ is the

constant partial molar volume (the volume of a mole of the species , parameter

χ indicates the convexity of the energy) which is dimensionless and controls the

shape of the double-well energy function characterizing the Li-rich and Li-poor

phases. This form of the homogenous energy density favors a separation of the

system towards c∗ = 0 and c∗ = 1, i.e., minimization of the Gibbs free energy.

To ensure phase separation, χ > 2 . The chemical gradient energy density is

given by:

ψcg =
κ

2
|∇c|2 =

κ̄

2
|∇c∗|2 (9)

depending on the concentration gradient and representing an interfacial energy.

κ̄ = κcmax
2 and κ is the gradient energy coefficient, with units of energy per unit

volume times a length squared. The parameter κ modulates the contribution of

the large concentration gradient at the two-phase interface to the free energy.

When the elastic property of the material is strongly influenced by concentra-

tion, based on rule of mixtures from composites, it can be approximated by a

simple linear relation:

E (c∗) = E0 + kc∗ (10)

where E is the concentration-dependent Young’s modulus, and E0 is the Young’s

modulus of the delithiated phase (i.e. initial elastic modulus), and k is a positive

or negative parameter allowing for a reduction or increase in the modulus during

lithiation. The chemical potential µ is defined as the variational derivative of
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the system free energy:

µ =
δψ

δc
=
∂ψ

∂c
−∇ ·

(
∂ψ

∂∇c

)
= µ0 +RT ln

(
c∗

1− c∗

)
+RTχ (1− 2c∗)− Ξσh

− cmax∇ · (κ∇c∗)−
1

2cmax

dSijkl
dc∗

σijσkl

(11)

where σh = 1
3 tr(σ) is the hydrostatic stress and Sijkl is the concentration-

dependent compliance tensor. Therefore, the diffusional potential is related to

the Li concentration and the local stress state, as well as the concentration

gradient and the changing material properties due to intercalation. For linear

elastic and isotropic materials, the compliance tensor is given by:

Sijkl =
1− 2υ

3E
δijδkl +

1 + υ

2E

(
δikδjl + δilδjk −

2

3
δijδkl

)
(12)

where υ is Poisson’s ratio. As a result,

dSijkl
dc∗

σijσkl =
1

E2

dE

dc∗
(υσiiσkk − (1 + υ)σjlσjl) (13)

The Li transport in the host materials can be described by the diffusion equation,

as
∂c∗

∂t
+∇· j = 0 in Ω (14)

where j is the flux, and Ω is the bulk of the electrode. The gradient of the

chemical potential is the chemical driving force for diffusion, i.e. the gradient

of the diffusional potential of Li µ serves as the driving force for Li diffusion:

j = −M∇µ (15)

where M is the mobility tensor, which is generally a function of Li concentration

c. For isotropic materials, it’s assumed to have the form:

M = c∗ (1− c∗)MI (16)

where M is the solute mobility and is independent on time. The diffusion

coefficient D is given by:

D = MRT (17)
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To solve for the diffusion, suppose the electrode is under galvanostatic oper-

ation and the particle is charged galvanostatically, with a uniform lithium flux

through its free surface according to

Mc∗ (1− c∗) ∂µ
∂r
|r=ρ = i (18)

Here i is the applied current density (per unit area), and ρ is the radius of the

electrode particle. The variational boundary condition is given by:

κ∇c · nc = 0 on ∂Ωc (19)

with nc being the outward unit normal to the concentration boundary ∂Ωc .

The weak form of the diffusion equation can be given by:∫
Ω

∂c∗

∂t
vdV =

∫
∂Ω

ivdS −
∫

Ω

Mc∗(1− c∗)∇µ∇vdV (20)

∫
Ω

µwdV =

∫
Ω

RT

[
ln

(
c∗

1− c∗

)
+ 2χ (1− c∗)

]
wdV −

∫
Ω

κcmax∇c∗∇wdV

−
∫
Ω

ΞσhwdV −
∫

Ω

1

2cmax

dSijkl
dc∗

σijσklwdV

(21)

where v and w are arbitrary test functions. Considering a spherical particle dur-

ing the lithiation process, the mechanical equilibrium equation under spherically

symmetrical deformation is given by:

dσr
dr

+
2 (σr − σθ)

r
= 0 (22)

where σr is the radial stress, σθ is the hoop stress and r is the radial distance.

The constitutive law (stress-strain relation) for an isotropic spherical electrode

during lithiation is given by:

σr =
E

(1 + υ) (1− 2υ)

[
(1− υ)

(
du

dr
− αc∗

)
+ 2υ

(u
r
− αc∗

)]
σθ =

E

(1 + υ) (1− 2υ)

[(u
r
− αc∗

)
+ υ

(
du

dr
− αc∗

)]
 (23)
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Here εr = du
dr is the radial strain and εθ = u

r is the tangential strain and u is

the radial displacement. The boundary conditions for this problem are: zero

radial displacement at the center and zero radial stress on the outer surface,

i.e., u |r=0 = 0 and σr |r=ρ = 0 . As a result, when E is not dependent upon c,

then the stress field can be given analytically by Hu et al. (2019b):

σr =
2αE

1− υ

(
1

ρ3

∫ ρ

0

c∗r2dr − 1

r3

∫ r

0

c∗r2dr

)
σθ =

2αE

1− υ

(
1

ρ3

∫ ρ

0

c∗r2dr +
1

2r3

∫ r

0

c∗r2dr − c∗

2

)
 (24)

For a general case, the Young’s modulus may not be a constant. In such cases,

the analytical solution cannot be obtained, and finite element or other numerical

methods need to be employed. The weak form of the mechanical equilibrium

equations can be given by:∫ ρ

0

q

(
dσr
dr

+
2 (σr − σθ)

r

)
r2dr = 0 (25)

where q is a test function. Integrating by parts and applying boundary condi-

tions, one can finally obtain:∫ ρ

0

(
σr
dq

dr
+ 2σθ

q

r

)
r2dr = 0 (26)

By substituting Equation 23 into Equation 26, we have the weak form in terms

of the displacement as follows:∫ ρ

0

q

[
(λ+ 2Λ) r2 d

2u

dr2
+ 2 (λ+ Λ)

(
r
du

dr
− u
)
− (3λ+ 2Λ)αr2 dc

∗

dr

]
dr = 0

(27)

2.1.2. Numerical implementation of the phase field model170

In order to seek the solutions, the finite element method is used. Due to

spherical symmetry, the problem can be reduced to a one-dimensional problem.

The weak form cannot be solved directly. Instead, we have to discretize in both

the temporal and spacial space. Therefore, Equation 20 and Equation 21 can

be rewritten as:∫
Ω

cn+1
∗ − cn∗

∆tn
vdr =−

∫
∂Ω

ivdS −
∫
Ω

Mcn
∗ (1− cn∗)∇µn∇vdr (28)

13



∫
Ω

µn+1wdV =

∫
Ω

RT

[
ln

(
cn
∗

1− cn∗

)
+ 2χ (1− cn∗)

]
wdV −

∫
Ω

κcmax∇cn∗∇wdV

−
∫
Ω

Ξ (σh)n wdV −
∫

Ω

1

2cmax

dSijkl
dc∗

(σij)n (σkl)n wdV

(29)

where the subscripts n+ 1 and n are the corresponding values at the time step

tn+1 and tn respectively, with ∆tn = tn+1 − tn being the nth time step. The

hydrostatic stress at tn is given by:

(σh)n =
1

3
[(σr)n + 2 (σθ)n] (30)

And Equation 13 at tn can be given by:

dSijkl
dc∗

(σij)n (σkl)n =
1

E2

dE

dc∗

[
[(σr)n + 2 (σθ)n]

2 −
[
(σr)

2
n + 2 (σθ)

2
n

]]
(31)

By using this kind of mixed formulation, the problem becomes to find cn+1
∗ and

µn+1 given that cn
∗ and µn are known. The built-in DOLFIN Newton solver

in FEniCS Dol is used to solve the nonlinear equations. As for the mechani-

cal equilibrium equation, the built-in NonlinearVariationalSolver in FEniCS is

employed. The basic idea is to calculate the Gateaux derivative of the non-175

linear form F (u; q) = 0 (corresponding to Equation 26). Thus, the Jacobian

and the trial function will be automatically computed and solved. By solv-

ing the diffusion equation (Equation 28 and Equation 29), the concentration

and the chemical potential can be obtained. Then the radial displacement can

be obtained by solving the weak form of the mechanical equilibrium equation180

(Equation 27). The unknown field variables (c∗, µ, u) can be solved by using

this staggered scheme at every time step.

2.1.3. Numerical results

Some typical phase-transformation cathode materials are LiFePO4, LiCoO2

and LiMn2O4. Although all these materials undergo phase transformations, it185

should be noted that LiFePO4 has a clear concentration jump during lithiation

between the different phases and parameter χ in Equation 8 must be greater
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than 2 to ensure phase separation. However, LiCoO2 and LiMn2O4 undergo

a structural transformation and there is no clear concentration jump. In such

cases, χ must be less than 2 and in particular, it can be set as 0.190

Table 2: Material properties of LiFePO4

Name Symbol and unit Value

Diffusion coefficient D [m2/s] 10−14

Young’s modulus E [GPa] 124.5

Poisson’s ratio ν 0.25

Partial molar volume Ξ [m3/mol] 2.9× 10−6

Gradient coefficient κ̄ [J/m] 5.02× 10−10

Expansion coefficient α 2.21× 10−2

Maximum concentra-

tion

cmax[mol/m3] 2.29× 104

In the present simulations, the following dimensionless/normalized variables

are used as shown in Table 3, where t0 = ρ2

D is the characteristic time, F is

Faraday’s constant, and z is the valence number of a Li-ion (z=1). As an

example, the stress evolution of a spherical LiFePO4 electrode is studied. The

material properties of LiFePO4 electrode are given in Table 2 Zhang & Kamlah195

(2018). The initial radius of the electrode is ρ = 100nm. Normalized radius

is 1 and total number of the mesh elements of the unit interval is 100. (It

follows that the model results can be applied to any electrode material since

the variables are normalized. The general trend is of interest here and not

the specific values.) The parameters are as follows: E 0=124.5 GPa , υ=0.24,200

M∗ = 1, i∗ = 1, κ∗ = 0.0004, k = 0, Ξ=3.49×10−6 m3/mol, χ = 2.6, cmax=

2.29 × 104mol/m3, T=300 K, ∆t=0.0005, α= 0.0221. These parameters are

used to study the evolution of the concentration, radial stress, hoop stress,

hydrostatic stress, von Mises stress, as well as the evolution of the hoop stress

on the outer surface, as shown in Figure 1. Only the DISs during the lithium205

insertion process are considered and a constant Young’s modulus is assumed for

the two phases during lithiation.
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Table 3: Normalized/dimensionless variables

Name Symbol Normalized variable

Normalized gradient co-

efficient

κ∗ κcmax/
(
RTρ2

)
Normalized mobility M∗ MRTt0/ρ

2

Normalized time t∗ t/t0

Normalized radial dis-

tance

r∗ r/ρ

Normalized stress com-

ponents

σij
∗ σij/E0

Normalized chemical

potential

µ∗ µ/ (RT )

Normalized ion flux i∗ iρ/ (zFDcmax)

Normalized partial mo-

lar volume

Ξ∗ ΞE/ (RT )

It takes approximately 6000 ∆t to complete the lithium insertion process,

i.e. reach 100% lithiation of the active particle. Figure 1(a) shows the radial dis-

tributions of the normalized Li concentration at lithiation times 500∆t, 2000∆t210

and 4000∆t, respectively. A sharp interface is present between the Li-rich and

Li-poor phases. At the initial stage (500∆t), the differences in the concentra-

tion profiles are not distinct, and the stresses and strains ( Figure 1(b)-(h))

have similar radial distributions. As lithiation continues 2000∆t and 4000∆t,

the Li-poor phase tends to have a higher concentration when compared with215

the case without CM coupling, and the phase interface tends to move faster in

the coupling case.

The radial stress (Figure 1(b)), is almost constant in the core (Li-poor)

region and gradually decreases to zero on the outer surface. The hoop stress

(Figure 1(c)) is also constant in the core-region and transits from tensile in the220

core to compressive in the shell. The hydrostatic stress (Figure 1(d)) shows a

similar trend. The Li-poor region is under constant tension while the Li-rich

shell is in compression. From Equation (21), it can be seen that the compressive
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Figure 1: Radial distribution of (a) Concentration profiles, (b)Normalized radial stress, (c)

Normalized hoop stress, (d) Normalized hydrostatic stress, (e) Normalized von Mises stress

at time steps 500∆t, 2000∆t, and 4000∆t with/without chemo-mechanical coupling effects.

The evolution of (f) Normalized hoop stress on the outer surface. All the stress components

are normalized by the Young’s modulus of the delithiated electrode material. The unit for

the time step is ∆t. The solid and dashed lines are for with and without chemo-mechanical

coupling effect respectively.

stress leads to a higher chemical potential and the tensile stress leads to a lower

chemical potential. Since the chemical potential is the driving force for diffusion,225

this hydrostatic stress state facilitates the diffusion process. It’s reflected on

the concentration profiles, showing that the phase-boundary interface moves

faster in the CM coupling case. For the von Mises stress (Figure 1(e)), it’s
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Figure 2: Radial distribution of (a) Concentration profiles, (b)Normalized radial stress, (c)

Normalized hoop stress, (d) Normalized hydrostatic stress, (e) Normalized von Mises stress,

and (f) Radial strain, (g)Hoop strain and (h) Equivalent strain at time step 2000 ∆t with

chemo-mechanical coupling effects under elastic deformation. Constant modulus, reduced

modulus and increased modulus during ion insertion are considered. All the stress components

are normalized by Young’s modulus of the delithiated electrode material. The dotted and

dashed lines are for a 10% reduction or increase in the elastic modulus during ion-insertion

respectively. As for the solid lines, a constant elastic modulus is assumed.
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almost zero in the core region, and there’s an abrupt change across the interface.

The maximum von Mises stress occurs close to the interface due to the volume230

mismatch between the two phases. Away from the interface towards the outer

surface, the von Mises stress gradually decreases. It should be noted that higher

radial, hoop, hydrostatic, and von Mises stresses are predicted for the coupling

cases when compared with the ones without CM coupling at the same time

step. This is due to the fact that equilibrium concentrations are almost the235

same for the Li-rich phase while a higher equilibrium concentration is predicted

for the coupling case. The coupling model predicts a smaller miscibility gap

(concentration differences between the Li-rich phase and Li-poor phase), thus,

less volume change and DISs are induced.

In order to study the influence of material property changes due to lithiation,240

the parameter k is set to be −0.1E0 and +0.1E0 (corresponds to a 10% reduction

or increase in modulus with increasing ion concentration respectively). All the

other parameters are the same and CM coupling is considered. Since the stress

and strain profiles have the similar trends, only the profiles at at time step

2000 ∆t are plotted and analyzed as shown in Figure 2. It should be noted245

that when a concentration dependent modulus is considered, the concentration

profile (Figure 2(a)) is almost the same. Similarly, the distributions of the

stresses (Figure 2(b)-(e)) are the same but the magnitudes are different. This is

due to the fact that a higher stress is induced for materials with an increasing

modulus as a function of Li-concentration when compared to the cases where the250

modulus is either not dependent on concentration or it decreases as a function

of it. Also, the stresses predicted from the coupling case are smaller than those

from the non-coupling case when the same material parameters are used. This

is because the coupling model predicts a smaller miscibility gap (concentration

differences between the Li-rich phase and Li-poor phase).255

To gain a better understanding of the physics behind the stress evolution,

let’s consider the lithiation process. During Li- insertion, the outer shell con-

tains more Li-ions than the inner core and, as a result, the core expands to a

lesser degree. The expansion is constrained by the exterior region, leading to
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Figure 3: Radial distribution of (a) Normalized hoop stress in the particle center, and (c)

Normalized hoop stress at the outer surface at time step 2000 ∆t with chemo-mechanical

coupling effects under elastic deformation. Both of the modulus increasing or decreasing

during ion insertion are considered. All the stress components are normalized by the Young’s

modulus of the delithiated electrode material. The dotted and dashed lines are for a 10%

reduction or increase in the elastic modulus during ion-insertion respectively. As for the solid

lines, a constant elastic modulus is assumed.

a compressive hoop stress in this region. The traction-free boundary condition260

requires that the radial stress vanishes at the outer surface at all times. The

volume mismatch between the core and shell leads to tensile stresses in both the

radial and hoop directions. Due to a constant Li concentration and spherical

symmetry, the radial stress equals the hoop stress in the core regions. As lithi-

ation proceeds, the radial and hoop stresses in the core continue to grow in the265

elastic case due to the growing Li concentration in Li-poor regions. However,

the hoop stress near the outer shell decreases as insertion progresses, due to the

movement of the phase interface towards the center. Consequently, the Li-poor

phase restricts the swelling of the Li-rich phase near the exterior to a lesser

degree.270

The strain distributions are also investigated. The radial strain (Figure 2(f))

is almost constant in the core region and gradually increases towards the outer

surface, while the hoop strain (Figure 2(g)) and equivalent strain (Figure 2(h))

show similar trends as those of the von Mises stress distribution. An interesting

finding is that the magnitudes of the strains are higher when the modulus de-275
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creases during ion insertion, as opposed to when it increases with concentration.

Temporal distributions of the stresses in the center ( Figure 3(a)) and on

the outer surface (Figure 1(f) and Figure 3(b)) are recorded. Radial stress in

the particle center is equal to hoop stress in the particle center due to spherical

symmetry. It can be seen that the radial/hoop stress in the center increase faster280

in the early lithiation stages than in the later stages. While for the hoop stress

on the outer surface, the magnitude increases quickly during early lithiation

stages and then gradually decreases. The radial and hoop stresses in the center

are tensile while the hoop stress on the outer surface is always compressive. Due

to the traction-free boundary conditions on the outer surface, the radial stress285

on the outer surface vanishes (i.e., is always zero). As a result, cracks are not

likely to occur and propagate during lithiation.

2.2. DISs for elasto-plastic materials

2.2.1. Phase field model for elasto-plastic materials

In alloy-based electrode systems, such as Li/Si, a large volumetric change290

may be induced (over 400% for Li/Si), which can give rise to plastic deforma-

tion. If infinitesimal changes occur in the stress and chemical composition, a

unique infinitesimal change of strain is produced, and the change is indepen-

dent of the speed applied. In this case, we can say that the chemo-plasticity

model is rate-independent. The model can be formulated from an energy per-295

spective. Generally speaking, the formulation can be either in terms of stress

space or strain space. The constitutive relation (flow rule) for the plastic strain

rate is usually given in terms of the stress space. As a result, the stress-based

formulation is employed here.

The Gibbs free energy ψ = ψ (σ, c∗, ξ) is a function of the stress tensor (σ),

chemical composition (c∗) and internal (intrinsic) variable (ξ). In this notation,

the chemoelastic part of the strain tensor is given by:

εec =
∂ψ

∂σ
(32)
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The yield condition in stress space can be expressed as:

f (σ, c∗, ξ) = 0 (33)

And the chemoplastic strain rate is given by:

ε̇p = γ̇
∂g

∂σ
(34)

where g = g (σ, c∗, ξ) is the plastic flow potential and γ̇ is the rate of the plastic300

multiplier. Since plastic deformation is an irreversible process, the multiplier

must be non-negative. For the associative flow rule, g = f .

Kuhn-Tucker conditions must be satisfied during the deformation process,

which are stated as:

f ≤ 0, γ̇ ≥ 0,γ̇f = 0 (35)

This consistency condition is also equivalent to:

ḟ ≤ 0, γ̇ ≥ 0,γ̇ḟ = 0 (36)

The hardening behavior of the material is determined by h and it’s a function

of c∗ , and the history variable (ϑ). The hardening rule can be expressed as:

ξ̇ = γ̇h (c∗, ϑ) (37)

and the hardening parameter Ho is defined as:

Ho = −∂f
∂ξ
h (c∗, ϑ) (38)

The chemoelastic strain rate is given by:

ε̇ec =
∂2ψ

∂σ ⊗ ∂σ
: σ̇ +

∂2ψ

∂σ∂c∗
ċ∗ (39)

The general form of ψ is as follows:

ψ = ψe (σ) + ψch (σ, c∗) + ψp (c∗, ϑ) (40)

The three terms represent the energy contribution from mechanical elastic part,

chemical elastic part, and plastic part respectively. The mechanical elastic part

and plastic part are given as:

ψe (σ) =
1

4Λ

(
tr
(
σ2
)
− λ

3λ+ 2Λ
tr2 (σ)

)
(41)
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ψp (c∗, ϑ) =
1

2
Hζ2 + σ0

yζ (42)

Linear isotropic hardening is assumed with H being the hardening modulus, and

ζ is a strain-like internal variable (normally it’s equivalent to plastic strain). As

a result, the chemoelastic part of the strain rate could be given as:

ε̇ec =
1

2Λ

(
I− λ

3λ+ 2Λ
I ⊗ I

)
: σ̇ +

∂ψch

∂c∗
ċ∗ (43)

For a homogenous and isotropic material, a linear expansion is assumed,

ψch (σ, c∗) = η (c∗) tr (σ) (44)

η is given by:

η = α∆c∗ = α (c∗ − c∗0) (45)

where c∗0 is a reference concentration, usually set as 0. The consistency condition

is ḟ = 0 , i.e.,

ḟ =
∂f

∂σ
: σ̇ +

∂f

∂ξ
: ξ̇ +

∂f

∂c∗
ċ∗ = 0 (46)

The consistency parameter is given by:

γ̇ =

〈
∂f
∂σ : C : ε̇− ∂f

∂σ : (3λ+ 2Λ)αċ∗I + ∂f
∂c∗ ċ

∗
〉

H0 + ∂f
∂σ : C : ∂g

∂σ

(47)

With 〈x〉 = 1
2 (x+ |x|) denoting the positive part of x. For J2 plasticity and

associative flow rule, ∂f
∂σ : I = s

‖s‖ : I = tr(s)
‖s‖ = 0, therefore,

γ̇ =

〈
∂f
∂σ : C : ε̇+ ∂f

∂c∗ ċ
∗
〉

H0 + 2Λ
=

〈
∂f
∂σ : C : ε̇+ ∂f

∂c∗ ċ
∗
〉

2
3H + 2Λ

(48)

When plasticity is taken into consideration, the constitutive relations for a spher-

ical particle can be given by:

σr =
E

(1 + υ) (1− 2υ)

[
(1− υ)

(
du

dr
− εpr − αc∗

)
+ 2υ

(u
r
− εpθ − αc

∗
)]

σθ =
E

(1 + υ) (1− 2υ)

[(u
r
− εpθ − αc

∗
)

+ υ

(
du

dr
− εpr − αc∗

)]

(49)
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And the deviatoric parts are:

σr
′ =

2

3
(σr − σθ) , σθ ′ = σφ

′ = −1

3
(σr − σθ) (50)

As a result, the effective stress/von Mises stress is:

σe =

√
3

2
s : s = |σr − σθ| (51)

When linear hardening is assumed, the yield function f and yield stress σ̄ are

given by:

f (σ, ξ) =
√
s : s−

√
2

3
σ̄ (ξ) (52)

σ̄ (ξ) = σ̄ (ε̄p) = σ0
y +H0ε̄p (53)

where ε̄p is the equivalent plastic strain, defined as below:

ε̄p =

√
2

3
εp : εp (54)

The plastic strain components are given by:

ε̇pr = γ̇
σr
′

‖s‖
, ε̇pθ = γ̇

σθ
′

‖s‖
(55)

For the associative flow rule,

∂g

∂σ
=
∂f

∂σ
= sign(σr

′)
1√
6

diag (2,−1,−1) (56)

∂f

∂c∗
=
∂f

∂σ
:
∂σ

∂c∗
+

∂f

∂σ0
y

∂σ0
y

∂c∗
+

∂f

∂H0

∂H0

∂c∗

= 2
∂Λ

∂c∗
∂f

∂σ
: ε− 2

∂Λ

∂c∗
∂f

∂σ
: εp −

√
2

3

(
∂σ0

y

∂c∗
+
∂H0

∂c∗
ε̄p

) (57)

When the yield function does not depend on the concentration field the consis-

tency parameter can be determined by:

γ̇ =

√
6Λ

H + 3Λ
sign(σr

′)

(
∂u̇

∂r
− u̇

r

)
Θ(
σe
σ̄
− 1) (58)

With Θ being the Heaviside unit step function, whose value is 1 for any positive

variable and 0 otherwise. And σe = |σr − σθ| is the effective/ von Mises stress.
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2.2.2. Numerical implementation of the phase field model305

The problem becomes to seek solutions of cn+1
∗, µn+1, un+1, and γn+1 at

the time step tn+1 given that cn
∗, µn, un, and γn at the time step tn are known.

Since the weak form of the diffusion equation and the mechanical equilibrium

equation are the same as in the elastic case, the same approach can be applied to

the elasto-plastic case. The only difference comes from the plastic deformation.

The current model does not take kinematic hardening and viscous effects into

account, i.e. only the quasi-static problem is solved. When the time step is

small enough, the increment of the consistency parameter can be given by:

∆γn =

√
6Λ

H + 3Λ
sign((σr)n

′
)

(
∂ (∆un)

∂r
− ∆un

r

)
Θ(

(σe)n
σ̄n

− 1) (59)

where

∆un = un+1 − un,

(σr)
′
n = 2

3 [(σr)n − (σθ)n], (σθ)
′
n = − 1

3 [(σr)n − (σθ)n],

(σe)n = |(σr)n − (σθ)n|,

σ̄n = σ0
y +H (ε̄p)n,310

(ε̄p)n =
√

2
3 (εp)n : (εp)n,

‖s‖n =
√

2
3 (σe)n,

(∆εr
p)n = ∆γn

(σr)′n
‖s‖n

, (∆εθ
p)n = ∆γn

(σθ)′n
‖s‖n

.

As a result,

γn+1 = ∆γn + γn,315

(εr
p)n+1 = (∆εr

p)n + (εr
p)n,

(εθ
p)n+1 = (∆εθ

p)n + (εθ
p)n,

and the other quantities at time step tn+1 can also be computed. The mechanical

equilibrium equation is essentially the same as for the elastic case, and the same

solver is used. Once the internal iterations for solving the weak form of the320

mechanical equilibrium equation (Equation 26) converge, one increment of the

mechanical field can be obtained by forward Euler integration method. Thus,

the mechanical equilibrium equation can be solved, and the stress field can be

obtained incrementally.
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2.2.3. Numerical results325

Here the stress evolution in a spherical Si electrode with radius 100 nm is

studied. It has been shown that both the elastic modulus and the yield stress

of Si are reduced with continuous Li-insertion Sethuraman et al. (2010), how-

ever, this concentration-dependence has not been accounted for theoretically.

Furthermore, previous studies used either linear hardening or viscoplasticity to330

study the stress evolution. However, few looked at strain softening effects, which

most likely take place based on the experimental observations Sethuraman et al.

(2010); Soni et al. (2012). In the present study, both strain hardening and strain

softening are considered. For the sake of simplicity, concentration-dependence

of the modulus is not considered in this section (but in the next one), and there-335

fore here the elastic modulus is kept the same for all cases. Normalized variables

as in the elastic case are employed. The normalized radius is 1 and total num-

ber of the element mesh of the unit interval is 100. The other parameters are

given by: E 0=90 GPa , υ=0.24, M∗ = 1, i∗ = 1, κ∗ = 0.0004, χ = 2.6, k = 0

(same Young’s modulus for both the core and the shell), σ0
y = 0.05E0 Chen340

et al. (2014), H = ±0.01E0 (corresponds to strain hardening and softening re-

spectively) Chen et al. (2014), Ξ=3.1×10−5 m3/mol, cmax=3.67 × 105mol/m3,

T=300 K, ∆t=0.0005, α= 3
√

4.2-1=0.613 (corresponding to 420% volume expan-

sion after full insertion).

At the early stage of lithiation (Figure 4), the differences in concentration,345

stresses and strain distributions are small. The concentration profiles (Fig-

ure 4(a)) almost coincide with each other. The radial stresses (Figure 4(b)) are

almost constant in the core region and gradually decrease to zero as they ap-

proach the shell; the hoop stresses (Figure 4(c)) transit from tension in the core

to compression in the shell; and the hydrostatic stresses (Figure 4(d)) show sim-350

ilar trends as the hoop stresses. The resulting von Mises stresses (Figure 4(e))

gradually increase from the core towards the shell, and as soon as they exceed

the yield stress, plastic deformation begins to take place.If there’s no plastic

deformation, the stress evolution will be the same as in the elastic deformation
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Figure 4: Radial distribution of (a) Concentration profiles, (b)Normalized radial stress, (c)

Normalized hoop stress, (d) Normalized hydrostatic stress, (e) Normalized von Mises stress,

(f) Radial plastic strain, (g) Hoop plastic strain and (h) Equivalent plastic strain at time

step 100 ∆t with/without chemo-mechanical coupling (‘w cp’ / ‘w/o cp’) effects under elasto-

plastic deformation. Both strain hardening and strain softening cases are considered. All the

stress components are normalized by Young’s modulus of the delithiated electrode material.

case, i.e., the maximum von Mises stress will occur near the core-shell interface.355

However, once it exceeds the yield stress, there will be plastic deformation. As
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a result, the von Mises stress (Figure 4(e)) is very small in the core and reaches

a local maximum near the core-shell interface, and then there’s a stress drop

to a local minimum near the local maximum position but the von Mises stress

increases rapidly towards the outer surface afterwards. The local stress changes360

are also reflected in the hoop stresses (Figure 4(c)) and the hydrostatic stresses

(Figure 4(d)). As lithiation progresses, the phase interface (Figure 4(a), Fig-

ure 5(a), and Figure 6(a)) moves from the shell exterior towards the center.

The coupling also predicts a smaller miscibility gap. But contrary to what

happens in elastic electrodes, the phase boundary moves slower than the non-365

coupling case. This is in agreement with the in situ experiments for crystalline

Si nanoparticles, where it is shown that a slower migration velocity occurs as

lithiation progresses McDowell et al. (2012). In later lithiation stages, the ra-

dial stress (Figure 4(b), Figure 5(b), and Figure 6(b)), hoop stress (Figure 4(c),

Figure 5(c), and Figure 6(c)) and hydrostatic stress (Figure 4(d), Figure 5(d),370

and Figure 6(d)) show similar trends for the three cases considered: strain hard-

ening without CM coupling (’w/o cp’), strain hardening with CM coupling (’w

cp’) and strain softening without CM coupling. They all (stress/strain profiles)

remain constant in the core regions with strain hardening without CM cou-

pling being the largest and strain softening without coupling being the lowest375

in magnitude. The radial stress is compressive in both the core and shell, while

the hoop and hydrostatic stresses are compressive in the core and transit from

compression near the interface to tension in the shell exterior. This hydrostatic

stress state hinders the diffusion of Li-ions, which is the reason for the slower

migration of the reaction front. There are stress drops in the radial stress, hoop380

stress and hydrostatic stress profiles near the core-shell interface due to the

occurrence of plastic deformation. The von Mises stress profiles (Figure 5(e),

and Figure 6(e)) also show stress drops but the situation is a little bit different.

The von Mises stresses (Figure 4(e), Figure 5(e), and Figure 6(e)) are almost

zero in the core regions. As a result, the core remains elastic and no plastic385

deformation (Figure 4(f)-(h), Figure 5(f)-(h), and Figure 6(f)-(h)) occurs there.

The von Mises stresses show abrupt changes near core/shell interfaces as they
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increase first, then decrease and increase again quickly. The von Mises stress

towards the shell continues to increase for the strain hardening case while it

decreases for the strain softening case.390

As for the plastic deformation, the plastic strain components are zero in

the core regions. The radial component of the plastic strain for the shell is

always positive while the hoop component is always negative. The equivalent

plastic strain continues to increase as lithiation continues, and is higher in the

strain softening case. It’s interesting to notice that there’s a relative plateau395

in the equivalent plastic strain profiles (Figure 5(h), and Figure 6(h)). This

is due to the stress drops near the core-shell interface. The von Mises stress

near the phase boundary decreases quickly and then increases rapidly again.

However, according to the von Mises yield criteria, plastic deformation can

continue to occur only if the von Mises stress exceeds the effective yield stress.400

Thus, there won’t be plastic strain increment over the stress drop regions. The

radial and hoop stresses in the center (Figure 7(a)) are equal due to spherical

symmetry. For the initial stages(up to 1000 ∆t), the stress profiles (Figure 7(a))

are almost the same and all in tension. However, they all undergo a transition

from tension to compression and the magnitude is the highest when it’s strain405

hardening without CM coupling and the magnitude is the smallest when it’s

strain softening with CM coupling. The hoop stress is the driving force for crack

propagation and on the outer surface (Figure 7(b)) it is compressive during

the early lithiation stages and transits from compression to tension at later

stages. The hoop stresses on the outer surface are almost the same for the initial410

stages when strain hardening/softening is considered either with or without CM

coupling. However, as soon as the electrode begins to yield, the hoop stress on

the outer surface keeps increasing for the strain hardening case while it decreases

for the strain softening case.

To have a better understanding of the stress evolution, the constitutive re-

lation (Equation 49) may be revisited. The stress state depends on both

lithiation-induced strain components and plastic strain components. In the

elastic case, the hoop stress in the shell is always compressive. When plastic
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Figure 5: Radial distribution of (a) Concentration profiles, (b)Normalized radial stress, (c)

Normalized hoop stress, (d) Normalized hydrostatic stress, (e) Normalized von Mises stress,

(f) Radial plastic strain, (g) Hoop plastic strain and (h) Equivalent plastic strain at time step

1500 ∆t with/without chemo-mechanical coupling (‘w cp’ / ‘w/o cp’) effects under elasto-

plastic deformation. Both strain hardening and strain softening cases are considered. All the

stress components are normalized by Young’s modulus of the delithiated electrode material.

deformation is considered, the stress state depends on the competition between

the strain components. The lithiation-induced strain is isotropic and positive
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during insertion for the elastic case. While for plasticity, the core remains elas-

tic and yielding occurs in the shell region, with the radial plastic strain always

being positive, (as can be seen from Figure 6(f), Figure 4(f), Figure 5(f)) the

hoop plastic strain always being negative (as can be seen from Figure 6(g), Fig-

ure 4(g), Figure 5(g)), and εpθ = − 1
2ε
p
r . This means that the plastic deformation

leads to radial expansion and tangential shrinkage. As a result, the hoop stress

can be given by:

σθ =
E

(1 + υ) (1− 2υ)

[(u
r
− αc∗

)
+ υ

(
du

dr
− αc∗

)]
+

E

2 (1 + υ)
εpr (60)

The first part on the right-hand side of Equation 60 is the solution for the415

hoop stress under elastic deformation only, arising from mismatch strains due

to the concentration gradient. The region close to the outer surface (Li-rich

region/shell) contains significantly more Li-ions than the inner region (Li-poor

region/core). As a result, the Li-rich regions expand to a larger degree. How-

ever, this expansion is constrained by the surrounding materials and the hoop420

stress in the shell is compressive initially. Due to the phase transformation,

large stresses develop near the phase interface. When the effective stress (von

Mises stress) is large enough, plastic deformation emerges near the phase in-

terface. The second part of Equation 60 represents the contribution due to

plastic deformation and it’s always positive in the shell. As lithiation proceeds,425

the plastic region propagates and plastic deformation accumulates. When the

stress component due to plastic deformation surpasses the component due to

the concentration gradient, the hoop stress in the shell undergoes a transition

from compression to tension. This is believed to be the cause of experimentally

observed cracks during the lithiation process of spherical Si/Sn electrode parti-430

cles. For example in paper Aifantis et al. (2012) it was shown that Sn and Sn

nanoparticles severely fractured upon the first lithiation. Significant fracture

was also observed in Si nanoparticles Liu et al. (2012); McDowell et al. (2012)

during the first cycle upon Li-insertion. Particularly, in Liu et al. (2012); Mc-

Dowell et al. (2012) the cracks were observed to propagate inward along the435

radial direction during the lithiation process. The transition of tangential com-
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Figure 6: Radial distribution of (a) Concentration profiles, (b)Normalized radial stress, (c)

Normalized hoop stress, (d) Normalized hydrostatic stress, (e) Normalized von Mises stress,

(f) Radial plastic strain, (g) Hoop plastic strain and (h) Equivalent plastic strain at time step

3000 ∆t with/without chemo-mechanical coupling (‘w cp’ / ‘w/o cp’) effects under elasto-

plastic deformation. Both strain hardening and strain softening cases are considered. All the

stress components are normalized by Young’s modulus of the delithiated electrode material.

pression to tangential tension explains the surface cracking of electrodes that

occurs experimentally upon maximum lithiation.
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It should be pointed out that this model is based on the small deformation

framework, so the numerical results cannot be compared quantitatively with ex-440

perimental measurements. For quantitative comparison purposes, models with

finite strain deformation are more appropriate. Our conclusions are in fact con-

sistent with those obtained using finite strain Chen et al. (2014). Even though

the predictions of our model are not quantitative, the main effects are captured

and the model results can provide a complete overview of the different scenaria445

that can occur depending on the model parameters, and provide a comparison

between the different cases, something which is more difficult to do in finite

strain and has not been done before.

Figure 7: The evolution of (a) Normalized hoop stress in the particle center and (b) Normalized

hoop stress at the outer surface under elasto-plastic deformation. All the stress components

are normalized by Young’s modulus of the delithiated electrode material. The unit for time

step is ∆t.

2.3. Comparison between elastic and plastic deformation

To consider the effects of plasticity on DISs, the stress evolution under elas-450

tic deformation and elasto-plastic deformation in a spherical Si electrode during

lithiation is calculated. To make the comparison less complicated, CM cou-

pling is not considered here. As a result, the same concentration distribution

(Figure 8(a)) is obtained when the same set of parameters are employed. At

early stages (100 ∆t), phase equilibrium has not been reached. As a result,455

the Li concentration is higher near the outer surface and there are almost no
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Li-ions in the interior region. As lithiation continuous (900 ∆t, and 2000 ∆t),

a core-shell-like structure forms with the Li concentration being close to 1 and

0, respectively. The core and shell are separated by a sharp interface. As lithia-

tion progresses, the interface also moves towards the center of the particle. And460

the Li concentration in the shell increases slightly. A reduction in the elastic

modulus during Li-insertion is also taken into account (based on Equation 57).

The parameters are the same as in the previous section except that k = − 5
9E0

and H = 0.01E0. For plastic deformation, only strain hardening is considered.

When the material properties of the core and shell are taken as being the same,465

the stress evolutions are as shown in Figure 8(b),Figure 8(d),and Figure 8(f).

At the initial stage, the deformation of the electrode remains elastic. The radial

and hoop stresses are the same in the core region. The radial stress gradually

decreases to zero towards the outer surface, and there is an abrupt transition

in the hoop stress from tension in the core to compression in the shell. The470

maximum von Mises stress occurs near the interface.

Under elasto-plastic deformation, yielding begins to occur near the outer

surface during the initial lithiation stages, and the stress evolutions are almost

the same as in the previous section. The hoop and radial stresses in the core

transits from tension to compression at later stages, while the opposite trend is475

seen for the shell. The von Mises stress is almost zero in the core and increases

to a local maximum first, then decreases to a local minimum and finally keeps

increasing towards the shell.

When a reduction in the elastic modulus with increasing concentration is

considered, similar distributions (Figure 8(c), Figure 8(e), and Figure 8(g))480

are found for the stresses. Comparison between the DISs with and without

concentration-dependent elastic moduli are also made under elastic (Figure 9(a)-

(c)) and plastic (Figure 9(d)-(f)) deformation, respectively. It is found that when

a reduction in the modulus with increasing concentration is considered, much

smaller stresses are predicted in the elastic case, while for the plastic case, higher485

stresses are predicted. The stress evolution over time is also investigated, and it

should be noted that there is a visible difference. The radial and hoop stresses
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Figure 8: (a) Concentration profiles at time step 100 ∆t, 900 ∆t, and 2000 ∆t respectively. Ra-

dial distribution of normalized radial stress (σr), normalized hoop stress (σθ) and normalized

von Mises stress (σv), with constant modulus, under elastic and elasto-plastic deformation at

time steps of (b) 100 ∆t, (d) 900 ∆t, and (f) 2000 ∆t respectively. Radial distribution of nor-

malized radial stress, normalized hoop stress and normalized von Mises stress, with reduction

in modulus with increasing concentration, under elastic and elasto-plastic deformation at time

steps of (c) 100 ∆t, (e) 900 ∆t, and (g) 2000 ∆t respectively. (h)The evolution of Normalized

hoop stress on the outer surface under elastic (’Ela’) and elasto-plastic (’Pla’) deformation.

All the stress components are normalized by the Young’s modulus of the delithiated electrode

material. The unit for time step is ∆t. For the stress profiles ((b)-(g)), the solid lines are

for the elastic deformation case and the solid lines with asterisks are for the elasto-plastic

deformation case.
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Figure 9: The effects of a reduced elastic modulus with lithiation on the radial distribution

of (a)Normalized radial stress (σr), (b) Normalized hoop stress (σθ), and (c) Normalized

von Mises stress (σv) under elastic deformation. The effects of a reduced elastic modulus

with lithiation on the radial distribution of (d) Normalized radial stress, (e) Normalized hoop

stress, and (f) Normalized von Mises stress under elasto-plastic deformation. The evolution

of (g) Normalized radial stress and (h) Normalized hoop stress in the center. All the stress

components are normalized by the Young’s modulus of the delithiated electrode material. The

unit for time step is ∆t. For the stress profiles ((a)-(f)), the solid lines are for the constant

elastic modulus case and the dashed lines are for the case with reduction in modulus with

increasing concentration.
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(Figure 9(g)-(h)) in the center are always positive for elastic deformation while

they are only positive for the initial lithiation stages and then become negative

at later stages under elasto-plastic deformation. The hoop stress on the outer490

surface is always compressive in the elastic case while for the plastic case it’s

compressive only for the initial lithiation stages and transits from compression

to tension at later stages. The stresses predicted from the elastic model are

much higher than those the from plastic model, and the elastic model cannot

explain the experimentally observed radial cracks during lithiation. This is due495

to the fact that the hoop stress near the outer surface is the crack driving force

and compression cannot cause cracks to grow. As can be seen in Figure 8(h), the

elastic model predicts a compressive hoop stress all the time during lithiation

while the plastic model predicts compression only at early stages and it predicts

tension at late stages, which allows for crack initiation and is consistent with500

experimental evidence showing crack formation right before Li de-insertion. As

a result, the plastic model is more appropriate for high capacity electrodes

coupled with large volume changes and phase transformations.

3. Conclusions

In this work, phase field models accounting for DISs in spherical active ma-505

terials that undergo phase-transformations are developed. For electrodes with

relatively small volume variations, elastic models can be employed while for

electrodes with large volume changes, plastic models are preferred. The mod-

els accounts for the effect of phase. The sharp phase boundary is naturally

captured by the phase field model, and the concentration field is obtained by510

a mixed formulation of the fourth-order Cahn-Hilliard equation. DISs are ob-

tained by solving the variational form of the mechanical equilibrium equations.

It is found that the DISs arise from the inhomogeneous volume expansions re-

sulting from Li concentration gradients and the hydrostatic stress facilitates

the diffusion of Li-ions under elastic deformation while it hinders diffusion in515

the plastic case. For elastic electrodes, higher radial, hoop, hydrostatic, and von
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Mises stresses are predicted for the coupling cases when compared with the ones

without CM coupling at the same time step. This is due to the fact that the

coupling model predicts a smaller miscibility gap (concentration differences be-

tween the Li-rich phase and Li-poor phase), thus, less volume change and DISs520

are induced. For elasto-plastic solids, it’s the opposite. The coupling model

predicts a higher miscibility gap and the electrodes experience a slightly higher

von Mises stress and equivalent plastic strain when it’s compared with the ones

without CM coupling at the same time step. When the lithiation results in a

lower elastic modulus, as opposed to having the elastic properties independent525

of concentration, a decrease in DISs but an increase in strain occur under elastic

deformation. The opposite occurs for the plastic case. Under elastic deforma-

tion, the radial stress is always tensile while the hoop stress is tensile in the core

region and compressive in the shell. For the plastic case, the radial stress shows

a transition from tension in initial stages to compression at later stages. The530

hoop stress in the core region also shows a similar trend while the hoop stress

in the shell shows a transition from compression to tension, which is believed

to be the cause of experimentally observed surface cracking during the Li in-

sertion process. Furthermore, if strain softening due to plastic deformation is

assumed, smaller stresses and higher plastic strains are predicted than the strain535

hardening case. To sum up, concentration-dependent material properties due to

Li insertion and hardening behavior of the material due to plastic deformation

plays a significant role on DISs in spherical phase transformation electrodes.

By taking these factors into consideration, more accurate predictions of the

DISs can be achieved, thus providing an improved theoretical basis and insight540

for designing next-generation mechanically stable phase transforming electrode

materials.
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