
Polynomial Reachability Witnesses via Stellensätze
Ali Asadi

∗

Sharif University of Technology

Tehran, Iran

aasadi@ce.sharif.edu

Krishnendu Chatterjee

IST Austria

Klosterneuburg, Austria

krishnendu.chatterjee@ist.ac.at

Hongfei Fu

Shanghai Jiao Tong University

Shanghai, China

fuhf@cs.sjtu.edu.cn

Amir Kafshdar Goharshady
†

The Hong Kong University of Science

and Technology

Hong Kong, China

goharshady@cse.ust.hk

Mohammad Mahdavi

Sharif University of Technology

Tehran, Iran

mimmahdavi@ce.sharif.edu

Abstract
We consider the fundamental problem of reachability analy-

sis over imperative programs with real variables. Previous

works that tackle reachability are either unable to handle pro-

grams consisting of general loops (e.g. symbolic execution),

or lack completeness guarantees (e.g. abstract interpretation),

or are not automated (e.g. incorrectness logic). In contrast, we

propose a novel approach for reachability analysis that can

handle general and complex loops, is complete, and can be

entirely automated for a wide family of programs. Through

the notion of Inductive Reachability Witnesses (IRWs), our

approach extends ideas from both invariant generation and

termination to reachability analysis.

We first show that our IRW-based approach is sound and

complete for reachability analysis of imperative programs.

Then, we focus on linear and polynomial programs and de-

velop automated methods for synthesizing linear and poly-

nomial IRWs. In the linear case, we follow the well-known

approaches using Farkas’ Lemma. Our main contribution is

in the polynomial case, where we present a push-button semi-

complete algorithm. We achieve this using a novel combina-

tion of classical theorems in real algebraic geometry, such

as Putinar’s Positivstellensatz and Hilbert’s Strong Nullstel-

lensatz. Finally, our experimental results show we can prove

complex reachability objectives over various benchmarks

that were beyond the reach of previous methods.

CCS Concepts: • Theory of computation → Logic and
verification; Automated reasoning; • Software and its
engineering→ Formal software verification.

Keywords: Reachability, Inductive Reasoning, Stellensätze

1 Introduction
Reachability. Reachability analysis is a basic and fundamen-

tal problem in computer science, starting from the halting

problem of Turing machines. It is a core problem in program

verification, constitutes the most basic liveness property,

∗
Authors are listed in alphabetical order.

†
Corresponding Author. Part of the results are included in [63].

and has been widely studied in program analysis and model

checking [39, 57, 70, 81, 87]. The target states considered in

reachablity analysis can be either desirable so that reacha-

bility to these states should be guaranteed, or undesirable

so that the goal is to find an execution path leading to an

unwanted behavior, hence proving incorrectness of the sys-

tem. Reachability to desirable states encodes the most basic

type of liveness property, but reachability to undesirable

states is also ubiquitous in verification problems and useful

when one needs to identify realistic bugs in software im-

plementations (see e.g. [86]). Indeed, in real-world software

development, most bugs are identified by finding an execu-

tion path that leads to a specific error [52, 62, 80]. This idea

led to developments such as incorrectness logic [86].

Previous Works on Formal Models. A large body of re-

search on reachability analysis is conducted over formal

models [39], such as finite-state systems [12, Chapter 3–6],

Petri nets [8, 46, 47, 83] and timed automata [6]. For these

models, precise decidability and complexity results are at-

tained. Although these models serve as an important ab-

straction mechanism for realistic systems, the techniques for

reachability analysis over them cannot be applied directly

to imperative programs, because the values taken by vari-

ables in a program typically come from an infinite, even

uncountable, domain and the underlying program structure

might be irregular. In many cases a given program cannot

be translated into any of the formal models above.

Reachability in Software Model Checkers. Many model

checkers rely heavily on reachability analysis [16, 24, 25, 71].

Notably, the BLAST project [24] describes itself as “a ver-

ification tool for the C language that solves the reachabil-

ity problem”. Even when considering safety properties, all

approaches based on Counterexample-Guided Abstraction

Refinement (CEGAR) [7, 14, 38, 65, 66], including SLAM [15,

16] and BLAST [24], need to constantly perform reachabil-

ity analyses to obtain their counterexamples. These model

checkers rely on predicate abstraction refinement and, as-

suming a termination requirement, guarantee completeness

when the variables have finite domains [68].

1

Ali Asadi, Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Mohammad Mahdavi

PreviousWorks on (Imperative) Programs.When consid-

ering imperative programs, the reachability problem, and

in particular the special case of termination analysis, has

been widely studied over the past decades. Previous works

include symbolic execution [29, 30, 74], termination analy-

sis [57], abstract interpretation [44] and recent results on

incorrectness logic [50, 86].

• Symbolic execution runs program code statically in a sym-

bolic fashion, and is thus effective for programs without

general unbounded loops. For programs with loops, sym-

bolic execution can only unfold the loop up to a bounded

depth, and hence cannot handle general loops with an

unbounded number of iterations. This is also applicable to

other approaches that rely on loop unrolling, such as [3].

• Termination analysis is a special kind of reachability which

is usually guaranteed by well-foundedness reasoning such

as (lexicographic) ranking functions [5, 17, 18, 26, 27, 41,

42, 88, 89]. It does not consider target states defined through

numerical constraints over program variables.

• Abstract interpretation is mainly used to generate over-

approximations of reachable states (i.e. certain states may

be reached), but there are also several abstraction-based

approaches that compute under-approximations [3, 4, 61,

91, 93, 96]. However, they cannot provide guarantees of

completeness except in specific special cases [60].

• Finally, incorrectness logic [86] is a sound and complete

logic that is similar to Hoare logic but performs under-

approximation for reachable program states. A disadvan-

tage of incorrectness logic, much like Hoare logic, is that

it requires a considerable amount of manual effort for

writing assertions, and cannot be directly automated.

Previous Works on Invariants. An invariant is, in a sense,

a dual notion of reachability, and invariant generation is also

prominent in the PL literature. Informally, an invariant is an

over-approximation of the set of reachable states that can

be used to prove safety properties over programs. Invari-

ant generation is widely-studied in program analysis and

verification. Many approaches are considered, e.g. abstract

interpretation [10, 98], constraint solving [36, 40, 94, 95] and

abductive inference [51].

Our Focus.We consider reachability analysis over impera-

tive programs and study the problem of automatically veri-

fying that a set of target states can be reached in program

execution. While invariants provide an over-approximation

of the set of reachable states, we consider their natural dual,

i.e. under-approximations of the set of states that can reach

a target. We consider programs with non-determinism and

distinguish between existential and universal reachability.

Existential reachability is the more classical notion and re-

quires that target states are reachable under some resolution

of the nondeterminism. Universal reachability requires the

program to reach the target states no matter how the nonde-

terminism is resolved. We focus on existential reachability,

but our results generalize to the universal case, too.

Our Approach. Our methods are based on classical theo-

rems (stellensätze) in polyhedral and real algebraic geometry.

We first extend ideas from both ranking functions and induc-

tive invariant generation to cover the reachability problem.

Informally, we use techniques from inductive invariant gen-

eration to capture a subset T♦
of program states from which

the execution steps of the program will either reach our

target states or stay in T♦
itself. Simultaneously, we use argu-

ments similar to ranking functions to ensure that every state

in T♦
can reach a target state in finitely many steps. While

using an invariant and a ranking function to prove termina-

tion is a classical approach, the key distinction is that our

set T♦
is an under-approximation of the set of states that can

eventually reach a target state, whereas invariants are over-

approximations of reachable states. Moreover, our inductive

sets are closed existentially (for each state in the inductive set,

some successor should be in the same set), whereas inductive

invariants are closed universally (all successors should be

in the set). A similar approach based on danger invariants

has been proposed in [48]. A detailed comparison will be

presented in the sequel.

OurContributions.We propose a novel approach for reach-

ability analysis over programs with real variables
∗
. Our con-

tributions are:

• We propose the notion of Inductive Reachability Wit-

nesses (IRWs) for existential reachability, which consists

of a set T♦
of program states and a ranking function 𝑓 over

T♦
. The state set T♦

satisfies certain invariant-like condi-

tions. The ranking function 𝑓 serves as a proof that every

state in T♦
can indeed reach a target. We also propose

the notion of Universal Inductive Reachability Witnesses

(UIRWs), the counterpart of IRWs for the universal case.

• From a theoretical point-of-view, we show that IRWs and

UIRWs are sound and complete for proving existential and

universal reachability, respectively.

• Similar to several previous template-based works [36, 40,

94, 95], we use Farkas’ Lemma, Putinar’s Positivstellen-

satz, and Handelman’s Theorem for automatically synthe-

sizing linear and polynomial IRWs/UIRWs. However, we

face new challenges regarding satisfiability in the poly-

nomial case and address them with novel methods based

on Hilbert’s Strong Nullstellensatz. This is the main tech-

nical novelty of this work. To the best of our knowledge,

such methods (Section 3.2 and Theorem 8) are a novel

contribution to constraint-based analysis of polynomial

programs, and have no parallels even in the context of

invariant generation or termination analysis. Moreover,

∗
Note that our approaches cannot be directly applied to floating-point

numbers, as abstracting them to reals is unsound.

2

Polynomial Reachability Witnesses via Stellensätze

our synthesis algorithms are complete in the linear case

and semi-complete in the polynomial case.

Comparison with Danger Invariants. Structures similar

to IRWs, considering inductive sets that are used as under-

approximations for reachability, have been studied in various

contexts, including in [13, 21, 37, 43, 101]. The most similar

previous work is [48] in which danger invariants are intro-

duced. Like our notion of IRW, a (partial) danger invariant

consists of an inductive set and a ranking function. However,

we differ from [48] in a number of significant ways:

• Problem: We can handle both universal and existential

reachability, whereas [48] is limited to the existential case.

• Algorithm: Our synthesis algorithms are based on a novel

combination of null- and positivstellensätze, while [48]’s

approach is based on symbolic execution, evolutionarymu-

tations, and second-order SAT solving. Our stellensätze-

based approach is the central contribution of this work.

• Completeness of the Synthesis Algorithms: We consider

linear and polynomial programs and witnesses. Our push-

button synthesis algorithms are complete for the linear

(Theorem 4) and semi-complete for the polynomial case

(Theorem 10), while [48] does not provide completeness.

• Conceptual: [48] attempts to synthesize an explicit sched-

uler in order to handle non-determinism. In contrast, we

directly encode the non-determinism in the inputs to our

stellensätze and leave the scheduler implicit.

• Practical: Our experimental results in Section 4 demon-

strate that our approach can handle instances that are

beyond the reach of [48]. There are also programs which

are not expressible in our framework, due to being non-

polynomial, but can be handled by [48].

Deep Bugs. A major challenge in reachability analysis is

posed by deep bugs. If undesirable states are only reachable

after a very long execution, then finite model checking or

symbolic execution will have a hard time identifying the bug.

Works that address this problem include [48, 58, 77, 79]. Our

runtime does not depend on the depth of the bug and we can

identify various deep bugs with ease. See Section 4.

Comparison with Approaches for Deep Bugs. Although
the main focus of our approach is providing completeness

results in the linear and polynomial cases, which no previous

method can provide, our approach is also very effective in

proving the existence of deep bugs, i.e. proving reachability

properties that can only be attained through long execu-

tion paths. As such, we now compare with several other

approaches for deep bugs:

• The work of [77] focuses mostly on deep bugs in programs

that manipulate arrays. It considers under-approximating

the behavior of loops using the notion of “auxiliary paths”.

This is similar to loop acceleration/summarization but can

handlemore general loops, given that it under-approximates

the behavior of the loop rather than trying to match it

exactly. This method is sound and applicable to a wide

family of programs. However, it does not provide com-

pleteness guarantees. In contrast, our approach is sound

and complete for linear and polynomial programs.

• Another work in this category is [58]. This work focuses

on summarizing and under-approximating the behavior

of recursive functions and identifying bugs that can only

be reached using deep recursion (a long stack). Another

major difference between our work and [58] is that [58] fo-

cuses on integer programs, whereas our transition systems

are defined with real variables. Finally, we also provide

completeness guarantees.

• Finally, [79] explores compositional approaches to prov-

ing reachability (safety refutation) and provides three al-

gorithms with various levels of completeness. However,

these algorithms are only applicable to loop-free programs,

whereas we can handle (nested) loops.

2 Inductive Reachability Witnesses
We now provide the basic definitions needed for reachability

analysis and introduce the concept of Inductive Reachability

Witnesses (IRWs/UIRWs). In the sequel, we use transition

systems with real variables to model programs.

Valuations. Let V be a finite set of variables. A valuation

over V is a function ν : V → R. We denote the set of all

valuations over V by RV .

Transition Systems. A transition system (or simply system)

is a tuple 𝑆 = (V, L, ℓ0, 𝐼 ,Θ), in which V is a finite set of

variables, L is a finite set of locations, ℓ0 ∈ L is the initial or

starting location, 𝐼 is an assertion overVwhich defines the set

of possible initial valuations, andΘ is a finite set of transitions.

Each transition 𝜃 ∈ Θ is of the form 𝜃 = (ℓ, ℓ ′, 𝜑, 𝜇) where
ℓ, ℓ ′ ∈ L are the pre and post locations, 𝜑 is an assertion over

V that serves as the transition condition, and 𝜇 : RV → RV
is an update function. For brevity, in the sequel, we assume

that we have fixed a system 𝑆 = (V, L, ℓ0, 𝐼 ,Θ) which is under

study. For a location ℓ ∈ L, we write Θℓ to denote the set of

transitions out of ℓ . We say that a system is 𝛽-branching if

|Θℓ | ≤ 𝛽 for every location ℓ .

Example 1. Consider the program in Figure 1 (top), in which

□ denotes non-deterministic choice between transitioning to

𝑏 or 𝑐 . The transition system in Figure 1 (bottom) represents

this program. Note that we have ℓ0 = 𝑎 and assume the initial

valuations satisfy 𝑥,𝑦, 𝑧 ≥ 0.

States. A state in 𝑆 is a pair 𝜎 = (ℓ,ν) ∈ L × RV, consisting
of a location and a valuation. We denote the set of states by

Σ. A subset Σ′ ⊆ Σ is called bounded if the set of valuations

that appear in the elements of Σ′
is bounded.

Successors.A state𝜎 ′ = (ℓ ′,ν′) is called a successor of a state
𝜎 = (ℓ,ν) if there exists a transition 𝜃 = (ℓ, ℓ ′, 𝜑, 𝜇) ∈ Θ such

that ν |= 𝜑 and ν′ = 𝜇 (ν). For theoretical elegance, we assume

that every state has at least one successor, i.e. we assume that

there is a transition from the final state to itself.

3

Ali Asadi, Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Mohammad Mahdavi

𝐼 : 𝑥 ≥ 0 ∧ 𝑦 ≥ 0 ∧ 𝑧 ≥ 0

𝑎 : while 𝑥 ≥ 𝑦 :

𝑏 : □ (𝑥,𝑦) := (𝑥 + 1, 𝑦 + 2)
𝑐 : □ (𝑥,𝑦, 𝑧) := (𝑥 + 𝑧,𝑦 + 𝑧, 𝑧 − 1)
𝑑 :

a d

cb

(x,
	y,
	z)
 ↦	
(x+
1,	
y+
2,	
z)

(x,	y,	z) ↦	(x+z,	y+z,	z-1)

x	<	y

x	≥ y x	≥ y

θ1 θ2θ4 θ5

θ3

θ6

Figure 1. A Simple Program (top) and its Representation as

a Transition System (bottom)

Example 2. In Figure 1, (𝑏, 1, 1, 2), i.e. the state at location 𝑏
for which the values of 𝑥 and 𝑦 are 1 and the value of 𝑧 is 2, is

a successor of (𝑎, 1, 1, 2) through 𝜃1. Similarly, (𝑎, 2, 3, 2) is a
successor of (𝑏, 1, 1, 2) through 𝜃4 .
Runs. A run of the system 𝑆 is an infinite sequence r =

{𝜎𝑖 , 𝜃𝑖 }∞𝑖=0 = {(ℓ𝑖 ,ν𝑖), 𝜃𝑖 }∞𝑖=0, where each 𝜎𝑖 ∈ Σ is a state con-

sisting of ℓ𝑖 ∈ L and ν𝑖 ∈ RV, and each 𝜃𝑖 = (ℓ𝑖 , ℓ𝑖+1, 𝜑𝑖 , 𝜇𝑖) ∈
Θ is a transition from ℓ𝑖 to ℓ𝑖+1, such that:

• r starts in the initial location ℓ0;

• ν0 |= 𝐼 , i.e. the initial valuation satisfies the assertion 𝐼 ;

• For every 𝑖 , we have ν𝑖 |= 𝜑𝑖 and ν𝑖+1 = 𝜇𝑖 (ν𝑖), i.e. 𝜎𝑖+1 is
a successor of 𝜎𝑖 through 𝜃𝑖 .

Semi-runs. A semi-run is defined similarly to a run, except

that it does not have to start at ℓ0 or satisfy 𝐼 . A path of length

𝑛 is a finite prefix 𝜋 = 𝜎0, 𝜃0, . . . , 𝜎𝑛−1, 𝜃𝑛−1, 𝜎𝑛 of a run. A

path must always end at a state. Similarly, a semi-path is a

finite prefix of a semi-run that ends at a state.

Non-determinism. The system 𝑆 is called deterministic if

there is exactly one possible transition at every state. For-

mally, 𝑆 is deterministic if for every 𝜎 = (ℓ,ν) ∈ Σ, there
exists exactly one 𝜃 ∈ Θ such that 𝜃 = (ℓ, ℓ ′, 𝜑, 𝜇) and ν |= 𝜑 .

Otherwise, 𝑆 is non-deterministic.

Existential Reachability. A set T ⊆ Σ is called existentially

reachable or simply reachable if there exists an integer 𝑛 and

a run r = {𝜎𝑖 , 𝜃𝑖 }∞𝑖=0 such that 𝜎𝑛 ∈ T. In other words, T is

reachable if there exists a run that visits T.
Universal Reachability. A set T ⊆ Σ is called universally

reachable if there exists a valuation ν0 ∈ RV and an integer

𝑛, such that (i) ν0 |= 𝐼 , and (ii) every run r = {(ℓ𝑖 ,ν𝑖), 𝜃𝑖 }∞𝑖=0
visits T in its first 𝑛 steps. In other words, for each such r,
there exists an index 𝑖 ≤ 𝑛 such that (ℓ𝑖 ,ν𝑖) ∈ T.

Intuitively, this requires that we can fix an initial valuation

such that no matter how the non-determinism is resolved,

the execution is forced to visit T after at most 𝑛 steps. Note

that our notion of universal reachability is bounded by 𝑛 and

different from having ♢T in every execution path.

Motivation for Universal Reachability. Universal reach-
ability is useful for modeling angelic non-determinism. Con-

sider that T is a set of undesirable (bug) states and the

question is whether for all initial valuations, there exists

an execution that avoids the bug. For example, consider a

cyber-physical system modeled as a transition system and a

controller who can resolve non-determinism. Deciding (the

negation of) universal reachability corresponds to whether

for all choices of initial state, a controller can avoid the bug.

Example 3. Consider the system in Figure 1 (bottom), and

let T = {(𝑑,ν) | ν ∈ RV}. Reaching T is equivalent to the

termination of the program in Figure 1 (top). T is existentially

reachable, i.e. there are runs of the system that reach label 𝑑 ,

for example the following:

(𝑎, 0, 0, 0) 𝜃1−→ (𝑏, 0, 0, 0) 𝜃4−→ (𝑎, 1, 2, 0) 𝜃3−→ (𝑑, 1, 2, 0) →

It is also universally reachable, because every execution start-

ing from (𝑎, 1, 2, 3) will reach 𝑑 in a single step. As another

example, consider the target set T′ = {(𝑑,ν) | ν(𝑥) < 0}. This
corresponds to reaching𝑑 (ending the program) with a negative

value for 𝑥 . This time, the set T′
is existentially reachable, for

example through the following run:

(𝑎, 0, 0, 0) 𝜃2−→ (𝑐, 0, 0, 0) 𝜃5−→ (𝑎, 0, 0,−1) 𝜃2−→ (𝑐, 0, 0,−1) 𝜃5−→
(𝑎,−1,−1,−2) 𝜃2−→ (𝑐,−1,−1,−2) 𝜃5−→ (𝑎,−3,−3,−3) 𝜃1−→

(𝑏,−3,−3,−3) 𝜃4−→ (𝑎,−2,−1,−3) 𝜃3−→ (𝑑,−2,−1,−3) → . . . ,

but it is not universally reachable. To see this, note that if an

initial value satisfies 𝑥 < 𝑦, then it does not enter the while

loop at all, and hence when it reaches 𝑑 it satisfies 𝑥 ≥ 0 (the

initial condition). On the other hand, if an initial value satisfies

𝑥 ≥ 𝑦, there is a run that always chooses the transition 𝜃2 when

at 𝑎, and hence never reaches T′.

We now look into proof concepts for reachability.

T-inductive Sets. Given a set T ⊆ Σ of target states, a set

T♦ ⊆ Σ is called T-inductive if for every 𝜎 ∈ T♦ \ T, there
exists a successor 𝜎 ′

of 𝜎 such that 𝜎 ′ ∈ T♦ .
Intuitively, if T♦

is T-inductive, then if we start the execu-

tion of the program from a state in T♦
, there exists a way for

resolving the non-determinism so that we either reach T or

can inductively prove that we will never leave T♦.

Example 4. Consider the system in Figure 1 and let T =

{(𝑑,ν) | ν(𝑥) < 0}, i.e. the target is reaching 𝑑 with 𝑥 having

a negative value. Let T♦
:= {(ℓ,ν) | ℓ ∈ L,ν ∈ RV,ν |= 𝐴ℓ }

be the set of states satisfying the following assertions:

ℓ 𝐴ℓ

𝑎 𝑥, 𝑦, 𝑧 ≤ 0 ∧ (𝑥 − 𝑦) · (𝑥 − 𝑦 + 1) = 0

𝑏 𝑥 ≤ −2 ∧ 𝑦, 𝑧 ≤ 0 ∧ 𝑥 = 𝑦

𝑐 𝑥, 𝑦, 𝑧 ≤ 0 ∧ 𝑥 = 𝑦

𝑑 𝑥 < 0

Then, we can verify that T♦
is a T-inductive set. Concretely,

consider a state (𝑎,ν𝑎) ∈ T♦. In other words, ν𝑎 |= 𝐴𝑎 . In such

a state, we have (𝑥 − 𝑦) · (𝑥 − 𝑦 + 1) = 0. Therefore, either

4

Polynomial Reachability Witnesses via Stellensätze

ν𝑎 (𝑥) = ν𝑎 (𝑦) or ν𝑎 (𝑥) = ν𝑎 (𝑦) − 1. In the former case, we

can take transition 𝜃2, and it is easy to verify that the new state

satisfies 𝐴𝑐 , hence there is a successor that is also in T♦ . In the

latter case, we can take 𝜃3 and reach 𝑑 with a valuation that

satisfies 𝑥 < 0, because ν𝑎 |= (𝑦 ≤ 0 ∧ 𝑥 = 𝑦−1). Similarly, if

(𝑏,ν𝑏) ∈ T♦,we know that ν𝑏 |= (𝑥 ≤ −2 ∧𝑦, 𝑧 ≤ 0 ∧ 𝑥 = 𝑦).
Therefore, taking the transition 𝜃4, corresponding to the update

(𝑥,𝑦) := (𝑥+1, 𝑦+2), leads to a state in𝑎 that satisfies (𝑥,𝑦, 𝑧 ≤
0∧𝑥 = 𝑦 − 1). Note that 𝑥 = 𝑦 − 1 ⇒ (𝑥 −𝑦) · (𝑥 −𝑦 + 1) = 0,

therefore 𝐴𝑎 is satisfied and we have a successor in T♦. It is
easy to verify the same property at 𝑐 . Finally, if we have a state

(𝑑,ν𝑑) ∈ T♦, then it is also in T.
If we start at an initial state that satisfies 𝐴𝑎, we can find

a run of the system that either reaches T or stays inside T♦ .
However, this is not enough for reachability to T. Such a run

might stay inside T♦
forever without visiting T. For example,

we can keep taking the transition 𝜃2 when at 𝑎, and hence

never reach 𝑑 . To avoid this, we need a T-ranking function.

T-ranking Functions. Given a T-inductive set T♦
, a func-

tion 𝑓 : T♦ → [0,∞) is called a T-ranking function with

parameter 𝜖 > 0, if for every 𝜎 ∈ T♦ \ T, there exists a suc-
cessor 𝜎 ′ ∈ T♦

of 𝜎, for which we have 𝑓 (𝜎 ′) ≤ 𝑓 (𝜎) − 𝜖.

Inductive Reachability Witnesses (IRWs). Given a set T
of target states in a system 𝑆 = (V, L, ℓ0, 𝐼 ,Θ), an Inductive

Reachability Witness for T is a tuple (T♦, 𝑓 , 𝜖) such that:

• T♦
is a T-inductive set;

• 𝜖 ∈ (0,∞);
• 𝑓 : T♦ → [0,∞) is T-ranking with parameter 𝜖 ;

• There exists ν ∈ RV such that (ℓ0,ν) ∈ T♦
and ν |= 𝐼 .

Informally, an IRW serves as a proof of existential reacha-

bility for a target set T. The inductivity of T♦
ensures that

starting from the initial state (ℓ0,ν) ∈ T♦, we will never be
forced to leave T♦

unless we reach T, while the existence
of the T-ranking function 𝑓 proves that we cannot avoid T
forever. It is also noteworthy that the T-inductive set T♦

is

similar to an inductive invariant, but the main difference

is that while an invariant is by definition a superset of all

reachable states, a T-inductive set T♦
is a subset of those

states from which we can reach the target set T. An IRW

(T♦, 𝑓 , 𝜖) is called bounded if T♦
is bounded.

Example 5. Consider the system in Figure 1, with the same

target set as in Example 4, i.e. T = {(𝑑,ν) | ν(𝑥) < 0}. Let
T♦

:= {(ℓ,ν) | ν |= 𝐴ℓ } and 𝑓 (ℓ,ν) := 𝑓ℓ (ν) be defined as:
ℓ 𝐴ℓ 𝑓ℓ

𝑎
−10 ≤ 𝑥, 𝑦, 𝑧 ≤ 0 ∧(

𝑥 = 𝑦 − 1 ∨ 𝑥 = 𝑦 =
−𝑧· (𝑧+1)

2

)
100 + 𝑥 − 𝑦 + 𝑧

𝑏 −10 ≤ 𝑥 ≤ −2 ∧ 𝑧 ≤ 0 ∧ 𝑥 = 𝑦 =
−𝑧· (𝑧+1)

2
99.5 + 𝑧

𝑐 −2 ≤ 𝑥 ≤ 0 ∧ 𝑧 ≤ 0 ∧ 𝑥 = 𝑦 =
−𝑧· (𝑧+1)

2
99.5 + 𝑧

𝑑 𝑥 ≤ −0.5 0

Note that the𝐴ℓ ’s are more restrictive than in Example 4. We

can verify that T♦
is a T-inductive set in the same manner as

in Example 4. We should also verify that 𝑓 is a valid T-ranking

function. Whenever we take either transition 𝜃1 or 𝜃2 (from 𝑎

to 𝑏 or 𝑐), we are assured that 𝑥 = 𝑦, hence the value of 𝑓 goes

from 100 + 𝑧 to 99.5 + 𝑧 and decreases by 0.5. Also, because in

𝐴𝑎 we have −10 ≤ 𝑥,𝑦, 𝑧 ≤ 0, the value of 𝑓 at 𝑎 is at least 80,

and hence transition 𝜃3 (from 𝑎 to 𝑑) decreases 𝑓 by more than

0.5. Now consider transition 𝜃4 (from 𝑏 to 𝑎). This transition

does not change the value of 𝑧, but makes it so that 𝑦 = 𝑥 + 1.

So it changes the value of 𝑓 from 99.5 + 𝑧 to 99 + 𝑧. Note that

transition 𝜃5 (from 𝑐 to 𝑎), decreases 𝑧 by 1while keeping 𝑥 = 𝑦.

Hence, it decreases 𝑓 by 0.5. Also, 𝜃6 (the self-transition from 𝑑

to 𝑑) is irrelevant in this case, because our 𝐴𝑑 entails inclusion

in T. Finally, (𝑎, 0, 0, 0) satisfies both 𝐼 and 𝐴𝑎 .

UIRWs. A Universal Inductive Reachability Witness (UIRW)

is defined similarly, except that existential quantifiers in T♦

and 𝑓 are replaced by universal quantifiers. See Appendix A.

Remark 1. In existential IRWs (such as Example 5), the set

T♦
is an under-approximation of the states from which there

exists a way of resolving the non-determinism so that we even-

tually reach T. Similarly, in UIRWs (Appendix A), T♦
under-

approximates the set of states from which every execution of

the program is forced to visit T. Hence, our T-inductive sets T♦

are essentially natural duals of inductive invariants [36, 40].

We prove existential (universal) reachability by synthesiz-

ing an IRW (a UIRW). This is both sound and complete.

Theorem 1 (Soundness, Proof in Appendix B). Let T ⊆ Σ
be a set of states in the system 𝑆 .

(i) If there exists an IRW (T♦, 𝑓 , 𝜖) for T, then T is existen-

tially reachable.

(ii) If there exists a UIRW (T♦, 𝑓 , 𝜖) forT, thenT is universally

reachable.

Theorem2 (Completeness, Proof in Appendix B). LetT ⊆ Σ
be a set of states in the system 𝑆 .

(i) If T is existentially reachable, then there exists an IRW

(T♦, 𝑓 , 𝜖) for T.
(ii) If T is universally reachable, then there exists a UIRW

(T♦, 𝑓 , 𝜖) for T.

Undecidability. Synthesis of IRWs (UIRWs) is equivalent to

proving existential (universal) reachability, which are unde-

cidable due to Rice’s theorem [92]. We consider the special

case of linear or polynomial systems, with target sets that

are defined by linear/polynomial inequalities, and focus on

synthesizing linear/polynomial IRWs and UIRWs.

Polynomial Systems.A transition system 𝑆 = (V, L, ℓ0, 𝐼 ,Θ)
is called (𝑑, 𝑘)-polynomial if

• 𝐼 is a conjunction of at most 𝑘 polynomial inequalities of

degree at most 𝑑 over V, and
• for every 𝜃 = (ℓ, ℓ ′, 𝜑, 𝜇) ∈ Θ, the transition condition 𝜑

is a conjunction of at most 𝑘 polynomial inequalities of

degree at most 𝑑 over V, and
5

Ali Asadi, Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Mohammad Mahdavi

• for every 𝜃 = (ℓ, ℓ ′, 𝜑, 𝜇) ∈ Θ and variable 𝑣 ∈ V, we have
𝜇 (𝑣) ∈ R[V] and deg(𝜇 (𝑣)) ≤ 𝑑, i.e. 𝜇 (𝑣) is a polynomial

of degree at most 𝑑 over V.
A (1, 𝑘)−polynomial system is also called 𝑘−linear.
Linear IRWs/UIRWs.An IRW/UIRW (T♦, 𝑓 , 𝜖) is called𝑘−linear
if for every location ℓ ∈ L :

• The set T♦
ℓ := T♦∩({ℓ}×RV) is a closed polyhedron which

is an intersection of at most 𝑘 half-spaces, i.e. there exists

a set 𝐴ℓ of at most 𝑘 non-strict linear inequalities over V
such that a valuation ν satisfies 𝐴ℓ iff (ℓ,ν) ∈ T♦.

• The function 𝑓ℓ : Sat(𝐴ℓ) → [0,∞), defined as 𝑓ℓ (ν) =
𝑓 (ℓ,ν), is a linear function over V. Here, Sat(𝐴ℓ) is the
set of all valuations that satisfy 𝐴ℓ .

Polynomial IRWs/UIRWs.An IRW/UIRW (T♦, 𝑓 , 𝜖) is called
(𝑑, 𝑘)−polynomial if for every ℓ ∈ L :

• The set T♦
ℓ := T♦ ∩ ({ℓ} × RV) is a closed semi-algebraic

set defined by at most 𝑘 non-strict polynomial inequalities

of degree 𝑑 or less. Equivalently, there exists a set 𝐴ℓ of

at most 𝑘 non-strict polynomial inequalities of degree at

most 𝑑 over V such that ν |= 𝐴ℓ iff (ℓ,ν) ∈ T♦.
• The function 𝑓ℓ , defined as 𝑓ℓ (ν) = 𝑓 (ℓ,ν), is a polynomial

of degree at most 𝑑 over V.
A (𝑑, 𝑘)−polynomial IRW/UIRW is explicitly bounded if each

set 𝐴ℓ contains a polynomial inequality 𝑔 ≥ 0 such that

Sat(𝑔 ≥ 0) is bounded.

3 Automated Synthesis of IRWs/UIRWs
We now provide our algorithms for synthesizing linear or

polynomial witnesses for linear or polynomial systems.

3.1 Synthesizing Linear IRWs/UIRWs

ProblemDefinition.Given a𝑘−linear system 𝑆 = (V, L, ℓ0, 𝐼 ,Θ),
together with a set 𝜏ℓ of at most 𝑘 non-strict linear inequali-

ties at every location ℓ ∈ L, synthesize a 𝑘−linear IRW/UIRW

for the target set T := ∪ℓ∈L{ℓ} × Sat(𝜏ℓ) or report that
no such IRW/UIRW exists. In the sequel, we assume V =

{𝑣1, . . . , 𝑣𝑟 }, and L = {ℓ0, . . . , ℓ𝑛}.
Mathematical Tool. Our approach in this section is based

on a well-known theorem in linear programming, called

Farkas’ Lemma. The presentation we use is similar to [33, 40].

Lemma 1 (Farkas’ Lemma [53, 82]). Consider a set V = {𝑣1,
. . . , 𝑣𝑟 } of real-valued variables and the following system of𝑚

linear inequalities over V:

Φ :


𝑎1,0 + 𝑎1,1 · 𝑣1 + . . . + 𝑎1,𝑟 · 𝑣𝑟 ≥ 0

...

𝑎𝑚,0 + 𝑎𝑚,1 · 𝑣1 + . . . + 𝑎𝑚,𝑟 · 𝑣𝑟 ≥ 0

When Φ is satisfiable, it entails a given linear inequality

𝜓 : 𝑐0 + 𝑐1𝑣1 + . . . + 𝑐𝑟𝑣𝑟 ≥ 0

iff𝜓 can be written as a non-negative linear combination of 1 ≥
0 and the inequalities in Φ, i.e. iff there exist non-negative real

numbers 𝑦0, 𝑦1, . . . , 𝑦𝑚, such that: 𝑐0 = 𝑦0 +
∑𝑚

𝑖=1 𝑦𝑖 · 𝑎𝑖,0; 𝑐1 =

∑𝑚
𝑖=1 𝑦𝑖 ·𝑎𝑖,1; . . . ; 𝑐𝑟 =

∑𝑚
𝑖=1 𝑦𝑖 ·𝑎𝑖,𝑟 .Moreover,Φ is unsatisfiable

iff −1 ≥ 0 can be derived as above.

We often encounter Φ’s with both strict and non-strict

linear inequalities. So, we use the following corollary:

Corollary 1 (Proof in AppendixD). Take a setV = {𝑣1, . . . , 𝑣𝑟 }
of real-valued variables and the following system of𝑚 linear

inequalities over V:

Φ :


𝑎1,0 + 𝑎1,1 · 𝑣1 + . . . + 𝑎1,𝑟 · 𝑣𝑟 Z1 0

...

𝑎𝑚,0 + 𝑎𝑚,1 · 𝑣1 + . . . + 𝑎𝑚,𝑟 · 𝑣𝑟 Z𝑚 0

in which Z𝑖∈ {>, ≥}. When Φ is satisfiable, it entails a given

non-strict linear inequality𝜓 : 𝑐0 + 𝑐1𝑣1 + . . . + 𝑐𝑟𝑣𝑟 ≥ 0 iff𝜓

can be written as a non-negative linear combination of 1 ≥ 0

and the inequalities in Φ, i.e. iff there exist non-negative real

numbers 𝑦0, 𝑦1, . . . , 𝑦𝑚, such that: 𝑐0 = 𝑦0 +
∑𝑚

𝑖=1 𝑦𝑖 · 𝑎𝑖,0; 𝑐1 =∑𝑚
𝑖=1 𝑦𝑖 ·𝑎𝑖,1; . . . ; 𝑐𝑟 =

∑𝑚
𝑖=1 𝑦𝑖 ·𝑎𝑖,𝑟 .Moreover,Φ is unsatisfiable

iff either −1 ≥ 0 can be derived as above, or 0 > 0 can be

derived as above while requiring

∑
Z𝑖 ∈{>} 𝑦𝑖 > 0 (i.e. in order

to derive a strict inequality, we should use at least one of the

strict inequalities in Φ with non-zero coefficient).

Overview of the Algorithm. Before presenting our algo-

rithm in detail, we provide a high-level overview of its steps:

• Step 1. The algorithm creates a template for the desired

IRW/UIRW. It considers every expression that should be

synthesized as part of an IRW/UIRW, i.e. the descriptions

of T♦
and 𝑓 , and creates a template for it in which the

coefficients are unknown (to be synthesized).

• Step 2. The algorithm generates a series of so-called “con-

straint pairs”. These constraint pairs are of a specific form

that is amenable to Farkas’ Lemma. They encode the re-

quirements that T♦
should be a T−inductive set and that

𝑓 should be a valid T-ranking function.

• Step 3. The algorithm applies Farkas’ lemma to the con-

straints generated in Step 2 and translates them to an

equivalent system of quadratic (in)equalities over the un-

known template variables. After this step, no program

variable appears in the quadratic constraints.

• Step 4. The algorithm adds a few additional constraints

that ensure the existence of a suitable initial valuation.

• Step 5. Finally, it solves the constraints by calling an

off-the-shelf Quadratic Programming (QP) solver. It then

plugs back the solution into the templates generated in

Step 1 to obtain the desired IRW/UIRW.

We now provide the details of each step of our algorithm.

Step 1. Setting up a template. Take a 𝑘−linear IRW/UIRW

for reaching T in 𝑆 . It has a 𝑘−linear set T♦
, defined by a set

𝐴ℓ of 𝑘 linear inequalities at every location ℓ, and a function

𝑓 , also defined by a linear expression 𝑓ℓ at every location

ℓ . The algorithm sets up a symbolic template for each 𝐴ℓ

6

Polynomial Reachability Witnesses via Stellensätze

𝐼 : 𝑥,𝑦 ≥ 10

1 : i f 𝑥 < 𝑦 :

2 : □ 𝑥 := 𝑥 + 10

3 : □ 𝑥 := 𝑥 + 5

4 :

1

4

32

(x,	y)	↦	(x+10,	y) (x,
	y)
	↦	
(x+
5,	
y)

x ≥	y

x	<	y x < y
θ1 θ2

θ4 θ5θ3

θ6

Figure 2. Our Running Example

and 𝑓ℓ . Concretely, it symbolically computes the following

expressions, in which the 𝑐ℓ,𝑖, 𝑗 ’s and 𝑑ℓ, 𝑗 ’s are unknowns
†
:

𝐴ℓ :


𝑐ℓ,1,0 + 𝑐ℓ,1,1 · 𝑣1 + . . . + 𝑐ℓ,1,𝑟 · 𝑣𝑟 ≥ 0

...

𝑐ℓ,𝑘,0 + 𝑐ℓ,𝑘,1 · 𝑣1 + . . . + 𝑐ℓ,𝑘,𝑟 · 𝑣𝑟 ≥ 0

�̂�ℓ = 𝑑ℓ,0 + 𝑑ℓ,1 · 𝑣1 + . . . + 𝑑ℓ,𝑟 · 𝑣𝑟

Intuitively, the goal of the algorithm is to find suitable real

values for the unknown coefficients (i.e. 𝑐ℓ,𝑖, 𝑗 ’s and 𝑑ℓ, 𝑗 ’s) so

that when we plug them into �̂�ℓ ’s and 𝐴ℓ ’s, they yield a valid

IRW/UIRW. The algorithm also defines a new unknown 𝜖

which serves as the decrease parameter for 𝑓 .

Example 6. Consider the system in Figure 2. We will use

this system as our running example and aim to synthesize a

2-linear IRW and a 2-linear UIRW for it. For the IRW case,

suppose that the target set is T = {(4,ν) | ν |= (𝑥 ≥ 𝑦 + 8)}.
For the UIRW case, we let T′ = {(4,ν) | ν |= (𝑥 ≥ 𝑦 + 4)}. The
algorithm generates a variable 𝜖 and the following templates:

𝐴1 :

{
𝑐0 + 𝑐1 · 𝑥 + 𝑐2 · 𝑦 ≥ 0

𝑐3 + 𝑐4 · 𝑥 + 𝑐5 · 𝑦 ≥ 0

𝐴2 :

{
𝑐6 + 𝑐7 · 𝑥 + 𝑐8 · 𝑦 ≥ 0

𝑐9 + 𝑐10 · 𝑥 + 𝑐11 · 𝑦 ≥ 0

𝐴3 :

{
𝑐12 + 𝑐13 · 𝑥 + 𝑐14 · 𝑦 ≥ 0

𝑐15 + 𝑐16 · 𝑥 + 𝑐17 · 𝑦 ≥ 0

𝐴4 :

{
𝑐18 + 𝑐19 · 𝑥 + 𝑐20 · 𝑦 ≥ 0

𝑐21 + 𝑐22 · 𝑥 + 𝑐23 · 𝑦 ≥ 0

𝑓1 = 𝑑0 + 𝑑1 · 𝑥 + 𝑑2 · 𝑦 𝑓2 = 𝑑3 + 𝑑4 · 𝑥 + 𝑑5 · 𝑦
𝑓3 = 𝑑6 + 𝑑7 · 𝑥 + 𝑑8 · 𝑦 𝑓4 = 𝑑9 + 𝑑10 · 𝑥 + 𝑑11 · 𝑦

The goal is to synthesize values for 𝜖, 𝑐0, . . . , 𝑐23 and𝑑0, . . . , 𝑑11,

so that the templates above become an IRW/UIRW.

Step 2a. Computing IRW Constraint Pairs. This step is

only performed when we want to synthesize an IRW. In

an IRW, the existential inductive set T♦
should satisfy the

condition that for every state 𝜎 ∈ T♦ \ T, there exists a

successor 𝜎 ′ ∈ T♦
of 𝜎 with 𝑓 (𝜎 ′) ≤ 𝑓 (𝜎) − 𝜖. Let ℓ ∈

L be a location and Θℓ be the set of transitions out of ℓ ,

†
We use the notation ·̂ to denote variables/expressions whose values

should be synthesized by the algorithm.

i.e. transitions whose pre-location is ℓ . The IRW properties

at ℓ are equivalent to:

∀ν ∈ RV, ν |= 𝐴ℓ ⇒
(
ν |= 𝜏ℓ ∨ ∨

𝜃=(ℓ,ℓ′,𝜑,𝜇) ∈Θℓ
𝜉 (𝜃)

)
(1)

where 𝜉 (𝜃) = 𝜉 (ℓ, ℓ ′, 𝜑, 𝜇) is defined as:

𝜉 (𝜃) :=
(
ν |= 𝜑 ∧ 𝜇 (ν) |= 𝐴ℓ′ ∧ 𝑓ℓ′ (𝜇 (ν)) ≤ �̂�ℓ (ν) − 𝜖

)
(2)

Intuitively, the constraint in (1) says that if ν |= 𝐴ℓ or equiv-

alently (ℓ,ν) ∈ T♦, then either (ℓ,ν) ∈ T which is equiv-

alent to ν |= 𝜏ℓ , or there exists a transition 𝜃 ∈ Θℓ , using

which we can obtain a successor (ℓ ′, 𝜇 (ν)) ∈ T♦
such that

𝑓 (ℓ ′, 𝜇 (ν)) ≤ 𝑓 (ℓ,ν) − 𝜖 . The latter is formalized by 𝜉 (𝜃).
In this step, the algorithm symbolically computes (1) and

writes it in the following equivalent format:

∀ν ∈ RV,
(
ν |= 𝐴ℓ ∧

∧
𝜃=(ℓ,ℓ′,𝜑,𝜇) ¬𝜉 (𝜃)

)
⇒ ν |= 𝜏ℓ (3)

Let 𝑃ℓ be the LHS assertion in (3) above. Then 𝑃ℓ is con-

structed from logical operations and atomic strict/non-strict

linear inequalities over V. The coefficients in these linear

inequalities contain the unknown 𝑐ℓ,𝑖, 𝑗 ’s and 𝑑ℓ, 𝑗 ’s.

The algorithmwrites 𝑃ℓ in disjunctive normal form, obtain-

ing 𝑃ℓ = 𝑃ℓ,1∨𝑃ℓ,2∨ . . .∨𝑃ℓ,𝑝 ,where each 𝑃ℓ,𝑖 is a conjunction
of linear inequalities over V. It then symbolically computes

the following “constraint pair” for every 𝑃ℓ,𝑖 :

𝛾ℓ,𝑖 :=
(
𝑃ℓ,𝑖 , 𝜏ℓ

)
(4)

The algorithm computes these constraint pairs for every

ℓ ∈ L and stores them in a set Γ. Every constraint pair

𝛾 = (𝜆, 𝜚) ∈ Γ consists of two parts. 𝜆 is a set of strict/non-

strict linear inequalities, while 𝜚 is a set of only non-strict

linear inequalities. Informally, 𝛾 encodes the requirement

that every inequality in 𝜚 be entailed by inequalities in 𝜆.

Example 7. Consider the system in Figure 2 together with the

templates generated in Example 6. In this step, the algorithm

considers location 1 ∈ L, and writes the constraint in (3):

𝐴1 ∧ ¬𝜉 (𝜃1) ∧ ¬𝜉 (𝜃2) ∧ ¬𝜉 (𝜃3) ⇒ 𝜏1 (5)

Intuitively, this constraint says if we are at aT♦
state in location

1, and cannot transition to another T♦
with smaller 𝑓 -value,

in other words ¬𝜉 (𝜃1) ∧ ¬𝜉 (𝜃2) ∧ ¬𝜉 (𝜃3), then we must

already be in a target state (satisfy 𝜏1). There is no target state

at location 1, so we can assume 𝜏1 ≡ (−1 ≥ 0). The algorithm
computes (5) symbolically:

𝑐0 + 𝑐1 · 𝑥 + 𝑐2 · 𝑦 ≥ 0 ∧ 𝑐3 + 𝑐4 · 𝑥 + 𝑐5 · 𝑦 ≥ 0 ∧
¬(𝑥 < 𝑦 ∧ 𝑐6 + 𝑐7 · 𝑥 + 𝑐8 ·𝑦 ≥ 0 ∧ 𝑐9 + 𝑐10 · 𝑥 + 𝑐11 ·𝑦 ≥ 0 ∧

𝑑3 + 𝑑4 · 𝑥 + 𝑑5 · 𝑦 ≤ 𝑑0 + 𝑑1 · 𝑥 + 𝑑2 · 𝑦 − 𝜖) ∧
¬(𝑥 < 𝑦 ∧ 𝑐12+𝑐13 ·𝑥 +𝑐14 ·𝑦 ≥ 0 ∧ 𝑐15+𝑐16 ·𝑥 +𝑐17 ·𝑦 ≥ 0 ∧

𝑑6 + 𝑑7 · 𝑥 + 𝑑8 · 𝑦 ≤ 𝑑0 + 𝑑1 · 𝑥 + 𝑑2 · 𝑦 − 𝜖) ∧
¬(𝑥 ≥ 𝑦 ∧ 𝑐18+𝑐19 ·𝑥 +𝑐20 ·𝑦 ≥ 0 ∧ 𝑐21+𝑐22 ·𝑥 +𝑐23 ·𝑦 ≥ 0 ∧

𝑑9 + 𝑑10 · 𝑥 + 𝑑11 · 𝑦 ≤ 𝑑0 + 𝑑1 · 𝑥 + 𝑑2 · 𝑦 − 𝜖)
⇒ (−1 ≥ 0)

7

Ali Asadi, Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Mohammad Mahdavi

Intuitively, the first part of the constraint above models a state

in T♦
at location 1. The second part models the fact that it is

not possible to take transition 𝜃1 and reach another state in T♦

at location 2 such that the 𝑓 -value decreases by at least 𝜖. The

next two parts model similar constraints for 𝜃2 and 𝜃3. Finally,

the last part says that if no suitable transition is possible, then

the current state must itself be a target, which is impossible in

this case because there are no target states at location 1. Next,

the algorithm writes the constraint above in DNF:

𝑃1,1 ∨ 𝑃1,2 ∨ . . . ∨ 𝑃1,𝑝 ⇒ (−1 ≥ 0)
Just as before, the algorithm computes each of 𝑃1,1, . . . , 𝑃1,𝑝

concretely in terms of 𝑥,𝑦, 𝜖, 𝑐𝑖 ’s and 𝑑𝑖 ’s, but to save space, we

omit the full expansion here, e.g. we can assume 𝑃1,1 is:

𝑐0 + 𝑐1 · 𝑥 + 𝑐2 · 𝑦 ≥ 0 ∧ 𝑐3 + 𝑐4 · 𝑥 + 𝑐5 · 𝑦 ≥ 0 ∧ 𝑥 ≥ 𝑦 ∧

𝑑9 + 𝑑10 · 𝑥 + 𝑑11 · 𝑦 > 𝑑0 + 𝑑1 · 𝑥 + 𝑑2 · 𝑦 − 𝜖

This corresponds to the case where we cannot use either transi-

tion 𝜃1 or 𝜃2 because 𝑥 ≥ 𝑦, and also taking transition 𝜃3 will

lead to a state whose 𝑓 -value is not small enough. For each such

𝑃1,𝑖 it generates a constraint pair (𝑃1,𝑖 , 𝜏1) = (𝑃1,𝑖 ,−1 ≥ 0).The
algorithm handles other locations similarly.

Step 2b. Computing UIRW Constraint Pairs. This step is
only performed when synthesizing a UIRW and is similar to

its IRW variant in Step 2a above. Due to space constraints,

we have relegated the details of this step to Appendix C.

Step 2c. Computing Non-negativity Constraints. In an

IRW/UIRW, the ranking function 𝑓 should have non-negative

value over T♦. Let ℓ ∈ L. The non-negativity condition at ℓ

is equivalent to:

∀ν ∈ RV, ν |= 𝐴ℓ ⇒ �̂�ℓ (ν) ≥ 0

To ensure this constraint, for every ℓ ∈ L, the algorithm adds

the constraint pair (𝐴ℓ , �̂�ℓ ≥ 0) to Γ.

Example 8. Based the templates of Example 6, the algorithm

creates the following non-negativity constraint pair 𝛾 = (𝜆, 𝜚),
encoding 𝜆 ⇒ 𝜚, at location 1 ∈ L:

𝜆 :

{
𝑐0 + 𝑐1 · 𝑥 + 𝑐2 · 𝑦 ≥ 0

𝑐3 + 𝑐4 · 𝑥 + 𝑐5 · 𝑦 ≥ 0

𝜚 : (𝑑0 + 𝑑1 · 𝑥 + 𝑑2 · 𝑦 ≥ 0)

Step 3. Applying Farkas’ Lemma. The algorithm applies

Corollary 1 to every constraint pair generated in the pre-

vious step to obtain a non-linear constraint system based

on the template variables (i.e. 𝑐ℓ,𝑖, 𝑗 ’s and 𝑑ℓ, 𝑗 ’s), the ranking

parameter 𝜖 , and new variables defined in this step. Crucially,

this non-linear constraint system does not include any of the

variables in V. We now explain this step more concretely.

For every constraint pair 𝛾 = (𝜆, 𝜚) ∈ Γ, we know that 𝜆

is a set of strict/non-strict linear inequalities {𝜆𝑖,0 +
#»

𝜆𝑖 ·
#»
V Z𝑖

0}𝑚𝑖=1, in which Z𝑖∈ {>, ≥}. Moreover, 𝜚 is a set of non-strict

inequalities and every inequality in 𝜚 should be entailed by

𝜆. Let 𝛼0 + 𝛼1 · 𝑣1 + . . . + 𝛼𝑟 · 𝑣𝑟 ≥ 0 ≡ 𝛼0 + #»𝛼 · #»
V ≥ 0 be

an inequality in 𝜚 . According to Corollary 1, there are three

cases in which {𝜆𝑖,0 + 𝜆𝑖 · V Z𝑖 0}𝑚𝑖=1 entails 𝛼0 + 𝛼 · V ≥ 0 :

(i) 𝛼0 + 𝛼 · V ≥ 0 is a non-negative combination of 1 ≥ 0

and {𝜆𝑖,0 + 𝜆𝑖 · V Z𝑖 0}𝑚𝑖=1, or
(ii) −1 ≥ 0 can be derived as above, or

(iii) 0 > 0 can be derived as above.

The algorithmwrites constraints that model each of the three

cases above and then combines them disjunctively. Given

their similarity, we only explain (i). The algorithm creates

new variables 𝑦0, . . . , 𝑦𝑚 ≥ 0 and computes the equality

𝛼0 + 𝛼 · V = 𝑦0 +
∑𝑚

𝑖=1 𝑦𝑖 · (𝜆𝑖,0 + 𝜆𝑖 · V) (6)

The two sides above are linear expressions over V. As such,
they are equal iff they agree on the coefficient of every term.

The algorithm equates the corresponding coefficients, and

adds these equalities to the constraint system:

𝛼0 = 𝑦0 +
∑𝑚

𝑖=1 𝑦𝑖 · 𝜆𝑖,0
i.e. the constant factor should be equal on both sides, and

∀𝑗 ≠ 0 𝛼 𝑗 =
∑𝑚

𝑖=1 𝑦𝑖 · 𝜆𝑖, 𝑗
i.e. the coefficient of every variable 𝑣 𝑗 ∈ V should be equal.

The algorithm handles (ii) and (iii) similarly, except that

in (iii) we should ensure that at least one strict inequality is

used when trying to obtain 0 > 0. Hence, in this case, the

algorithm also adds the extra constraint

∑
Z𝑖 ∈{>} 𝑦𝑖 > 0.The

algorithm performs the same operations for every constraint

pair 𝛾 = (𝜆, 𝜚) and every linear inequality in 𝜚 and combines

the resulting non-linear constraint systems conjunctively.

Example 9. Consider the constraint pair 𝛾 = (𝜆, 𝜚) below,
which was obtained in Example 7:

𝜆 :


𝑐0 + 𝑐1 · 𝑥 + 𝑐2 · 𝑦 ≥ 0

𝑐3 + 𝑐4 · 𝑥 + 𝑐5 · 𝑦 ≥ 0

𝑥 − 𝑦 ≥ 0

𝑑9 + 𝑑10 · 𝑥 + 𝑑11 · 𝑦 − 𝑑0 − 𝑑1 · 𝑥 − 𝑑2 · 𝑦 + 𝜖 > 0

𝜚 : (−1 ≥ 0)

We want to make sure that 𝜆 entails 𝜚 . By Corollary 1, either

𝜚 or −1 ≥ 0 or 0 > 0 should be a non-negative combination of

inequalities in 𝜆. Here, 𝜚 is itself −1 ≥ 0, so we take two cases:

• −1 ≥ 0 is obtainable from 𝜆: The algorithm creates un-

knowns 𝑦0, 𝑦1, . . . , 𝑦4 ≥ 0 and computes this equality:

𝑦0+𝑦1 · (𝑐0+𝑐1 ·𝑥 +𝑐2 ·𝑦) +𝑦2 · (𝑐3+𝑐4 ·𝑥 +𝑐5 ·𝑦) +𝑦3 · (𝑥 −𝑦)+

𝑦4 · (𝑑9 + 𝑑10 · 𝑥 + 𝑑11 · 𝑦 − 𝑑0 − 𝑑1 · 𝑥 − 𝑑2 · 𝑦 + 𝜖) = −1.
Our program variables are 𝑥 and 𝑦. All other variables are

created by the algorithm and we need to synthesize a value

for them. The above is an equality between two polynomials

in R[𝑥,𝑦] that has to hold for all values of 𝑥 and 𝑦. Hence,

the algorithm equates its corresponding coefficients:

• 𝑦1 · 𝑐1 + 𝑦2 · 𝑐4 + 𝑦3 + 𝑦4 · 𝑑10 − 𝑦4 · 𝑑1 = 0 (for 𝑥),

• 𝑦1 · 𝑐2 + 𝑦2 · 𝑐5 − 𝑦3 + 𝑦4 · 𝑑11 − 𝑦4 · 𝑑2 = 0 (for 𝑦),

• 𝑦0 + 𝑦1 · 𝑐0 + 𝑦2 · 𝑐3 + 𝑦4 · 𝑑9 − 𝑦4 · 𝑑0 + 𝑦4 · 𝜖 = −1.
8

Polynomial Reachability Witnesses via Stellensätze

• 0 > 0 is obtainable from 𝜆: The algorithm creates 5 new

variables 𝑦5, . . . , 𝑦9 and proceeds to obtain equalities over

non-program variables in the exact same manner as in the

previous case, except that it also adds the condition 𝑦9 > 0.

Step 4. Computing Initial Constraints. An IRW/UIRW

should have an initial state (ℓ0,ν) with ν |= 𝐼 . Equivalently,

∃ν0 = (ν0,1, . . . ,ν0,𝑟) ∈ RV,ν |= 𝐴ℓ0 ∧ 𝐼 . (7)

By 𝑘−linearity of the system 𝑆 , we know that the initial

assertion 𝐼 is a conjunction of at most 𝑘 linear inequalities.

Thus, the assertion above is a conjunction of at most 2𝑘

linear inequalities, and is equivalent to Sat(𝐴ℓ0 ∧ 𝐼) ≠ ∅. In
this step, the algorithm creates 𝑟 new variables ν̂0,1, . . . , ν̂0,𝑟 ,

symbolically computes the linear inequalities in (7), and adds

them (conjunctively) to the non-linear constraint system.

Example 10. For our example (Figure 2), the algorithm cre-

ates new variables ν̂0,𝑥 and ν̂0,𝑦 and computes the following:

𝑐0 + 𝑐1 · ν̂0,𝑥 + 𝑐2 · ν̂0,𝑦 ≥ 0 ν̂0,𝑥 ≥ 10

𝑐3 + 𝑐4 · ν̂0,𝑥 + 𝑐5 · ν̂0,𝑦 ≥ 0 ν̂0,𝑦 ≥ 10

The left constraints ensure that the valuation ν̂0 = (ν̂0,𝑥 , ν̂0,𝑦)
satisfies 𝐴1 and the right constraints enforce 𝐼 .

Step 5. Solving the Resulting Constraint System. Finally,
the algorithm uses an off-the-shelf solver to solve the result-

ing non-linear constraint system. If the system is unsatisfi-

able, it reports that no𝑘−linear IRW/UIRW exists. Otherwise,

it obtains a solution 𝔰 of the non-linear constraint system.

Let 𝔰(𝑥) denote the value assigned by 𝔰 to variable 𝑥 , and

extend this definition in the natural way so to any expression

𝑒 . The algorithm outputs 𝐴ℓ := 𝔰(𝐴ℓ) and 𝑓ℓ := 𝔰(�̂�ℓ), for all
ℓ ∈ L, as the IRW/UIRW. Moreover, 𝔰(ν̂0,1, . . . , ν̂0,𝑟) is the
initial state, and 𝔰(𝜖) is the decrease parameter for 𝑓 .

Example 11. When the algorithm solves the non-linear con-

straints obtainted in the previous steps, it successfully synthe-

sizes the following IRW (left) for T = {(4,ν) | ν |= (𝑥 ≥ 𝑦+8)}
and UIRW (right) for T′ = {(4,ν) | ν |= (𝑥 ≥ 𝑦 + 4)}:

ℓ 𝐴ℓ 𝑓ℓ

1 𝑦 − 2 ≤ 𝑥 ≤ 𝑦 − 1 2

2 𝑦 − 2 ≤ 𝑥 ≤ 𝑦 − 1 1

3 −1 ≥ 0 −1
4 𝑥 ≥ 𝑦 + 8 0

𝜖 = 1, ν0 = (11, 12)

ℓ 𝐴ℓ 𝑓ℓ

1 𝑦 − 0.6 ≤ 𝑥 ≤ 𝑦 − 0.5 2

2 𝑦 − 0.6 ≤ 𝑥 ≤ 𝑦 − 0.5 1

3 𝑦 − 0.6 ≤ 𝑥 ≤ 𝑦 − 0.5 1

4 𝑥 ≥ 𝑦 + 4.4 0

𝜖 = 1, ν0 = (11, 11.55)

Theorem 3 (Soundness, Proof in Appendix D). Given a

𝑘−linear system 𝑆 = (V, L, ℓ0, 𝐼 ,Θ), and a 𝑘−linear set T of

target states, every solution of the non-linear constraint sys-

tem solved in Step 5 of the algorithm above produces a valid

𝑘−linear IRW/UIRW for T in 𝑆 .

Theorem 4 (Completeness, Proof in Appendix D). Given
a 𝑘−linear system 𝑆 = (V, L, ℓ0, 𝐼 ,Θ), and a 𝑘−linear set T of

target states, every 𝑘−linear IRW/UIRW for T in 𝑆 is produced

by some solution to the non-linear constraint system solved in

Step 5 of the algorithm above.

Theorem 5 (Complexity, Proof in Appendix D). For fixed
constants 𝑘 and 𝛽 , given a 𝑘−linear 𝛽−branching system 𝑆 =

(V, L, ℓ0, 𝐼 ,Θ), and a 𝑘−linear set T of target states, Steps 1–4 of

the algorithm above lead to a polynomial-time reduction from

the problem of generating a 𝑘−linear IRW/UIRW to solving a

Quadratic Programming (QP) instance.

3.2 Synthesizing Polynomial IRWs/UIRWs
We now extend our algorithm to the case where the system,

the target set, and the IRW/UIRW are all polynomial.

Outline. Our algorithm is similar to the linear case. The

main difference is that we should now handle polynomial

constraint pairs. In other words, we have entailments of

the form 𝑃 → 𝑄 in which both 𝑃 and 𝑄 are conjunctions

of polynomial inequalities with unknown coefficients. Our

goal is to rewrite such entailments as a system of quadratic

equations over the unknown coefficients, so that we can use

off-the-shelf QP-solvers. To do this, we will need polynomial

counterparts of Farkas’ Lemma and Corollary 1. Note that

Farkas’ lemma also provided a direct way of checking unsat-

isfiability of systems of linear inequalities. We will similarly

need an unsatisfiability criterion for the polynomial case,

since 𝑃 → 𝑄 holds vacuously if 𝑃 is unsatisfiable. We first

introduce and develop these required mathematical tools

and then present the algorithm.

Strong Positivity. Let 𝑋 ⊆ RV be a set of valuations and

𝑔 ∈ R[V] a polynomial over V. We say that 𝑔 is strongly

positive over 𝑋 , and write 𝑋 |= 𝑔 ≫ 0 (or simply 𝑔 ≫ 0

when 𝑋 is clear from context), if inf𝑥 ∈𝑋 𝑔(𝑥) > 0. The real

value 𝛿 := inf𝑥 ∈𝑋 𝑔(𝑥) is called the positivity gap of 𝑔 over

𝑋 . 𝑔 is strongly greater than ℎ, denoted 𝑔 ≫ ℎ, iff 𝑔 −ℎ ≫ 0.

Problem Definition. Given technical constants Υ1, . . . , Υ4 ∈
N, a (𝑑, 𝑘)−polynomial system 𝑆 = (V, L, ℓ0, 𝐼 ,Θ), together
with a set 𝜏ℓ of at most 𝑘 strong polynomial inequalities of

degree at most 𝑑 at every location ℓ ∈ L, synthesize a (𝑑, 𝑘)−
polynomial IRW/UIRW for a target set T that satisfies 𝜏ℓ at

every ℓ ∈ L, i.e. T ∩
(
{ℓ} × RV

)
|= 𝜏ℓ , or report that no such

IRW/UIRW exists. The technical constants Υ𝑖 are bounds on
the degrees of various polynomials we construct as part of

our algorithm. We will soon discuss them more concretely.

Theorem 6 (Putinar’s Positivstellensatz [90]). Consider a
set V = {𝑣1, . . . , 𝑣𝑟 } of real-valued variables and the following
system of𝑚 polynomial inequalities over V:

Φ :

{
𝑔1 (𝑣1, . . . , 𝑣𝑟) ≥ 0, . . . , 𝑔𝑚 (𝑣1, . . . , 𝑣𝑟) ≥ 0

where 𝑔1, . . . , 𝑔𝑚 ∈ R[V] are polynomials. If there exists a

𝑔𝑖 such that the set Sat(𝑔𝑖 ≥ 0) is compact, and Φ entails a

given polynomial inequality 𝑔(𝑣1, . . . , 𝑣𝑟) > 0 then there exist

polynomials ℎ0, ℎ1, . . . , ℎ𝑚 ∈ R[V] such that

𝑔 = ℎ0 +
∑𝑚

𝑖=1 ℎ𝑖 · 𝑔𝑖
and every ℎ𝑖 is a sum of squares, i.e. ℎ𝑖 =

∑
ℎ2𝑖, 𝑗 for some

polynomials ℎ𝑖, 𝑗 ∈ R[V] .
9

Ali Asadi, Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Mohammad Mahdavi

This theorem automatically provides a criterion for satis-

fiability of Φ, given that the inequality −1 > 0 is entailed by

Φ iff Φ is unsatisfiable. As before, we need a variant of this

theorem that can handle strict inequalities in Φ.

Corollary 2. Take the following system of𝑚 polynomial in-

equalities over V = {𝑣1, . . . , 𝑣𝑟 }:

Φ :

{
𝑔1 (𝑣1, . . . , 𝑣𝑟) Z1 0, . . . , 𝑔𝑚 (𝑣1, . . . , 𝑣𝑟) Z𝑚 0

in which every 𝑔𝑖 ∈ R[V] is a polynomial and Z𝑖∈ {>, ≥}.
Also, assume that there is some 𝑖 such that the set Sat(𝑔𝑖 ≥ 0)
is compact, or equivalently Sat(𝑔𝑖 Z𝑖 0) is bounded. If Φ
is satisfiable, then it entails a strong polynomial inequality

𝑔(𝑣1, . . . , 𝑣𝑟) ≫ 0, iff there exist a constant 𝑦0 ∈ (0,∞) and
polynomials ℎ0, . . . , ℎ𝑚 ∈ R[V] such that

𝑔 = 𝑦0 + ℎ0 +
∑𝑚

𝑖=1 ℎ𝑖 · 𝑔𝑖 (8)

and every ℎ𝑖 is a sum of squares, i.e. ℎ𝑖 =
∑
ℎ2𝑖, 𝑗 for some

polynomials ℎ𝑖, 𝑗 ∈ R[V] .

Proof. It is obvious that any polynomial 𝑔 that can be rep-

resented as in Equation (8) is strongly positive over Sat(Φ)
and has a positivity gap of at least 𝑦0 > 0. Suppose Φ is sat-

isfiable and entails 𝑔 ≫ 0 with positivity gap 𝛿, and choose

0 < 𝑦0 < 𝛿 ′ < 𝛿 . We have Sat(Φ) ⊆ Sat(𝑔 > 𝛿 ′) so
Sat(Φ) = Sat(Φ) ⊆ Sat(𝑔 > 𝛿 ′) = Sat(𝑔 ≥ 𝛿 ′) ⊆ Sat(𝑔 >

𝑦0). Hence, Φ entails 𝑔 − 𝑦0 > 0. Applying Theorem 6 to Φ
and 𝑔 − 𝑦0 leads to the desired result. □

This corollary characterizes strongly positive polynomials

over Sat(Φ). However, it is only applicable when Φ is satisfi-

able. We are using this assumption in the proof above when

we write Sat(Φ) = Sat(Φ). If Φ is unsatisfiable, then it vac-

uously entails any polynomial inequality, but the corollary

above is inapplicable. Therefore, we also need a criterion for

unsatisfiability of Φ. We use Hilbert’s Strong Nullstellensatz

to obtain a suitable criterion (Theorem 8).

Theorem7 (StrongNullstellensatz [9]). TakeV = {𝑣1, . . . , 𝑣𝑟 }
and let 𝑔1, . . . , 𝑔𝑚, 𝑔 ∈ R[V] be polynomials over V. Then ex-

actly one of the following statements holds:

• There exists a valuation ν ∈ RV, such that 𝑔1 (ν) = 𝑔2 (ν) =
. . . = 𝑔𝑚 (ν) = 0, but 𝑔(ν) ≠ 0.

• There exist 𝛼 ∈ N∪{0} and polynomialsℎ1, . . . , ℎ𝑚 ∈ R[V]
such that

∑𝑚
𝑖=1 ℎ𝑖 · 𝑔𝑖 = 𝑔𝛼 .

The following theorem is the main theoretical basis of our

synthesis algorithm and characterizes unsatisfiability of Φ
when it contains both strict and non-strict inequalities:

Theorem 8. Take a set V = {𝑣1, . . . , 𝑣𝑟 } of real-valued vari-
ables and a system of𝑚 polynomial inequalities over V:

Φ :

{
𝑔1 (𝑣1, . . . , 𝑣𝑟) Z1 0, . . . , 𝑔𝑚 (𝑣1, . . . , 𝑣𝑟) Z𝑚 0

where each 𝑔𝑖 ∈ R[V] is a polynomial and Z𝑖∈ {>, ≥}. Φ is

unsatisfiable iff at least one of the following statements holds:

(i) There exist a constant 𝑦0 ∈ (0,∞) and sum-of-square

polynomials ℎ0, . . . , ℎ𝑚 ∈ R[V] such that

−1 = 𝑦0 + ℎ0 +
∑𝑚

𝑖=1 ℎ𝑖 · 𝑔𝑖 .

(ii) There exist 𝛼 ∈ N ∪ {0} and ℎ1, . . . , ℎ𝑚 ∈ R[V∗] for
V∗ = V ∪ {𝑤1, . . . ,𝑤𝑚}, such that for some 1 ≤ 𝑗 ≤ 𝑚

with Z𝑗∈ {>}, we have

𝑤2·𝛼
𝑗

=
∑𝑚

𝑖=1 ℎ𝑖 · (𝑔𝑖 −𝑤2

𝑖).

Proof. If Φ is satisfiable, then it cannot entail −1 > 0, so

(i) is impossible. We now show that (ii) implies unsatis-

fiability of Φ as well. Define 𝑔𝑖 (𝑣1, . . . , 𝑣𝑟 ,𝑤1, . . . ,𝑤𝑚) :=

𝑔𝑖 (𝑣1, . . . , 𝑣𝑟) − 𝑤2

𝑖 . So, we have 𝑤2·𝛼
𝑗

=
∑𝑚

𝑖=1 ℎ𝑖 · 𝑔𝑖 . More-

over, 𝑔𝛼
𝑗
=

(
𝑔 𝑗 +𝑤2

𝑗

)𝛼
=
∑𝛼

𝑖=0

(
𝛼
𝑖

)
𝑔𝑖𝑗 ·𝑤

2· (𝛼−𝑖)
𝑗

= 𝑤2·𝛼
𝑗

+ℎ′
𝑗 ·𝑔 𝑗

for some ℎ′
𝑗 ∈ R[V∗] . So, letting ℎ′′

𝑖 = ℎ𝑖 for 𝑖 ≠ 𝑗 and

ℎ′′
𝑗 = ℎ 𝑗 + ℎ′

𝑗 , we have

𝑔𝛼
𝑗
=
∑𝑚

𝑖=1 ℎ
′′
𝑖 · (𝑔𝑖 −𝑤2

𝑖)

Let ν ∈ RV∩Sat(Φ).We extend ν to ν∗ ∈ RV∗
as follows: for

every𝑤𝑖 , let ν
∗ (𝑤𝑖) =

√
ν(𝑔𝑖). So, we have ν∗ (𝑔𝑖 −𝑤2

𝑖) = 0,

and hence the RHS of the equation above is 0 at ν∗
. On the

other hand, we have ν∗ (𝑔𝛼
𝑗
) = ν(𝑔𝛼

𝑗
) =

(
ν(𝑔 𝑗)

)𝛼
> 0. This

contradiction shows that Φ is unsatisfiable.

We now prove the other side. Suppose that Φ is unsatisfi-

able. If Φ is unsatisfiable, then it entails −1.5 > 0 and hence

we can apply Theorem 6 to write −1.5 = ℎ0 +
∑𝑚

𝑖=1 ℎ𝑖 · 𝑔𝑖 for
some sum-of-squares polynomials ℎ𝑖 , which is equivalent to

−1 = 0.5 + ℎ0 +
∑𝑚

𝑖=1 ℎ𝑖 · 𝑔𝑖 , hence leading to case (i) above.

The only remaining case is if Φ is satisfiable but Φ is

not. Reorder the inequalities in Φ so that the non-strict in-

equalities appear first. Let 𝑗 be the smallest index for which

Φ[1 . . . 𝑗], i.e. the set of first 𝑗 inequalities in Φ, is unsatis-
fiable. By definition, Φ[1 . . . 𝑗 − 1] is satisfiable and hence

Sat(Φ[1 . . . 𝑗 − 1]) = Sat(Φ[1 . . . 𝑗 − 1]). Moreover, since

Φ[1 . . . 𝑗] = Φ[1 . . . 𝑗 − 1] ∧
(
𝑔 𝑗 > 0

)
is unsatisfiable, we

know that Φ[1 . . . 𝑗 − 1] entails 𝑔 𝑗 ≤ 0. In other words,

Sat(Φ[1 . . . 𝑗−1]) ⊆ Sat(𝑔 𝑗 ≤ 0). Taking closures from both

sides shows thatΦ[1 . . . 𝑗−1] entails𝑔 𝑗 ≤ 0. So,Φ[1 . . . 𝑗] en-
tails𝑔 𝑗 = 0.Define𝑔𝑖 (𝑣1, . . . , 𝑣𝑟 ,𝑤1, . . . ,𝑤𝑚) := 𝑔𝑖 (𝑣1, . . . , 𝑣𝑟)−
𝑤2

𝑖 . We claim there is no valuation ν∗ ∈ RV∗
such that for

all 1 ≤ 𝑖 ≤ 𝑗 , 𝑔𝑖 (ν∗) = 0, but 𝑔 𝑗 (ν∗) ≠ 0. To prove this,

suppose that such a valuation exists, and let ν be its restric-

tion to V. For each 1 ≤ 𝑖 ≤ 𝑗 , since 𝑔𝑖 (ν∗) = 0, we have

𝑔𝑖 (ν) ≥ 0. Moreover, 𝑔 𝑗 (ν) = 𝑔 𝑗 (ν∗) ≠ 0. This is a con-

tradiction with the previously proven fact that Φ[1 . . . 𝑗]
entails 𝑔 𝑗 = 0. Applying the Strong Nullstellensatz (The-

orem 7) to the 𝑔𝑖 ’s and 𝑔 𝑗 , we conclude that there exist a

non-negative integer 𝛼 and polynomials
˜ℎ1, . . . , ˜ℎ 𝑗 ∈ R[V∗]

such that 𝑔𝛼
𝑗
=

∑𝑗

𝑖=1
˜ℎ𝑖 · 𝑔𝑖 . Note that 𝑔𝛼

𝑗
=

(
𝑔 𝑗 +𝑤2

𝑗

)𝛼
=∑𝛼

𝑖=0

(
𝛼
𝑖

)
𝑔𝑖𝑗 · 𝑤

2· (𝛼−𝑖)
𝑗

= 𝑤2·𝛼
𝑗

+ ℎ′
𝑗 · 𝑔 𝑗 for some ℎ′

𝑗 ∈ R[V∗] .
10

Polynomial Reachability Witnesses via Stellensätze

Defining ℎ𝑖 = ˜ℎ𝑖 for all 𝑖 ≠ 𝑗 , and ℎ 𝑗 = ˜ℎ 𝑗 − ℎ′
𝑗 , we get

𝑤2·𝛼
𝑗

=
∑𝑗

𝑖=1
ℎ𝑖 · 𝑔𝑖 =

∑𝑗

𝑖=1
ℎ𝑖 · (𝑔𝑖 −𝑤2

𝑖).

The Synthesis Algorithm. As in the linear case, our algo-

rithm consists of 5 steps. The main differences are in Steps 1

and 3. In Step 1, our algorithm should now generate a poly-

nomial template. Moreover, in Step 3, it employs Corollary 2

and Theorem 8 for characterizing entailment. The other steps

are exactly like our previous algorithm.

Step 1. Setting up a template. The algorithm symbolically

computes the set of monomials of degree at most 𝑑 over V:

𝑀𝑑 (V) := {𝔪1,𝔪2, . . . ,𝔪𝑢} :=
{𝑣𝛼1

1
· 𝑣𝛼2

2
· . . . · 𝑣𝛼𝑟𝑟 | 𝛼1, . . . , 𝛼𝑟 ∈ N∪{0} ∧ 𝛼1 + . . .+𝛼𝑟 ≤ 𝑑}.

It sets up templates for 𝐴ℓ and 𝑓ℓ at every ℓ ∈ L :

𝐴ℓ :


𝑐ℓ,1,1 ·𝔪1 + . . . + 𝑐ℓ,1,𝑢 ·𝔪𝑢 ≥ 0

...

𝑐ℓ,𝑘,1 ·𝔪1 + . . . + 𝑐ℓ,𝑘,𝑢 ·𝔪𝑢 ≥ 0

�̂�ℓ = 𝑑ℓ,1 ·𝔪1 + . . . + 𝑑ℓ,𝑢 ·𝔪𝑢

The 𝑐ℓ,𝑖, 𝑗 ’s and 𝑑ℓ, 𝑗 ’s are unknown variables for which we

should synthesize a value such that the𝐴ℓ ’s and �̂�ℓ ’s form an

IRW or a UIRW. We do not need to add a separate constant

factor to our templates because 1 ∈ 𝑀𝑑 (V).
Step 2. Computing Constraint Pairs. Steps 2a–2c are the
same as in Section 3.1. However, note that the resulting con-

straint pairs 𝛾 = (𝜆, 𝜚) ∈ Γ are now polynomial. Concretely,

𝜆 is a set of strict or non-strict polynomial inequalities over

V and 𝜚 is a set of strong polynomial inequalities over V.
Step 3. Applying the Stellensätze. The algorithm applies

Corollary 2 and Theorem 8 to every constraint pair generated

in the previous step to obtain a non-linear constraint system

based on the template variables, 𝜖, and new variables defined

in this step. Let 𝛾 = (𝜆, 𝜚) ∈ Γ be a constraint pair. 𝜆 is a

set of polynomial inequalities of the form {𝑔𝑖 Z𝑖 0}𝑚𝑖=1. Let
𝑔 ≫ 0 be a strong polynomial inequality in 𝜚 . 𝜆 must entail

𝑔 ≫ 0. The algorithm considers three cases:

(i) 𝜆 is unsatisfiable due to case (i) in Theorem 8: The algo-

rithm considers the set𝑀Υ1 (V) := {𝔪1,𝔪2, . . . ,𝔪𝔫} of
all monomials of degree at most Υ1 over V. Recall that
Υ1 is the first technical parameter given in input. It then

generates the following templates ℎ̂𝑖 for 0 ≤ 𝑖 ≤ 𝑚:

ℎ̂𝑖 := 𝜂𝑖,1 ·𝔪1 + . . . + 𝜂𝑖,𝔫 ·𝔪𝔫

by introducing new variables 𝜂𝑖, 𝑗 . It also adds certain

constraints on 𝜂𝑖, 𝑗 ’s that ensure every ℎ̂𝑖 is a sum-of-

squares. See Appendix F for more details. Then, the

algorithm introduces𝑦0 > 0 and symbolically computes

−1 = 𝑦0 + ℎ̂0 +
∑𝑚

𝑖=1 ℎ̂𝑖 · 𝑔𝑖
Finally, the algorithm equates the corresponding co-

efficients on the two sides of the equality above, and

obtains quadratic equalities over the unknown variables.

No program variable appears in these equalities.

(ii) 𝜆 is unsatisfiable due to case (ii) in Theorem 8: The al-

gorithm considers the set 𝑀∗
Υ2

:= {𝔪∗
1
, . . . ,𝔪∗

𝔫∗ } of all
monomials of degree at most Υ2 (our second technical

parameter) over the extended variable set V∗ = V ∪
{𝑤1, . . . ,𝑤𝑚}. It generates templates ℎ̂𝑖 for 1 ≤ 𝑖 ≤ 𝑚 :

ℎ̂𝑖 := 𝜂𝑖,1 ·𝔪∗
1
+ . . . + 𝜂𝑖,𝔫 ·𝔪∗

𝔫∗

and symbolically computes the equality below for every

index 𝑗 with a strict inequality 𝑔 𝑗 > 0 in 𝜆:

𝑤
2·Υ3
𝑗

=
∑𝑚

𝑖=1 ℎ̂𝑖 · (𝑔𝑖 −𝑤2

𝑖).

Here Υ3 is our third technical parameter and both sides

are polynomials in R[V∗] . The algorithm equates the

corresponding coefficients on the LHS and RHS and

obtains quadratic equalities over unknown variables.

The systems of quadratic equalities generated for each

index 𝑗 are combined disjunctively.

(iii) 𝑔 is a combination of𝑔𝑖 ’s as in Corollary 2: The algorithm

considers the set𝑀Υ4 := {𝔪1, . . . ,𝔪𝔫} of monomials of

degree at most Υ4 over V, and generates the following

templates ℎ̂𝑖 for 0 ≤ 𝑖 ≤ 𝑚:

ℎ̂𝑖 := ℎ̂𝑖 := 𝜂𝑖,1 ·𝔪1 + . . . + 𝜂𝑖,𝔫 ·𝔪𝔫

by introducing new variables𝜂𝑖, 𝑗 and adding constraints

that ensure every ℎ̂𝑖 is a sum-of-squares (Appendix F).

It then introduces 𝑦0 > 0 and symbolically computes

𝑔 = 𝑦0 + ℎ̂0 +
∑𝑚

𝑖=1 ℎ̂𝑖 · 𝑔𝑖 .

Finally, the algorithm translates this equality to qua-

dratic equalities over template variables.

The systems of quadratic equalities generated in (i)–(iii)

above are combined disjunctively.

Steps 4 and 5. These steps are the same as in Section 3.1.

Example 12. Suppose that Υ1 = Υ2 = Υ3 = Υ4 = 1, and the

algorithm is in Step 3, handling the following constraint pair:

𝜆 :

{
𝑐1 · 𝑥 > 0

𝑐2 · 𝑦 ≥ 0

𝜚 : (𝑐3 · 𝑥 · 𝑦 + 𝑐4 ≫ 0)

The algorithm considers the following cases:

(i) It generates three new template polynomials

ℎ̂0 = 𝜂0,1 + 𝜂0,2 · 𝑥 + 𝜂0,3 · 𝑦
ℎ̂1 = 𝜂1,1 + 𝜂1,2 · 𝑥 + 𝜂1,3 · 𝑦
ℎ̂2 = 𝜂2,1 + 𝜂2,2 · 𝑥 + 𝜂2,3 · 𝑦

and computes a quadratic system of (in)equalities over

the 𝜂𝑖, 𝑗 ’s that ensures every ℎ̂𝑖 is a sum-of-squares (See

Appendix F for details). The algorithm then computes the

following equality symbolically (with 𝑦0 > 0):

−1 = 𝑦0 + ℎ̂0 + ℎ̂1 · 𝑐1 · 𝑥 + ℎ̂2 · 𝑐2 · 𝑦
11

Ali Asadi, Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Mohammad Mahdavi

and rewrites it as quadratic equalities between the un-

known variables by equating the coefficients of corre-

sponding terms on the two sides of the polynomial equal-

ity. Intuitively, if there is a valuation for the unknown

variables that satisfies these constraints, then −1 is a com-

bination of 𝑐1 · 𝑥, 𝑐2 · 𝑦 and sum-of-square polynomials.

Hence, 𝜆 is unsatisfiable.

(ii) The algorithm creates two new program variables𝑤1,𝑤2

and sets up the following templates:

ℎ̂3 = 𝜂3,1 + 𝜂3,2 · 𝑥 + 𝜂3,3 · 𝑦 + 𝜂3,4 ·𝑤1 + 𝜂3,5 ·𝑤2

ℎ̂4 = 𝜂4,1 + 𝜂4,2 · 𝑥 + 𝜂4,3 · 𝑦 + 𝜂4,4 ·𝑤1 + 𝜂4,5 ·𝑤2

.

Unlike the previous case, ℎ̂3 and ℎ̂4 need not be sum-of-

squares. It then writes the equality:

𝑤2

1
= ℎ̂3 · (𝑐1 · 𝑥 −𝑤2

1
) + ℎ̂4 · (𝑐2 · 𝑦 −𝑤2

2
),

and converts this polynomial equality to quadratic equal-

ities by equating corresponding coefficients. Note that

the LHS and RHS of the polynomial equality above are

in R[𝑥,𝑦,𝑤1,𝑤2] . By Theorem 8, any solution to these

constraints serves as a proof for unsatisfiability of 𝜆.

(iii) The algorithm generates the following templates:

ℎ̂5 = 𝜂5,1 + 𝜂5,2 · 𝑥 + 𝜂5,3 · 𝑦,
ℎ̂6 = 𝜂6,1 + 𝜂6,2 · 𝑥 + 𝜂6,3 · 𝑦,
ℎ̂7 = 𝜂7,1 + 𝜂7,2 · 𝑥 + 𝜂7,3 · 𝑦;

enforces them to be sum-of-squares just as in case (i) above

(Appendix F) and writes the polynomial equality:

𝑐3 · 𝑥 · 𝑦 + 𝑐4 = 𝑦1 + ℎ̂5 + ℎ̂6 · 𝑐1 · 𝑥 + ℎ̂7 · 𝑐2 · 𝑦
in which 𝑦1 > 0. It handles it similarly to the previous

cases. This is again a polynomial equality in R[𝑥,𝑦] .
The algorithm combines the systems of quadratic inequality

in (i)–(iii) above disjunctively.

It is now easy to obtain the following theorems, whose

proofs are similar to the linear case:

Theorem 9 (Soundness). Given a (𝑑, 𝑘)−polynomial system

𝑆 = (V, L, ℓ0, 𝐼 ,Θ), and a set 𝜏ℓ of at most 𝑘 polynomial in-

equalities of degree 𝑑 or less at every ℓ ∈ L, every solution of

the non-linear constraint system solved in Step 5 of the algo-

rithm above produces a valid (𝑑, 𝑘)-polynomial IRW/UIRW for

a target set T that satisfies 𝜏ℓ at every ℓ ∈ L.
Theorem10 (Semi-completeness). Take a (𝑑, 𝑘)−polynomial

system 𝑆 = (V, L, ℓ0, 𝐼 ,Θ) and a set 𝜏ℓ of at most 𝑘 strong poly-

nomial inequalities of degree 𝑑 or less at every ℓ ∈ L. Let
𝑊 = (T♦, 𝑓 , 𝜖) be an explicitly bounded (𝑑, 𝑘)−polynomial IR-

W/UIRW for a target set T that satisfies 𝜏ℓ at every ℓ ∈ L.
If large enough values are assigned to technical constants

Υ1, . . . , Υ4, the witness𝑊 is produced by some solution of the

non-linear constraint system solved in Step 5 of the algorithm.

Theorem 11 (Complexity). For fixed constants 𝑘,𝑑 and 𝛽,

and technical constants Υ1, . . . , Υ4, given a (𝑘, 𝑑)−polynomial

𝛽−branching system 𝑆 = (V, L, ℓ0, 𝐼 ,Θ), and a set 𝜏ℓ of at most

𝑘 polynomial inequalities of degree 𝑑 or less at every ℓ ∈ L,
Steps 1–4 of the algorithm above lead to a polynomial-time

reduction from the problem of generating a (𝑘,𝑑)−polynomial

IRW/UIRW to solving a QP instance.

Remark 2. Theorem 10 provides semi-completeness, i.e. com-

pleteness when the chosen technical constants are large enough,

because the stellensätze have no bound on the degree of polyno-

mials in their characterizations, but we have to fix a degree in

our algorithm. We use Υ1, . . . , Υ4 for this purpose. Such results

arise routinely in constraint-based termination analysis [34]

and invariant generation [56]. In practice, solutions are often

found with small technical constants (see Section 4).

Remark 3. We presented our approach for conjunctive IRWs,

i.e. at each label, the set of states that are in T♦
was defined by

a conjunction of linear/polynomial inequalities. However, the

approach can be extended to handle disjunction, as well. In the

linear case, this can be achieved using Motzkin’s Transposition

Theorem [19, 85]. In the polynomial case, we can apply Stengle’s

Positivstellensatz [99] instead of Putinar’s. In both cases, the

completeness will be unaffected but the runtime will increase.

4 Experimental Results

Implementation. We implemented our algorithms for IRW

synthesis in Python using SymPy [84] for symbolic com-

putations. We also added several heuristics for improving

performance. Notably, we used Z3 [49] to identify and dis-

card unsatisfiable or tautological constraint pairs. The QPs

were then solved by LOQO [102]. All results were obtained

on an Intel Core i5-2540M (2.6 GHz) machine with 8 GB RAM

running Ubuntu, with a limit of 1800 seconds per task.

Linear Benchmarks.WeusedC benchmarks from SV-COMP

2020 [22]. We considered tasks in the “Reachability/Safety”

category of the competition in which the error states were

reachable. Of these, we removed benchmarks that cannot be

soundly modeled as transition systems with real variables,

i.e. benchmarks containing pointers, arrays, etc. This left us

with 30 benchmarks. The only source of non-determinism

in these benchmarks is their input. We handle this by syn-

thesizing an initial valuation as part of the IRW. In absence

of integer division/mod, our approach can soundly handle

integer variables by requiring that the synthesized initial val-

uation (in Step 4) is integral, i.e. ν̂0,𝑖 ’s are integer unknowns.

This leads to a mixed QP instance, but there are very few

integral variables, and the problem remains tractable.

Polynomial Benchmarks. For the polynomial case, all stan-

dard benchmarks focused on safety. Hence, we created 6 sim-

ple programs with complex reachability structure to show-

case the strengths of our approach. Due to space restrictions,

these examples are put in Appendix G. Specifically, it is note-

worthy that these benchmarks demonstrate the fact that

our algorithm’s success is not dependent on the length or

proportion of paths that reach the target set T.
12

Polynomial Reachability Witnesses via Stellensätze

Benchmark |L | |Θ | |V | 𝑘 |QP | Gen Solve Ours CPAchecker VeriAbs Dangerzone Depth
gcnr2008 8 14 4 2 1838 14.8 81.4 96.2 1.8 17.6 3.3 4

trex02-2 5 7 1 2 260 1.8 3.4 5.3 4.3 16.6 2.4 3

nec11 4 8 3 2 2871 13.2 45.7 58.9 4.2 10.8 2.7 6

terminator_02-1 5 8 3 3 1962 12.0 19.4 31.4 4.2 17.2 2.9 5

simple_2-2 3 5 1 2 267 1.7 1.5 3.2 4.3 10.4 T/O 3

count_up_down-2 3 4 3 2 244 1.6 1.9 3.5 4.4 5.9 T/O 4

nested_1b 4 7 1 2 819 3.3 11.0 14.3 4.7 3.5 T/O 9

while_infinite_loop_4 10 14 1 2 1223 5.1 7.9 13.0 4.1 15.3 N/A 6

multivar_1-2 3 6 2 2 900 5.8 19.8 25.6 4.4 9.0 T/O 4

trex01-1 14 27 6 3 9491 69.7 228.2 297.8 4.5 17.3 4.5 7

for_bounded_loop1 10 13 5 2 1579 9.8 30.1 39.9 5.6 16.8 4.6 12

underapprox_1-1 3 6 2 2 901 3.7 5.6 9.3 4.7 14.0 T/O 21

sum03-1 9 14 2 2 20963 77.9 413.1 491.0 6.1 16.3 4.8 57

underapprox_2-1 3 6 2 2 901 3.7 14.5 18.2 4.9 10.6 T/O 21

sum04-1 6 10 2 2 1082 5.4 8.0 13.4 5.1 17.0 T/O 22

terminator_03-1 6 11 2 3 1740 10.0 25.7 35.6 5.1 9.7 T/O 5

trex03-1 4 12 6 2 8500 49.2 197.9 247.0 5.2 9.1 5.3 5

Mono1_1-1 3 5 1 2 262 1.3 4.4 5.7 T/O 377.2 T/O 5.50e+7

sum01_bug02_base 7 13 3 2 7972 38.0 133.4 171.4 6.0 17.3 24.1 18

id_trans 5 11 5 2 11192 68.7 171.2 239.8 6.4 19.8 10.8 11

sum01_bug02 7 12 4 3 17632 60.0 218.6 278.6 6.5 17.3 71.8 26

sum01-1 7 12 3 2 7316 36.9 55.1 92.0 7.6 16.7 T/O 32

nested_1-2 4 6 2 2 329 2.9 8.0 10.9 T/O 86.0 N/A 6.17e+9

Mono5_1 5 7 3 4 1048 8.1 31.8 39.8 T/O 332.4 19.6 3.50e+7

const_1-2 3 6 2 2 901 4.6 17.6 22.2 T/O 49.6 T/O 3076

Mono3_1 6 8 2 3 660 4.0 20.0 24.0 T/O 369.9 T/O 4.00e+6

Mono4_1 5 7 2 4 949 5.3 22.1 27.3 T/O 635.8 T/O 3.50e+6

Mono6_1 5 7 3 5 1502 11.6 48.5 60.1 T/O 382.2 T/O 3.50e+7

deep_nested 7 17 5 5 3686 28.6 69.6 98.2 T/O T/O N/A 1.46e+48

nested_delay_notd2 6 9 6 3 12858 55.3 396.7 451.9 T/O 247.4 N/A 1385

Table 1. Experimental Results over SV-COMP Benchmarks. Times are in seconds. “Gen”/“Solve” are the times spent generat-

ing/solving the QP. “Ours” is our total runtime. “T/O” denotes timeout. “Depth” is the length of the shortest path that reaches

the target states (bugs). Since our approach does not output a path, but rather an IRW, we calculated the depths manually.

Benchmark |L | |Θ | |V | 𝑘 𝑑 |QP | Gen Solve Ours CPAchecker VeriAbs Dangerzone Depth
sqrt2 5 7 2 5 2 2494 24.1 22.4 46.4 10.5 19.7 2.7 207

sqrt1 3 4 2 4 2 920 10.7 30.1 40.8 T/O 207.3 2.7 633

robot2 5 8 4 5 2 5537 71.1 681.7 752.9 T/O F 3.1 29982

robot1 5 8 4 5 2 5537 69.8 724.2 794.0 T/O F 5.97 2127

sum 3 4 3 5 2 1826 20.4 59.7 80.1 T/O F T/O 30003

sum2 3 4 3 5 3 2476 36.8 167.5 204.2 T/O T/O T/O 30003

Table 2. Experimental Results over Polynomial Programs. ‘F’ denotes failure. We set our Υ variables equal to 𝑑 .

Previous Tools. We compare our approach against the two

best-performing tools in the Reachability/Safety category of

SV-COMP 2020, namely VeriAbs [2] and CPAchecker [25],

as well as the most related previous work, Dangerzone [48].

Linear Results. The results over linear benchmarks are sum-

marized in Table 1. Our approach could handle every linear

reachability benchmark in SV-COMP 2020. It is noteworthy

that according to the SV-COMP results, none of the par-

ticipating model checkers could handle all benchmarks of

Table 1. CPAchecker times out on 9 of the instances, whereas

VeriAbs fails on only 1 instance. Additionally, Dangerzone

is not applicable to 4 of the instances and times out on 14.

By manual inspection, we realized that CPAChecker and Ve-

riAbs are faster than our approach when reachability can be

attained using liberal abstractions and a relatively short path

(benchmarks towards the top of Table 1). This is not surpris-

ing, given that in these situations, abstract interpretation and

symbolic execution are considerably faster than quadratic

constraint solving. However, as the paths become longer and

sparser (towards the the bottom of Table 1), the advantages

of our approach begin to show. When the paths are long,

i.e. thousands of steps of program execution, CPAchecker al-

ways fails to verify the instance. VeriAbs manages to handle

these instances by a combination of ideas from loop pruning,

loop summarization, abstract interpretation and bounded

model checking. However, this comes with a considerable

overhead, leading to a much worse performance in compar-

ison with our approach. Finally, Dangerzone, while being

able to efficiently find some of the deep bugs, fails on other

instances. This is also not surprising, given that Danger-

zone does not provide completeness guarantees and relies

on evolutionary methods in its synthesis process.

Our runtime is mainly dependent on the size of the QP

instance, which in turn depends on the size of the program

13

Ali Asadi, Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Mohammad Mahdavi

and the degree of the IRW. In contrast, previous approaches’

runtimes depend on the depth of the bug. Some previous

approaches, e.g. VeriAbs, also perform abstraction, so their

runtime becomes dependent on the number of refinements

needed to detect the bug. Informally speaking, other ap-

proaches are faster in detecting shallow and wide bugs,

whereas ours performs better on deep and narrow bugs. Of

course, our performance also depends on the QP solver.

Nested Loop Benchmark. The program below illustrates

the core of deep-nested, the only linear benchmark that

could be handled by neither VeriAbs nor CPAchecker:

for (𝑎 := 0 ;𝑎 < 𝑀 − 1 ;𝑎 := 𝑎 + 1) :

for (𝑏 := 0 ;𝑏 < 𝑀 − 1 ;𝑏 := 𝑏 + 1) :

for (𝑐 := 0 ; 𝑐 < 𝑀 − 1 ; 𝑐 := 𝑐 + 1) :

for (𝑑 := 0 ;𝑑 < 𝑀 − 1 ;𝑑 := 𝑑 + 1) :

for (𝑒 := 0 ; 𝑒 < 𝑀 − 1 ; 𝑒 := 𝑒 + 1) :

i f 𝑀 − 2 ≤ 𝑎,𝑏, 𝑐,𝑑, 𝑒 :

print ("target reached")

In this program,𝑀 is the largest value that fits into a 32-bit

integer. We also ran these tools over this benchmark with an

extended time limit of 12 hours, but they timed out. More-

over, according to SV-COMP results, no other participating

model checker could handle this example, either. We believe

this is because the target state can only be reached after an

enormously-long path. Moreover, the target set is quite thin

and even the smallest loss of precision in abstraction can

cause a failure to prove reachability. However, this particular

benchmark is not at all challenging for our method. The

runtime of our method does not depend on the length of

the paths, and we do not perform abstraction. Moreover, our

approach is complete for linear IRWs. As such, it can easily

prove reachability in this program.

Polynomial Results. Table 2 shows our experimental re-

sults over 6 polynomial instances. Informally, sqrt1 is a

simple program that given an input integer 𝑛 ≥ 1 computes

𝑠 = ⌊
√
𝑛⌋ by trying every possible integer starting from 1.

The goal is to (choose a value for 𝑛 so as to) reach a state with

𝑛 − 𝑠 > 10
5. sqrt2 is a more clever variant of the same pro-

gram that doubles the current value in a single step when the

doubled value does not exceed ⌊
√
𝑛⌋. sum is a program that

sums up all the integers from 1 to 𝑛. The goal is to synthesize

a value for 𝑛 such that the sum falls in a specific interval.

sum2 is a similar benchmark in which the program sums

squares of all integers from 1 to 𝑛. In robot1, two robots are
put in the same position in a 2d plane. At each step, each

robot non-deterministically chooses to move one unit either

upwards or to the right. The goal is to reach a state where the

square of the distance between the robots is more than 10
5 .

In robot2, the same two robots are placed on the lower-right

and upper-left corners of a square of side length 10
4
. The

goal is to show that they can reach a distance of less than 10

from each other. See Appendix G for details.

As in the linear case, we observe that CPAchecker and

VeriAbs can handle cases where the path reaching the targets

is short, and when there is no combinatorial explosion in the

number of paths due to repeated nondeterministic choice.

Notably, CPAchecker can handle sqrt2 but not sqrt1. The
only difference between these two programs is that sqrt2
is more efficient and hence the path to targets is shorter.

We also observe that the various other techniques used by

VeriAbs, which made it more successful in the linear case,

do not extend well to the polynomial case. In contrast, our

approach and Dangerzone are able to handle reachability

with long paths. Our approach is the only one that can handle

all of the polynomial benchmarks. This is due to its semi-

completeness over polynomial IRWs.

5 Conclusion and Future Work
We proposed IRWs for reachability analysis over imperative

programs. Our approach synthesizes an under-approximation

of the set of program states that can reach the target, then

uses a ranking argument to ensure eventual reachability. We

proved that our approach is sound and complete when there

is no restriction over the form of inductive reachability wit-

nesses, and presented automated sound and semi-complete

algorithms for synthesizing linear and polynomial inductive

reachability witnesses. In practice, our experimental results

show that our automated approaches can solve instances

beyond the reach of previous methods.

An interesting future direction is to incorporate more

advanced ranking-function synthesis methods such as lexi-

cographic ranking functions [5, 18, 26] into reachability anal-

ysis. Another direction is to consider how our approach can

be extended to automate the search for proofs in incorrect-

ness logic [86]. Invariant generation has been successfully

used in automating aspects of Hoare logic and termination

analysis [34, 35, 41, 88]. Given that our witnesses are natural

duals of inductive invariants, we expect that this direction

will be fruitful.

Acknowledgments
This researchwas partially supported by the ERCCoG 863818

(ForM-SMArt), the National Natural Science Foundation of

China (NSFC) Grant No. 61802254, the Huawei Innovation

Research Program, the Facebook PhD Fellowship Program,

and DOC Fellowship No. 24956 of the Austrian Academy of

Sciences (ÖAW).

14

Polynomial Reachability Witnesses via Stellensätze

References
[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Bui Phi Diep. 2016.

Counter-Example Guided Program Verification. In FM.

[2] Mohammad Afzal, Supratik Chakraborty, Avriti Chauhan, Bharti

Chimdyalwar, Priyanka Darke, Ashutosh Gupta, Shrawan Kumar,

Charles Babu M, Divyesh Unadkat, and R. Venkatesh. 2020. Veri-

Abs : Verification by Abstraction and Test Generation (Competition

Contribution). In TACAS.

[3] Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. 2012. From

Under-Approximations to Over-Approximations and Back. In TACAS.

[4] Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Marsha Chechik. 2012.

UFO: A Framework for Abstraction- and Interpolation-Based Soft-

ware Verification. In CAV.

[5] Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord.

2010. Multi-dimensional Rankings, Program Termination, and Com-

plexity Bounds of Flowchart Programs. In SAS.

[6] Rajeev Alur and David L. Dill. 1990. Automata For Modeling Real-

Time Systems. In ICALP.

[7] Rajeev Alur, Alon Itai, Robert P. Kurshan, and Mihalis Yannakakis.

1995. Timing Verification by Successive Approximation. Information

and Computation 118, 1 (1995).

[8] Mohamed Faouzi Atig and Pierre Ganty. 2011. Approximating Petri

Net Reachability Along Context-free Traces. In FSTTCS.

[9] Michael Francis Atiyah and Ian Grant Macdonald. 1969. Introduction

to Commutative Algebra. Taylor and Francis.

[10] Roberto Bagnara, Patricia M. Hill, Elisa Ricci, and Enea Zaffanella.

2003. Precise Widening Operators for Convex Polyhedra. In SAS.

[11] Roberto Bagnara, Enric Rodríguez-Carbonell, and Enea Zaffanella.

2005. Generation of Basic Semi-algebraic Invariants Using Convex

Polyhedra. In SAS.

[12] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model

checking. MIT Press.

[13] Alexey Bakhirkin and Nir Piterman. 2016. Finding recurrent sets

with backward analysis and trace partitioning. In TACAS.

[14] Felice Balarin and Alberto L. Sangiovanni-Vincentelli. 1993. An

Iterative Approach to Language Containment. In CAV.

[15] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. 2011. A decade

of software model checking with SLAM. Commun. ACM 54, 7 (2011).

[16] Thomas Ball and Sriram K. Rajamani. 2002. The SLAM project: de-

bugging system software via static analysis. In POPL.

[17] AmirM. Ben-Amram and Samir Genaim. 2015. Complexity of Bradley-

Manna-Sipma Lexicographic Ranking Functions. In CAV.

[18] Amir M. Ben-Amram and Samir Genaim. 2017. On Multiphase-Linear

Ranking Functions. In CAV.

[19] Adi Ben-Israel. 2017. Motzkin transposition theorem. Encyclopedia

of Mathematics (2017). http://encyclopediaofmath.org/index.php?
title=Motzkin_transposition_theorem

[20] Josh Berdine, Nikolaj Bjørner, Samin Ishtiaq, Jael E. Kriener, and

ChristophM.Wintersteiger. 2013. Resourceful Reachability as HORN-

LA. In LPAR.

[21] Tewodros A Beyene, Corneliu Popeea, and Andrey Rybalchenko. 2013.

Solving existentially quantified horn clauses. In CAV.

[22] Dirk Beyer. 2020. Advances in automatic software verification: SV-

COMP 2020. In TACAS.

[23] Dirk Beyer, Adam Chlipala, Thomas A. Henzinger, Ranjit Jhala, and

Rupak Majumdar. 2004. Generating Tests from Counterexamples. In

ICSE.

[24] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.

2007. The software model checker Blast. International Journal on

Software Tools for Technology Transfer 9, 5-6 (2007).

[25] Dirk Beyer and M. Erkan Keremoglu. 2011. CPAchecker: A Tool for

Configurable Software Verification. In CAV.

[26] Aaron R Bradley, Zohar Manna, and Henny B Sipma. 2005. Linear

ranking with reachability. In CAV.

[27] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2005. Termi-

nation of Polynomial Programs. In VMCAI.

[28] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.

Dill, and L. J. Hwang. 1990. Symbolic Model Checking: 10
20

States

and Beyond. In LICS.

[29] Cristian Cadar and Koushik Sen. 2013. Symbolic execution for soft-

ware testing: three decades later. Commun. ACM 56, 2 (2013).

[30] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Grig-

gio, AlessandroMariotti, AndreaMicheli, SergioMover, Marco Roveri,

and Stefano Tonetta. 2014. The nuXmv Symbolic Model Checker. In

CAV.

[31] Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Proba-

bilistic Program Analysis with Martingales. In CAV.

[32] Aleksandar Chakarov and Sriram Sankaranarayanan. 2014. Expecta-

tion Invariants for Probabilistic Program Loops as Fixed Points. In

SAS.

[33] Krishnendu Chatterjee, Hongfei Fu, Amir Goharshady, and Nastaran

Okati. 2018. Computational approaches for stochastic shortest path

on succinct MDPs. In IJCAI, Vol. 2018.

[34] Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady.

2016. Termination analysis of probabilistic programs through Posi-

tivstellensatz’s. In CAV.

[35] Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady.

2019. Non-polynomial worst-case analysis of recursive programs.

TOPLAS 41, 4 (2019).

[36] Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and

Ehsan Kafshdar Goharshady. 2020. Polynomial Invariant Generation

for Non-deterministic Recursive Programs. In PLDI.

[37] Hong-Yi Chen, Byron Cook, Carsten Fuhs, Kaustubh Nimkar, and

Peter O’Hearn. 2014. Proving nontermination via safety. In TACAS.

[38] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Hel-

mut Veith. 2000. Counterexample-Guided Abstraction Refinement.

In CAV.

[39] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick

Bloem. 2018. Handbook of model checking. Springer.

[40] Michael A Colón, Sriram Sankaranarayanan, and Henny B Sipma.

2003. Linear invariant generation using non-linear constraint solving.

In CAV.

[41] Michael A Colón and Henny B Sipma. 2001. Synthesis of linear

ranking functions. In TACAS.

[42] Patrick Cousot. 2005. Proving Program Invariance and Termination

by Parametric Abstraction, Lagrangian Relaxation and Semidefinite

Programming. In VMCAI.

[43] Patrick Cousot. 2019. On fixpoint/iteration/variant induction prin-

ciples for proving total correctness of programs with denotational

semantics. In LOPSTR.

[44] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A

Unified LatticeModel for Static Analysis of Programs by Construction

or Approximation of Fixpoints. In POPL.

[45] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. 2008.

DySy: dynamic symbolic execution for invariant inference. In ICSE.

[46] Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux,

and Filip Mazowiecki. 2019. The reachability problem for Petri nets

is not elementary. In STOC.

[47] Philippe Darondeau, Stéphane Demri, Roland Meyer, and Christophe

Morvan. 2012. Petri Net Reachability Graphs: Decidability Status

of First Order Properties. Logical Methods in Computer Science 8, 4

(2012).

[48] Cristina David, Pascal Kesseli, Daniel Kroening, and Matt Lewis. 2016.

Danger invariants. In FM.

[49] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT

solver. In TACAS.

[50] Edsko de Vries and Vasileios Koutavas. 2011. Reverse Hoare Logic.

In SEFM.

15

http://encyclopediaofmath.org/index.php?title=Motzkin_transposition_theorem
http://encyclopediaofmath.org/index.php?title=Motzkin_transposition_theorem

Ali Asadi, Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Mohammad Mahdavi

[51] Isil Dillig, Thomas Dillig, Boyang Li, and Kenneth L. McMillan. 2013.

Inductive invariant generation via abductive inference. In OOPSLA.

[52] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W.

O’Hearn. 2019. Scaling static analyses at Facebook. Commun. ACM

62, 8 (2019).

[53] Julius Farkas. 1902. Theorie der einfachen Ungleichungen. Journal

für die reine und angewandte Mathematik 124 (1902).

[54] Azadeh Farzan and Zachary Kincaid. 2015. Compositional Recurrence

Analysis. In FMCAD.

[55] Paul Feautrier and Laure Gonnord. 2010. Accelerated Invariant Gen-

eration for C Programs with Aspic and C2fsm. Electronic Notes in

Theoretical Computer Science 267, 2 (2010).

[56] Yijun Feng, Lijun Zhang, David N Jansen, Naijun Zhan, and Bican Xia.

2017. Finding polynomial loop invariants for probabilistic programs.

In ATVA.

[57] Robert W Floyd. 1993. Assigning meanings to programs. In Program

Verification.

[58] Pierre Ganty, Radu Iosif, and Filip Konečnỳ. 2013. Underapproxima-

tion of procedure summaries for integer programs. In TACAS.

[59] Thomas Martin Gawlitza and David Monniaux. 2012. Invariant Gen-

eration through Strategy Iteration in Succinctly Represented Control

Flow Graphs. Logical Methods in Computer Science 8, 3 (2012).

[60] Roberto Giacobazzi and Francesco Ranzato. 1997. Completeness in

Abstract Interpretation: A Domain Perspective. In AMAST.

[61] Roberto Giacobazzi, Francesco Ranzato, and Francesca Scozzari. 2000.

Making abstract interpretations complete. Journal of the ACM 47, 2

(2000).

[62] Patrice Godefroid. 2007. Compositional dynamic test generation. In

POPL.

[63] Amir Kafshdar Goharshady. 2021. Parameterized and algebro-

geometric advances in static program analysis. Ph.D. Dissertation.

[64] Laure Gonnord and Peter Schrammel. 2014. Abstract acceleration in

linear relation analysis. Science of Computer Programming 93 (2014).

[65] Arie Gurfinkel, OuWei, andMarsha Chechik. 2006. YASM: A Software

Model-Checker for Verification and Refutation. In CAV.

[66] Ákos Hajdu and Zoltán Micskei. 2019. Efficient strategies for CEGAR-

based model checking. Journal of Automated Reasoning (2019).

[67] David Handelman. 1988. Representing polynomials by positive linear

functions on compact convex polyhedra. Pacific J. Math. 132, 1 (1988).

[68] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire

Sutre. 2002. Lazy abstraction. In POPL.

[69] Nicholas J Higham. 2009. Cholesky factorization. Wiley Interdisci-

plinary Reviews: Computational Statistics 1, 2 (2009).

[70] Charles Antony Richard Hoare. 1969. An Axiomatic Basis for Com-

puter Programming. Commun. ACM 12, 10 (1969).

[71] Gerard J. Holzmann. 1997. The Model Checker SPIN. IEEE Transac-

tions on Software Engineering 23, 5 (1997).

[72] Roger Horn and Charles Johnson. 1990. Matrix Analysis. Cambridge

University Press.

[73] Mingzhang Huang, Hongfei Fu, Krishnendu Chatterjee, and Amir Kaf-

shdar Goharshady. 2019. Modular verification for almost-sure termi-

nation of probabilistic programs. In OOPSLA.

[74] Joxan Jaffar, Vijayaraghavan Murali, Jorge A. Navas, and Andrew E.

Santosa. 2012. TRACER: A Symbolic Execution Tool for Verification.

In CAV.

[75] Zachary Kincaid, Jason Breck, Ashkan Forouhi Boroujeni, and

Thomas W. Reps. 2017. Compositional recurrence analysis revis-

ited. In PLDI.

[76] Zachary Kincaid, John Cyphert, Jason Breck, and Thomas W. Reps.

2018. Non-linear reasoning for invariant synthesis. In POPL.

[77] Daniel Kroening, Matt Lewis, and Georg Weissenbacher. 2015. Under-

approximating loops in C programs for fast counterexample detection.

FMSD 47, 1 (2015).

[78] Jan Leike and Matthias Heizmann. 2014. Ranking Templates for

Linear Loops. In TACAS.

[79] Kumar Madhukar, Peter Schrammel, and Mandayam Srivas. 2017.

Compositional Safety Refutation Techniques. In ATVA.

[80] Rupak Majumdar and Koushik Sen. 2007. Hybrid Concolic Testing.

In ICSE.

[81] Zohar Manna and Amir Pnueli. 2012. Temporal verification of reactive

systems: safety. Springer.

[82] Jiri Matousek and Bernd Gärtner. 2007. Understanding and using

linear programming. Springer.

[83] Ernst W. Mayr. 1981. An Algorithm for the General Petri Net Reach-

ability Problem. In STOC.

[84] AaronMeurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertík,

Sergey B Kirpichev, Matthew Rocklin, Amit Kumar, Sergiu Ivanov,

Jason K Moore, Sartaj Singh, et al. 2017. SymPy: symbolic computing

in Python. PeerJ Computer Science 3 (2017).

[85] TS Motzkin. 1936. Beitrage zur Theorie der linearen Ungleichungen

(Dissertation, Basel 1933).

[86] Peter W. O’Hearn. 2020. Incorrectness logic. In POPL.

[87] Amir Pnueli. 1977. The Temporal Logic of Programs. In FOCS.

[88] Andreas Podelski and Andrey Rybalchenko. 2004. A Complete

Method for the Synthesis of Linear Ranking Functions. In VMCAI.

[89] Andreas Podelski and Andrey Rybalchenko. 2004. Transition Invari-

ants. In LICS.

[90] Mihai Putinar. 1993. Positive polynomials on compact semi-algebraic

sets. Indiana University Mathematics Journal 42, 3 (1993).

[91] Francesco Ranzato. 2013. Complete Abstractions Everywhere. In

VMCAI.

[92] Henry Gordon Rice. 1953. Classes of recursively enumerable sets and

their decision problems. Trans. Amer. Math. Soc. 74, 2 (1953).

[93] Xavier Rival. 2005. Understanding the Origin of Alarms in Astrée. In

SAS.

[94] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. 2004.

Non-linear loop invariant generation using Gröbner bases. In POPL.

[95] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. 2004.

Constraint-Based Linear-Relations Analysis. In SAS.

[96] David A. Schmidt. 2007. A calculus of logical relations for over- and

underapproximating static analyses. Science of Computer Program-

ming 64, 1 (2007).

[97] Rahul Sharma and Alex Aiken. 2014. From Invariant Checking to

Invariant Inference Using Randomized Search. In CAV.

[98] Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2017. Fast

polyhedra abstract domain. In POPL.

[99] Gilbert Stengle. 1974. A nullstellensatz and a positivstellensatz in

semialgebraic geometry. Math. Ann. 207, 2 (1974).

[100] Toru Takisaka, Yuichiro Oyabu, Natsuki Urabe, and Ichiro Hasuo.

2018. Ranking and Repulsing Supermartingales for Reachability in

Probabilistic Programs. In ATVA.

[101] Caterina Urban, Samuel Ueltschi, and Peter Müller. 2018. Abstract

interpretation of CTL properties. In SAS.

[102] Robert J Vanderbei. 1999. LOQO: An interior point code for quadratic

programming. Optimization methods and software 11, 1-4 (1999).

16

Polynomial Reachability Witnesses via Stellensätze

A Universal Reachability Witnesses

𝐼 : 𝑖 = 𝑠 = 0 ∧ 𝑛 ≥ 0

𝑎 : while 𝑖 ≤ 𝑛 :

𝑏 : (𝑠, 𝑖) := (𝑠 + 1, 𝑖 + 1)
𝑐 : □ (𝑠, 𝑖) := (𝑠 + 2, 𝑖 + 1)
𝑑 :

a d

cb

(s,
	i)
↦	(
s+
1,	
i+1
) (s,	i) ↦	(s+2,	i+1)

i	>	n

i ≤ n i ≤ n

θ1 θ2θ4 θ5

θ3

θ6

Figure 3. A Non-deterministic Program and its Representa-

tion as a Transition System

In this section, we provide detailed definitions and an ex-

ample of the Universal Inductive Reachability Witnesses

(UIRWs).

Universal T-inductive Sets. Given a set T ⊆ Σ of target

states, a set T♦ ⊆ Σ is called universally T-inductive if for
every 𝜎 ∈ T♦ \ T and every successor 𝜎 ′

of 𝜎 , we also have

𝜎 ′ ∈ T♦.
The idea behind universal T-inductive sets is that any exe-

cution of the program that starts in such a set T♦
will either

reach T or one can prove using induction that it will never

leave T♦, no matter how the non-determinism is resolved.

UniversalT-ranking Functions.Given a universalT-inductive
set T♦

, a function 𝑓 : T♦ → [0,∞) is called a universal T-
ranking functionwith parameter 𝜖 > 0, if for every 𝜎 ∈ T♦ \T
and every successor 𝜎 ′

of 𝜎, we have 𝑓 (𝜎 ′) ≤ 𝑓 (𝜎) − 𝜖.

Universal InductiveReachabilityWitnesses (UIRWs).Given
a set T of target states in a system 𝑆 = (V, L, ℓ0, 𝐼 ,Θ), a Uni-
versal Inductive Reachability Witness for T is a tuple (T♦, 𝑓 , 𝜖)
such that:

• T♦
is a universal T-inductive set;

• 𝜖 ∈ (0,∞);
• 𝑓 : T♦ → [0,∞) is a universal T-ranking function with

parameter 𝜖 ;

• There exists a valuation ν ∈ RV such that (ℓ0,ν) ∈ T♦
and

ν |= 𝐼 .

Example 13. Figure 3 shows a simple program together with

its representation as a transition system. LetT = {(𝑑,ν) | ν(𝑠) ≥
20}, i.e. the target is reaching point 𝑑 with an 𝑠 value of more

than 20. Let T♦
:= {(ℓ,ν) | ν |= 𝐴ℓ } and 𝑓 (ℓ,ν) := 𝑓ℓ (ν) be

defined as follows:

ℓ 𝐴ℓ 𝑓ℓ

𝑎 𝑛 ≥ 50 ∧ 𝑠 ≥ 𝑖 ≥ 0 ∧ 𝑛 + 1 ≥ 𝑖 𝑛 + 1.5 − 𝑖

𝑏 𝑛 ≥ 50 ∧ 𝑠, 𝑛 ≥ 𝑖 ≥ 0 𝑛 + 1 − 𝑖

𝑐 𝑛 ≥ 50 ∧ 𝑠, 𝑛 ≥ 𝑖 ≥ 0 𝑛 + 1 − 𝑖

𝑑 𝑠 ≥ 50 0

It is easy to check that (T♦, 𝑓 , 0.5) is a UIRW for T. Intuitively,
this guarantees that if a run starts with an initial valuation

that satisfies 𝐴𝑎, it will definitely reach a target state.

B Proofs of Theorems Presented in
Section 2

In this section we provide proofs of our basic soundness and

completeness theorems.

Theorem 1 (Soundness). Let T ⊆ Σ be a set of states in the

system 𝑆 = (V, L, ℓ0, 𝐼 ,Θ).
(i) If there exists an IRW (T♦, 𝑓 , 𝜖) for T, then T is existen-

tially reachable.

(ii) If there exists a UIRW (T♦, 𝑓 , 𝜖) for T, then T is univer-

sally reachable.

Proof. We handle each case separately.

(i) We construct a run of 𝑆 that visits T. By definition of

IRW, there exists a state 𝜎0 = (ℓ0,ν0) ∈ T♦
such that

ν0 |= 𝐼 . We start our run with 𝜎0 and inductively find

the next transitions and states as follows: when we are

in a state 𝜎𝑖 ∈ T♦, either (a) 𝜎𝑖 ∈ T in which case the

path until this point has already reached T and we can

extend it to an arbitrary run, or (b) 𝜎𝑖 ∈ T♦ \T, in which

case there exists a successor 𝜎𝑖+1 ∈ T♦
of 𝜎𝑖 such that

𝑓 (𝜎𝑖+1) ≤ 𝑓 (𝜎𝑖) − 𝜖, and we transition to 𝜎𝑖+1. Using
this procedure, it is not possible to avoid case (a) forever,

because each application of (b) decreases the value of 𝑓

by at least 𝜖 and 𝑓 is bounded from below. Hence, the

constructed run will reach T.
(ii) We choose 𝜎0 = (ℓ0,ν0) as in the previous case. We

now prove that every path of length 𝑛 := 1 + ⌈𝑓 (𝜎0)/𝜖⌉
starting from𝜎0 will reach T. Let r = 𝜎0, 𝜃0, 𝜎1, 𝜃1, . . . , 𝜎𝑛
be such a path. If no 𝜎𝑖 is in T, then by definition of

universal T-inductiveness, every 𝜎𝑖 is in T♦ \ T. So,
for each 𝑖 , we have 𝑓 (𝜎𝑖+1) ≤ 𝑓 (𝜎𝑖) − 𝜖 . Therefore,

𝑓 (𝜎𝑛) ≤ 𝑓 (𝜎0) − 𝑛 · 𝜖 = 𝑓 (𝜎0) − 𝜖 − ⌈𝑓 (𝜎0)/𝜖⌉ · 𝜖 < 0

which is a contradiction because 𝑓 can only take non-

negative values.

□

Theorem 2 (Completeness). Let T ⊆ Σ be a set of states in

the system 𝑆 = (V, L, ℓ0, 𝐼 ,Θ).
(i) If T is existentially reachable, then there exists an IRW

(T♦, 𝑓 , 𝜖) for T.
(ii) If T is universally reachable, then there exists a UIRW

(T♦, 𝑓 , 𝜖) for T.

Proof. In each case, we construct the required IRW/UIRW.

17

Ali Asadi, Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Mohammad Mahdavi

(i) Given that T is reachable, by definition there exists a

path 𝜋 = (ℓ0,ν0), 𝜃0, . . . , (ℓ𝑛,ν𝑛) such that (ℓ𝑛,ν𝑛) ∈ T
and ν0 |= 𝐼 . Without loss of generality, we choose such

a 𝜋 that is prefix-minimal, i.e. that no prefix of 𝜋 has the

same properties. Let T♦ = {(ℓ𝑖 ,ν𝑖) |0 ≤ 𝑖 ≤ 𝑛}, then T♦

is T-inductive, because (ℓ𝑛,ν𝑛) ∈ T and for every 𝑖 ≠ 𝑛,

the state (ℓ𝑖 ,ν𝑖) can be succeeded by (ℓ𝑖+1,ν𝑖+1). Let
𝑓 : T♦ → [0,∞) be defined as follows: 𝑓 (ℓ𝑖 ,ν𝑖) := 𝑛− 𝑖 .
It is easy to verify that (T♦, 𝑓 , 1) is an IRW for T.

(ii) We define Σ𝑘 ⊆ Σ as the set of all states such that

every semi-path of length 𝑘 starting in these states is

guaranteed to visit T. Note that Σ0 = T and if 𝜎 ∈
Σ𝑘 \ T, then by definition every successor 𝜎 ′

of 𝜎 must

be in Σ𝑘−1. Let T♦ =
⋃∞

𝑖=0 Σ𝑘 , and for every 𝜎 ∈ T♦,
define 𝑓 (𝜎) := min{𝑘 | 𝜎 ∈ Σ𝑘 }. It is easy to prove by

definition-chasing that (T♦, 𝑓 , 1) is a UIRW.

□

C Computing Universal Constraint Pairs
In this section, we provide a detailed description of Step 2b

of our algorithm, which aims to generate constraint pairs

for universal inductive reachability witnesses.

Step 2b. Computing UIRW Constraint Pairs. This step
is only performed when synthesizing a UIRW and is simi-

lar to its IRW variant in Step 2a. In a UIRW, the universal

T-inductive set T♦
should satisfy the condition that for ev-

ery state 𝜎 ∈ T♦ \ T, every successor 𝜎 ′
of 𝜎 is also in T♦ .

Moreover, given that 𝑓 is a universal T−ranking function,

we must have 𝑓 (𝜎 ′) ≤ 𝑓 (𝜎) − 𝜖 for every such 𝜎 ′.
Let ℓ ∈ L be a location. The UIRW properties at ℓ are

equivalent to:

∀ν ∈ RV, ν |= 𝐴ℓ ⇒
(
ν |= 𝜏ℓ ∨

∧
𝜃=(ℓ,ℓ′,𝜑,𝜇) 𝜁 (𝜃)

)
(9)

where 𝜁 (𝜃) = 𝜁 (ℓ, ℓ ′, 𝜑, 𝜇) is defined as:

𝜁 (𝜃) :=
(
ν |= 𝜑 ⇒

(
𝜇 (ν) |= 𝐴ℓ′ ∧ 𝑓ℓ′ (𝜇 (ν)) ≤ �̂�ℓ (ν) − 𝜖

))
(10)

Informally, the constraint in (9) says that if ν |= 𝐴ℓ or equiv-

alently (ℓ,ν) ∈ T♦, then either (ℓ,ν) ∈ T, i.e. ν |= 𝜏ℓ , or

for every transition 𝜃 from ℓ the assertion 𝜉 (𝜃) holds, i.e. if
the transition is possible (ν |= 𝜑), then the successor state

(ℓ ′, 𝜇 (ν)) is also in T♦
, and the 𝑓 value decreases by at least

𝜖 when going to this successor. As in the previous case, the

algorithm computes (9) symbolically and writes it in the

following equivalent format:

∀ν ∈ RV,
(
ν |= 𝐴ℓ ∧

∨
𝜃=(ℓ,ℓ′,𝜑,𝜇) ¬𝜁 (𝜃)

)
⇒ ν |= 𝜏ℓ (11)

Let 𝑄ℓ be the LHS assertion above. Similar to Step 2a, 𝑄ℓ is

constructed form logical operations and atomic strict/non-

strict linear inequalities over V, and its coefficients include

the unknown template variables 𝑐ℓ,𝑖, 𝑗 ’s and 𝑑ℓ, 𝑗 ’s defined in

Step 1. The algorithm writes 𝑄ℓ in disjunctive normal form,

hence obtaining𝑄ℓ = 𝑄ℓ,1∨𝑄ℓ,2∨ . . .∨𝑄ℓ,𝑞 in which each𝑄ℓ,𝑖

is a conjunction of strict/non-strict linear inequalities over V.
It then computes the following constraint pair symbolically:

𝛾 ′
ℓ,𝑖 := (𝑄ℓ,𝑖 , 𝜏ℓ)

The algorithm performs these operations for every location

ℓ ∈ L and stores all the resulting 𝛾 ′
ℓ,𝑖 constraint pairs in a set

Γ.

Example 14. In our running example (Figure 2), we are look-

ing for a linear UIRW for the target set T′ = {(4,ν) | ν |=
(𝑥 ≥ 𝑦 + 4)}. In this step, the algorithm creates constraints at

every location. We now demonstrate how the process works for

location 3. At location 3, the algorithm considers

𝐴3 ∧ ¬𝜁 (𝜃5) ⇒ 𝜏3

and symbolically computes it as:

𝑐12 + 𝑐13 · 𝑥 + 𝑐14 · 𝑦 ≥ 0 ∧ 𝑐15 + 𝑐16 · 𝑥 + 𝑐17 · 𝑦 ≥ 0 ∧

¬(1 ≥ 0 ⇒ (𝑐18+5·𝑐19+𝑐19·𝑥+𝑐20·𝑦 ≥ 0∧ 𝑐21+5·𝑐22+𝑐22·𝑥+𝑐23·𝑦 ≥ 0∧

𝑑9 + 5 · 𝑑10 + 𝑑10 · 𝑥 + 𝑑11 · 𝑦 ≤ 𝑑6 + 𝑑7 · 𝑥 + 𝑑8 · 𝑦 − 𝜖))
⇒ (−1 ≥ 0)

Note that the transition 𝜃5 is unconditional, as such we can

assume that its condition is simply 1 ≥ 0. Similarly, because

there is no target state at location 3, we assume 𝜏3 ≡ (−1 ≥ 0).
Moreover, the transition 𝜃5 updates the value of 𝑥 to 𝑥 + 5. This
is taken into account when generating the constraint above.

The algorithm writes the LHS of the constraint in DNF and

handles it exactly as in Example 7.

D Proofs of Theorems Presented in
Section 3.1

Notation. Given a set 𝑋 ⊆ RV, we write 𝑋 to denote the

closure of𝑋, i.e. the smallest closed subset ofRV that contains
𝑋 . Similarly, for Φ defined as below, we use the notation Φ to

denote the system of linear inequalities obtained by replacing

every Z𝑖 in Φ with ≥ .

Corollary 1. Consider a set V = {𝑣1, . . . , 𝑣𝑟 } of real-valued
variables and the following system of𝑚 linear inequalities

over V:

Φ :


𝑎1,0 + 𝑎1,1 · 𝑣1 + . . . + 𝑎1,𝑟 · 𝑣𝑟 Z1 0

...

𝑎𝑚,0 + 𝑎𝑚,1 · 𝑣1 + . . . + 𝑎𝑚,𝑟 · 𝑣𝑟 Z𝑚 0

in which Z𝑖∈ {>, ≥}. When Φ is satisfiable, it entails a given

non-strict linear inequality

𝜓 : 𝑐0 + 𝑐1𝑣1 + . . . + 𝑐𝑟𝑣𝑟 ≥ 0

iff𝜓 can be written as a non-negative linear combination of

1 ≥ 0 and the inequalities in Φ, i.e. iff there exist non-negative

real numbers 𝑦0, 𝑦1, . . . , 𝑦𝑚, such that:

𝑐0 = 𝑦0 +
𝑚∑
𝑖=1

𝑦𝑖 · 𝑎𝑖,0, 𝑐1 =
𝑚∑
𝑖=1

𝑦𝑖 · 𝑎𝑖,1, . . . , 𝑐𝑟 =
𝑚∑
𝑖=1

𝑦𝑖 · 𝑎𝑖,𝑟 .

18

Polynomial Reachability Witnesses via Stellensätze

Moreover, Φ is unsatisfiable iff either −1 ≥ 0 can be derived

as above, or 0 > 0 can be derived as above with the extra

requirement that

∑
Z𝑖 ∈{>} 𝑦𝑖 > 0 (i.e. in order to derive a

strict inequality, we should use at least one of the strict

inequalities in Φ with non-zero coefficient).

Proof. For the first part, suppose that𝜓 is entailed byΦ, hence
{𝑥 ∈ RV | 𝑐0 + 𝑐1 · 𝑥1 + . . . + 𝑐𝑟 · 𝑥𝑟 ≥ 0} ⊇ {𝑥 ∈ RV | 𝑥 |= Φ}.
The former is a closed set, hence it also includes the closure

of the latter, which is the set of points that satisfy Φ. Hence,
we can apply Lemma 1 to Φ and𝜓 to obtain the desired result.

For the second part, if Φ is satisfiable, then obviously no

non-negative combination of inequalities in Φ can sum up to

a contradiction such as 0 > 0 or −1 ≥ 0. If Φ is not satisfiable,

then by Lemma 1, we can obtain −1 ≥ 0. The only remaining

case is if Φ is satisfiable but Φ is not. Reorder the inequalities

in Φ so that the non-strict inequalities appear first. Then,

consider the smallest 𝑖 for which the first 𝑖 inequalities in Φ
are unsatisfiable. Let Φ[1 . . . 𝑖] denote the first 𝑖 inequalities.
Based on our ordering, we know that the 𝑖−th inequality is

strict and of the form 𝑎𝑖,0 + 𝑎𝑖,1 · 𝑣1 + . . . + 𝑎𝑖,𝑟 · 𝑣𝑟 > 0. Given

that Φ[1 . . . 𝑖] is unsatisfiable, we know that {𝑥 ∈ RV | 𝑥 |=
Φ[1 . . . 𝑖 − 1]} ⊆ {𝑥 ∈ RV | 𝑎𝑖,0 + 𝑎𝑖,1 · 𝑣1 + . . . + 𝑎𝑖,𝑟 · 𝑣𝑟 ≤ 0}.
Therefore, by the first part above, we can write

𝑎𝑖,0 + 𝑎𝑖,1 · 𝑣1 + . . . + 𝑎𝑖,𝑟 · 𝑣𝑟 ≤ 0

as a non-negative combination of the first 𝑖 − 1 inequalities.

Moreover, the 𝑖−th inequality is:

𝑎𝑖,0 + 𝑎𝑖,1 · 𝑣1 + . . . + 𝑎𝑖,𝑟 · 𝑣𝑟 > 0

Summing up these two, we get 0 > 0. □

Theorem 3 (Soundness). Given an input 𝑘−linear system
𝑆 = (V, L, ℓ0, 𝐼 ,Θ), and a 𝑘−linear set T of target states, every

solution of the non-linear constraint system solved in Step

5 of the algorithm in Section 3.1 produces a valid 𝑘−linear
IRW/UIRW for T in 𝑆 .

Proof. Every solution 𝔰 satisfies the constraints generated in

Step 3. Therefore, for every constraint pair 𝛾 = (𝜆, 𝜚) ∈ Γ
generated in Step 2 and inequality 𝛼0 + 𝛼 · V ≥ 0 in 𝜚 , either

𝔰(𝜆) is unsatisfiable, i.e. a non-negative linear combination

of its inequalities sums up to 0 ≥ 1 or 0 > 0, or there is such a

linear combination that sums up to 𝛼0+𝛼 ·V ≥ 0. In each case,

the coefficients of the combination are given by 𝔰(𝑦𝑖) for the
corresponding 𝑦𝑖 variables. Moreover, no matter which case

happens, the inequalities in 𝜚 are entailed by 𝜆. By definition,

the constraint pairs generated in Step 2 modeled inductivity,

non-negativity and ranking conditions and hence 𝔰 satisfies

these properties. Finally, 𝔰 satisfies the constraints generated

in Step 4. Therefore, we have 𝔰(ν̂0,1, . . . , ν̂0,𝑟) |= 𝔰(𝐴ℓ0) ∧ 𝐼 .

So, all the requirements for IRW/UIRW are met. □

Theorem 4 (Completeness). Given a 𝑘−linear system 𝑆 =

(V, L, ℓ0, 𝐼 ,Θ), and a 𝑘−linear set T of target states, every

𝑘−linear IRW/UIRW for T in 𝑆 is produced by some solution

to the non-linear constraint system solved in Step 5 of the

algorithm in Section 3.1.

Proof. We construct the required solution. Let (T♦, 𝑓 , 𝜖) be a
𝑘−linear IRW/UIRW for T in 𝑆 . Let 𝐴ℓ be the set of inequal-

ities defining T♦ ∩
(
ℓ × RV

)
, and 𝑓ℓ the linear expression

defining 𝑓 at ℓ .We use the coefficients in𝐴ℓ ’s and 𝑓ℓ ’s as the

corresponding values for 𝔰(𝑐ℓ,𝑖, 𝑗)’s and 𝔰(𝑑ℓ, 𝑗)’s. Moreover,

we let 𝔰(𝜖) = 𝜖.

By definition, T♦
is an existential/universal T−inductive

set, and 𝑓 is an existential/universalT−ranking functionwith
parameter 𝜖 . Therefore, 𝐴ℓ ’s and 𝑓ℓ ’s satisfy the constraint

pairs generated at Step 2 of the algorithm. By Corollary 1,

there are suitable values for each variable 𝑦𝑖 such that the

constraints in Step 3 are satisfied. We use these values as

𝔰(𝑦𝑖). Finally, by definition of IRW/UIRW, there exists a val-

uation ν ∈ RV such that ν |= 𝐴ℓ0 ∧ 𝐼 = 𝔰(𝐴ℓ0) ∧ 𝐼 . We let

𝔰(ν̂0,𝑖) = ν𝑖 . It is easy to verify that 𝔰 is a solution to the

system of non-linear constraints solved in Step 5. □

Theorem 5 (Complexity). For fixed constants 𝑘 and 𝛽 , given

a 𝑘−linear 𝛽−branching system 𝑆 = (V, L, ℓ0, 𝐼 ,Θ), and a

𝑘−linear set T of target states, Steps 1–4 of the algorithm

in Section 3.1 lead to a polynomial-time reduction from the

problem of generating a 𝑘−linear IRW/UIRW to solving a

Quadratic Programming (QP) instance.

Proof. It is easy to verify that all steps of the algorithm run

in polynomial time
‡
, and that all the generated (in)equalities

over non-program variables are quadratic. However, these

(in)equalities are not always combined conjunctively. Specifi-

cally, in Step 3, the constraints corresponding to cases (i)–(iii)

are combined disjunctively. This being said, we can perform

the following actions to obtain a QP instance in polynomial

time:

• We first convert every inequality of the form 𝔢 Z 0 to

𝔢 − 𝑥𝔢 = 0 by introducing a new variable 𝑥𝔢 Z 0.

• We rewrite every disjunction 𝔢1 = 0 ∨ 𝔢2 = 0 as 𝔢1 ·𝔢2 = 0.

Note that this might create polynomial equalities of higher

degree.

• We eliminate terms of degree more than 2 by defining new

variables that are equal to their proper divisors, e.g. we

rewrite 𝑐1 · 𝑐2 · 𝑐32 as 𝜐1 · 𝜐2 where 𝜐1, 𝜐2 are new variables,

and add the equalities 𝜐1 = 𝑐1 · 𝑐2 and 𝜐2 = 𝑐3
2.

The steps above lead to a polynomial blow-up in the size of

the system, given that in Step 3 of the algorithm we have

disjunctions of at most 3 different boolean formulas. □

‡
The reason for fixing 𝑘 and 𝛽 is to avoid exponential blow-up when

rewriting boolean expressions in DNF.

19

Ali Asadi, Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Mohammad Mahdavi

E Synthesizing Linear IRWs/UIRWs for
Linear Systems with Polynomial Target
Sets

For technical reasons, we need the concept of strong positiv-

ity.

Strong Positivity. Let 𝑋 ⊆ RV be a set of valuations and

𝑔 ∈ R[V] a polynomial over V. We say that 𝑔 is strongly

positive over 𝑋 , and write 𝑋 |= 𝑔 ≫ 0 (or simply 𝑔 ≫ 0

when 𝑋 is clear from context), if inf𝑥 ∈𝑋 𝑔(𝑥) > 0. The real

value 𝛿 := inf𝑥 ∈𝑋 𝑔(𝑥) is called the positivity gap of 𝑔 over

𝑋 . Moreover, 𝑔 is strongly greater than ℎ, denoted 𝑔 ≫ ℎ, iff

𝑔 − ℎ ≫ 0.

Problem Definition. In this section, we consider the fol-

lowing problem: Given a 𝑘−linear system 𝑆 = (V, L, ℓ0, 𝐼 ,Θ)
together with a set 𝜏ℓ of at most 𝑘 strong polynomial inequal-

ities of degree at most 𝑑 at every location ℓ ∈ L, synthesize
a 𝑘−linear IRW/UIRW for a target set T that satisfies 𝜏ℓ at

every ℓ ∈ L, or report that no such IRW/UIRW exists.

Mathematical Tool. Our main mathematical tool in this

section is a theorem, due to Handelman, that characterizes

positive polynomials over compact polyhedra. Before pre-

senting this theorem, it is useful to define the notion of

monoid.

Monoid. Consider a set V = {𝑣1, . . . , 𝑣𝑟 } of real-valued vari-

ables and the following system of𝑚 linear inequalities over

V:

Φ :


𝑎1,0 + 𝑎1,1 · 𝑣1 + . . . + 𝑎1,𝑟 · 𝑣𝑟 Z1 0

...

𝑎𝑚,0 + 𝑎𝑚,1 · 𝑣1 + . . . + 𝑎𝑚,𝑟 · 𝑣𝑟 Z𝑚 0

in which Z𝑖∈ {>, ≥}. Let 𝑔𝑖 be the LHS of the 𝑖-th inequality,

i.e. 𝑔𝑖 (𝑣1, . . . , 𝑣𝑟) := 𝑎𝑖,0 + 𝑎𝑖,1 · 𝑣1 + . . . + 𝑎𝑖,𝑟 · 𝑣𝑟 . The monoid

of Φ is defined as:

Monoid(Φ) :=
{∏𝑚

𝑖=1 𝑔
𝜅𝑖
𝑖

�� ∀1 ≤ 𝑖 ≤ 𝑚, 𝜅𝑖 ∈ N ∪ {0}
}
.

Basically,Monoid(Φ) is the set of all polynomials that can

be obtained by multiplying the linear expressions on the LHS

of Φ together. Note that each such expression can appear

zero or multiple times in the multiplication. Specifically, it is

noteworthy that 1 ∈ Monoid(Φ).
Theorem 12 ([67]). Consider a set V = {𝑣1, . . . , 𝑣𝑟 } of real-
valued variables and the following system of𝑚 linear inequal-

ities over V:

Φ :


𝑎1,0 + 𝑎1,1 · 𝑣1 + . . . + 𝑎1,𝑟 · 𝑣𝑟 ≥ 0

...

𝑎𝑚,0 + 𝑎𝑚,1 · 𝑣1 + . . . + 𝑎𝑚,𝑟 · 𝑣𝑟 ≥ 0

If Φ is satisfiable, Sat(Φ) is compact, and Φ entails a given

polynomial inequality 𝑔(𝑣1, . . . , 𝑣𝑟) > 0 then there exist reals

𝑦1, 𝑦2, . . . , 𝑦𝑢 ∈ [0,∞) and ℎ1, ℎ2, . . . , ℎ𝑢 ∈ Monoid(Φ) such
that:

𝑔 =
∑𝑢

𝑖=1 𝑦𝑖 · ℎ𝑖 .

As was the case with Farkas’ Lemma, it is useful to have

a variant of Handelman’s theorem that can handle strict in-

equalities in Φ. We present such a variant, which is a direct

corollary of Theorem 12 and characterizes strongly posi-

tive polynomials over bounded, but not necessarily closed,

polyhedra:

Corollary 3. Consider a set V = {𝑣1, . . . , 𝑣𝑟 } of real-valued
variables and the following system of 𝑚 linear inequalities

over V:

Φ :


𝑎1,0 + 𝑎1,1 · 𝑣1 + . . . + 𝑎1,𝑟 · 𝑣𝑟 Z1 0

...

𝑎𝑚,0 + 𝑎𝑚,1 · 𝑣1 + . . . + 𝑎𝑚,𝑟 · 𝑣𝑟 Z𝑚 0

in which Z𝑖∈ {>, ≥}. IfΦ is satisfiable and Sat(Φ) is bounded,
thenΦ entails a given strong polynomial inequality𝑔(𝑣1, . . . , 𝑣𝑟) ≫
0, or in other words Sat(Φ) |= 𝑔(𝑣1, . . . , 𝑣𝑟) ≫ 0, if and only

if there exist constants 𝑦0 ∈ (0,∞) and 𝑦1, 𝑦2, . . . , 𝑦𝑢 ∈ [0,∞),
and polynomials ℎ1, ℎ2, . . . , ℎ𝑢 ∈ Monoid(Φ) such that:

𝑔 = 𝑦0 +
𝑢∑
𝑖=1

𝑦𝑖 · ℎ𝑖 . (12)

Proof. It is obvious that every𝑔 in the form of (12) is strongly

positive over Sat(Φ), given that Φ trivially entails 𝑔 ≥ 𝑦0 >

0. We now prove the other side. Suppose Φ entails 𝑔 ≫ 0.

Let 𝛿 > 0 be the positivity gap of 𝑔 over Sat(Φ) and choose

𝛿 ′, 𝑦0 such that 0 < 𝑦0 < 𝛿 ′ < 𝛿 . So, Sat(Φ) ⊆ Sat(𝑔 > 𝛿 ′)
and hence Sat(Φ) = Sat(Φ) ⊆ Sat(𝑔 > 𝛿 ′) = Sat(𝑔 ≥ 𝛿 ′).
Therefore, Φ entails 𝑔 − 𝛿 ′ ≥ 0. So, it also entails 𝑔 − 𝑦0 > 0.

Applying Theorem 12 to Φ and 𝑔 − 𝑦0, we have:

𝑔 − 𝑦0 =

𝑢∑
𝑖=1

𝑦𝑖 · ℎ𝑖

which is equivalent to Equation (12). □

The Synthesis Algorithm. Our synthesis algorithm is simi-

lar to the one in Section 3.1 and consists of five steps. The

main difference is in Step 3, in which constraint pairs are

translated to non-linear constraints over template variables.

In the previous section, our main tool for this translation was

Farkas’ Lemma. In this section, due to the more complicated

nature of our target sets, we now supplement Farkas’ Lemma

with Handelman’s theorem. For brevity, we do not repeat

the presentation of other steps, which are the same as our

previous algorithm.

Recall that Step 2 (either Steps 2a and 2c for IRWs, or

Steps 2b and 2c for UIRWs) has already generated a set Γ of

constraint pairs. Each constraint pair 𝛾 ∈ Γ is of the form

𝛾 = (𝜆, 𝜚) and encodes the requirement that every inequality

in 𝜚 should be entailed by 𝜆.Moreover, 𝜆 is a set of strict/non-

strict linear inequalities over V, whereas 𝜚 is a set of strong

polynomial inequalities of degree at most 𝑑 . Let 𝑔 ≫ 0 be

a strong inequality in 𝜚 . Either 𝜆 is satisfiable and 𝑔 should

be represented in the form of Equation 12 (cf. Corollary 3)

20

Polynomial Reachability Witnesses via Stellensätze

or 𝜆 is unsatisfiable, in which case −1 ≥ 0 or 0 > 0 can be

derived as non-negative combinations of inequalities in 𝜆

and 1 ≥ 0 (cf. Corollary 1).

Step 3. ApplyingHandelman’s Theoremand Farkas’ Lemma.
For every 𝛾 = (𝜆, 𝜚) ∈ Γ and strong polynomial inequality

𝑔 ≫ 0 in 𝜚, the algorithm performs the following operations:

• Let Monoid𝑑 (𝜆) = {ℎ1, ℎ2, . . . , ℎ𝑢} be the set of all poly-
nomials in Monoid(𝜆) whose degree is at most 𝑑 . The

algorithm symbolically computesMonoid𝑑 (𝜆) and all of

it elements.

• The algorithm considers the following three cases, writes

constraints that model each of them, and then combines

them disjunctively:

(i) Writing 𝑔 as in Equation 12. The algorithm creates

𝑢 + 1 new variables 𝑦0, 𝑦1, . . . , 𝑦𝑢 with the constraints

𝑦0 > 0 and𝑦1, . . . , 𝑦𝑢 ≥ 0, and symbolically computes

the equation

𝑔 = 𝑦0 +
∑𝑢

𝑖=1 𝑦𝑖 · ℎ𝑖 .

Note that both sides of this equation are polynomials

of degree 𝑑 over V. Hence, they are equal iff they

agree on the coefficient of every monomial. The al-

gorithm equates the coefficients of corresponding

monomials in the LHS and RHS of the equation above,

hence obtaining a set of equalities over template vari-

ables.

(ii) Obtaining −1 ≥ 0 as a non-negative combination of 𝜆

and 1 ≥ 0.

(iii) Obtaining 0 > 0 as a non-negative combination of 𝜆

and 1 ≥ 0.

Cases (ii) and (iii) are handled using Farkas’ Lemma in

the exact same manner as in our previous algorithm (Sec-

tion 3.1).

• The algorithm adds the resulting constraints to the non-

linear constraint system

Example 15. Consider our running example (Figure 2) to-

gether with the templates generated in Example 6. Assume that

we aim to synthesize an IRW for 𝜏3 :=
(
𝑥2 − 𝑥 − 100 ≫ 0

)
,

and no target sets in other locations. When Step 2 of the algo-

rithm is applied to location 3 (in exactly the same manner as

in Section 3.1) it creates several constraint pairs, including the

following:

𝜆 :


𝑐12 + 𝑐13 · 𝑥 + 𝑐14 · 𝑦 ≥ 0

𝑐15 + 𝑐16 · 𝑥 + 𝑐17 · 𝑦 ≥ 0

−𝑐3 − 5 · 𝑐4 − 𝑐4 · 𝑥 − 𝑐5 · 𝑦 > 0

𝜚 : (𝑥2 − 𝑥 − 100 ≫ 0)

In Step 3 of the algorithm, the constraint pair 𝛾 = (𝜆, 𝜚) is
handled as follows:

• The algorithm computes Monoid2 (𝜆) which consists of all

products of polynomials in 𝜆 up to degree 2. Explicitly, it

computes an expanded version of the following polynomials:

ℎ1 := 1 ℎ2 := 𝑐12 + 𝑐13 · 𝑥 + 𝑐14 · 𝑦
ℎ3 := 𝑐15 + 𝑐16 · 𝑥 + 𝑐17 · 𝑦 ℎ4 := −𝑐3 − 5 · 𝑐4 − 𝑐4 · 𝑥 − 𝑐5 · 𝑦
ℎ5 := ℎ2

2
ℎ6 := ℎ2 · ℎ3

ℎ7 := ℎ2 · ℎ4 ℎ8 := ℎ2
3

ℎ9 := ℎ3 · ℎ4 ℎ10 := ℎ2
4

• The algorithm considers cases (i)-(iii) as above. Cases (ii)

and (iii) are similar to Section 3.1, so we focus on (i). The

algorithm introduces 11 new variables 𝑦0, . . . , 𝑦10, adds the

constraints 𝑦0 > 0 and 𝑦1 . . . 𝑦10 ≥ 0 and symbolically

computes the following equality:

𝑥2 − 𝑥 − 100 = 𝑦0 +
10∑
𝑖=1

𝑦𝑖 · ℎ𝑖

As before, this is a polynomial equality in R[𝑥,𝑦], and must

hold for all values of 𝑥,𝑦. So, the corresponding coefficients of

the two sides should be equal. The algorithm generates these

equalities. For example, given that the constant factor must

be the same in the LHS and RHS, the algorithm generates

this equality:

−100 = 𝑦0 +𝑦1 +𝑦2 · 𝑐12 +𝑦3 · 𝑐15 −𝑦4 · 𝑐3 − 5 ·𝑦4 · 𝑐4 +𝑦5 ·
𝑐12

2 +𝑦6 ·𝑐12 ·𝑐15−𝑦7 ·𝑐12 ·𝑐3− 5 ·𝑦7 ·𝑐12 ·𝑐4 +𝑦8 ·𝑐152−𝑦9 ·
𝑐15 ·𝑐3−5 ·𝑦9 ·𝑐15 ·𝑐4+𝑦10 ·𝑐32+10 ·𝑦10 ·𝑐3 ·𝑐4+25 ·𝑦10 ·𝑐42.
The algorithm generates similar equalities for the coefficients

of 𝑥,𝑦, 𝑥2, 𝑥 · 𝑦, and 𝑦2.
Note that Steps 4 and 5 are also exactly the same as in our

previous algorithm and are omitted here. This being said,

we have the following theorems, whose proofs are similar

to Section 3.1:

Theorem 13 (Soundness). Given an input 𝑘−linear system
𝑆 = (V, L, ℓ0, 𝐼 ,Θ), and a set 𝜏ℓ of at most 𝑘 polynomial inequal-

ities of degree 𝑑 or less at every ℓ ∈ L, every solution of the

non-linear constraint system solved in Step 5 of the algorithm

above produces a valid 𝑘−linear IRW/UIRW for a target set T
that satisfies 𝜏ℓ at every ℓ ∈ L.
Theorem 14 (Completeness). Given a 𝑘−linear system 𝑆 =

(V, L, ℓ0, 𝐼 ,Θ), and a set 𝜏ℓ of at most 𝑘 strong polynomial

inequalities of degree 𝑑 or less at every ℓ ∈ L, every bounded
𝑘−linear IRW/UIRW for a target set T that satisfies 𝜏ℓ at every

ℓ ∈ L, is produced by some solution of the non-linear constraint

system solved in Step 5 of the algorithm above.

Theorem 15 (Complexity). For fixed constants 𝑘,𝑑 and 𝛽 ,

given a 𝑘−linear 𝛽-branching system 𝑆 = (V, L, ℓ0, 𝐼 ,Θ), and
a set 𝜏ℓ of at most 𝑘 polynomial inequalities of degree 𝑑 or

less at every ℓ ∈ L, Steps 1–4 of the algorithm above lead to a

polynomial-time reduction from the problem of generating a

𝑘-linear IRW/UIRW to solving a QP instance.

Remark 4. Unlike the linear case, our completeness result

in Theorem 14 requires strong inequalities and boundedness.

This is because Handelman’s theorem is only applicable when

Sat(Φ) is compact, and hence Corollary 3 can only handle

21

Ali Asadi, Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Mohammad Mahdavi

strong inequalities over bounded polyhedra. These require-

ments do not apply to our soundness result, and although they

are theoretically necessary, they have very little impact in prac-

tice. If there is an IRW/UIRW for a target set T that ensures

reachability within 𝑛 steps, it is easy to verify that there is

also a bounded IRW/UIRW with the same property, i.e. the

semi-runs starting at ν0 and taking 𝑛 transitions cannot visit

an unbounded set of valuations. Moreover, if the target set con-

tains a non-strong inequality such as 𝑔 ≥ 0 or 𝑔 > 0, one can

replace this inequality with 𝑔 +𝜖 ≫ 0 for a new variable 𝜖 ≥ 0

and solve a quadratic programming instance with the goal of

minimizing 𝜖. This trick will slightly change the problem, but

it rarely has practical significance.

F Enforcing a Polynomial to be a Sum of
Squares

In several places in our algorithm, we have a sum-of-squares

polynomial ℎ̂ defined by a template

ℎ̂ := 𝜂1 ·𝔪1 + . . . + 𝜂𝔫 ·𝔪𝔫

in which {𝔪1, . . . ,𝔪𝔫} are monomials over a set V of vari-

ables, the 𝜂𝑖 ’s are unknown reals, and the algorithm depends

on ensuring that ℎ̂ is indeed a sum-of-squares polynomial.

Given that our algorithm reduces the problem of generating

an IRW/UIRW to quadratic programming, we would like to

similarly reduce the problem of ℎ̂ being a sum-of-squares

to quadratic programming over the 𝜂𝑖 ’s. In this section, we

show how such a reduction can be obtained. This is a stan-

dard procedure and has previously been used in many other

constraint-based program analysis algorithms. The presen-

tation we use is taken from [36]. Our main tools are two

well-known theorems:

Theorem 16 ([72, Chapter 7]). A polynomial ℎ̂ ∈ R[V] of
even degree𝔡 is a sum-of-squares iff there exists an 𝔯−dimensional

symmetric positive semi-definite matrix P such that ℎ =

𝑦𝑇P𝑦,where 𝔯 is the number of monomials of degree no greater

than 𝔡/2 and 𝑦 is a column vector consisting of every such

monomial.

Theorem 17 ([69]). A symmetric square matrix P is positive

semi-definite iff it has a Cholesky decomposition of the form

P = LL𝑇
where L is a lower-triangular matrix with non-

negative diagonal entries.

Given the two theorems above, we use the following stan-

dard process for generating quadratic equations that are

equivalent to ℎ̂ being a sum-of-squares:

Generating Sum-of-Squares Constraints. The algorithm
generates the set𝑀 𝔡

2

consisting of all monomials of degree

at most
𝔡
2
over V and creates a vector 𝑦 of these monomials.

It then symbolically computes the following equality:

ℎ̂ = 𝑦𝑇 L̂L̂𝑇𝑦.

Here, L̂ is a lower-triangular matrix. Every entry of L̂ is

a new unknown variable, and every diagonal entry is con-

strained to be non-negative. As usual, the algorithm equates

the corresponding terms on both sides of this polynomial

equality to obtain quadratic equations over the unknown

variables. It follows directly from the two theorems above

that this reduction is both sound and complete.

Example 16 (Taken from [36]). Let V = {𝑎, 𝑏} be the set of
variables and ℎ̂ ∈ R[V] a quadratic polynomial, i.e. ℎ̂(𝑎, 𝑏) =
𝜂1 + 𝜂2 · 𝑎 + 𝜂3 · 𝑏 + 𝜂4 · 𝑎2 + 𝜂5 · 𝑎 · 𝑏 + 𝜂6 · 𝑏2. We aim to

encode the property that ℎ̂ is a sum-of-squares as a system of

quadratic equalities and inequalities. To do so, we first generate

all monomials of degree at most ⌊𝔡/2⌋ = 1, which are 1, 𝑎 and

𝑏. Hence, we let𝑦 =
[
1 𝑎 𝑏

]𝑇
.We then generate a template

for a lower-triangular matrix L̂ whose every non-zero entry is

a new variable:

L̂ =


𝑙1 0 0

𝑙2 𝑙3 0

𝑙4 𝑙5 𝑙6

 .
We also add the inequalities 𝑙1 ≥ 0, 𝑙3 ≥ 0 and 𝑙6 ≥ 0 to our

system. Now, we write the equation ℎ̂ = 𝑦𝑇 L̂L̂𝑇𝑦 and compute

it symbolically:

ℎ̂ =
[
1 𝑎 𝑏

] 
𝑙1 0 0

𝑙2 𝑙3 0

𝑙4 𝑙5 𝑙6



𝑙1 𝑙2 𝑙4

0 𝑙3 𝑙5

0 0 𝑙6



1

𝑎

𝑏

 ,
which leads to:

𝜂1 + 𝜂2 · 𝑎 + 𝜂3 · 𝑏 + 𝜂4 · 𝑎2 + 𝜂5 · 𝑎 · 𝑏 + 𝜂6 · 𝑏2 =

𝑙1
2 + 2 · 𝑙1 · 𝑙2 · 𝑎 + 2 · 𝑙1 · 𝑙4 · 𝑏 + (𝑙22 + 𝑙32) · 𝑎2

+(2 · 𝑙2 · 𝑙4 + 2 · 𝑙3 · 𝑙5) · 𝑎 · 𝑏 + (𝑙42 + 𝑙52 + 𝑙62) · 𝑏2 .

Note that both sides of the equation above are polynomials over

{𝑎, 𝑏}, hence they are equal iff their corresponding coefficients

are equal. So, we get the following quadratic equalities over

the 𝜂𝑖 ’s and �̂�𝑖 ’s: 𝜂1 = 𝑙1
2, 𝜂2 = 2 · 𝑙1 · 𝑙2, . . . , 𝜂6 = 𝑙4

2 + 𝑙52 + 𝑙62.
This concludes the construction of our quadratic system.

G Polynomial Programs used in the
Experimental Results

In this section, we provide details of the polynomial pro-

grams that were used in our experiments in Section 4. Fig-

ures 4–9 show the programs. We now discuss each bench-

mark in more detail:

• sqrt1: This program gets a value 𝑛 as input and computes

⌊
√
𝑛⌋ by simply iterating through every integer starting

from 1. The goal is to reach the end of the program with

𝑛 − 𝑠 > 10
5. Therefore, to solve this task, a verifier has

to assign a value to 𝑛 such that 𝑛 − ⌊
√
𝑛⌋ > 10

5. It is

easy to see that any 𝑛 > 10
5 + 316 works. However, this

22

Polynomial Reachability Witnesses via Stellensätze

example is interesting because the shortest path to a tar-

get state needs to go through 316 iterations of the while
loop. Moreover, the loop has a quadratic guard. As such, a

verifier that is based on abstract interpretation needs to

obtain a relatively fine abstraction, whereas approaches

based on loop-unrolling and symbolic execution need to

unroll this non-linear loop 316 times. As mentioned in

Table 2, CPAchecker times out on this instance. However,

VeriAbs succeeds in proving reachability in 207.3 seconds.

In contrast, our approach synthesizes an IRW in just 40.8

seconds.

𝐼 : 𝑛 ≥ 1 ∧ 𝑠 = 1

while (𝑠 + 1)2 ≤ 𝑛 :

𝑠 := 𝑠 + 1

Figure 4. The program sqrt1. Our target is to reach the end

of this program with 𝑛 − 𝑠 > 10
5.

• sqrt2: This is a variant of sqrt1 in which the value of

𝑠 is doubled in every step if 2 · 𝑠 ≤
√
𝑛. This simple

change means that there are now many short paths that

reach the target. For example, by setting 𝑛 = 2
18, one

can reach the target in just 9 iterations. Unsurprisingly,

both CPAchecker and VeriAbs can handle this example

(Table 2). This being said, note that the complexity of

our approach does not depend on the length of paths. As

such, while sqrt1 is much harder than sqrt2 for other

approaches, our runtimes on these two benchmarks are

very close. Indeed, our method solves sqrt1 a bit faster

than sqrt2 (40.8𝑠 vs 46.4𝑠). This is because sqrt1 is a

smaller program.

𝐼 : 𝑛 ≥ 1 ∧ 𝑠 = 1

while (𝑠 + 1)2 ≤ 𝑛 :

i f 4 · 𝑠2 ≤ 𝑛 :

𝑠 := 2 · 𝑠
e l se :

𝑠 := 𝑠 + 1

Figure 5. The program sqrt2. Our target is to reach the end

of this program with 𝑛 − 𝑠 > 10
5.

• sum: This program simply sums up all the integers from 1

to a given value 𝑛. Note that the program itself is linear

(the loop guard and the updates are linear). However, we

need polynomial arguments given that for every integer 𝑛,

at the end of this program we will have 𝑠 =
𝑛 · (𝑛+1)

2
. As in

the previous examples, the target set can only be reached

after many iterations. To reach the target, it suffices to

choose 10000 ≤ 𝑛 ≤ 11000. Our algorithm is exact and

can handle tight inequalities. We chose this liberal interval

in order to make the instance solvable for abstract inter-

pretation approaches with good precision. Nevertheless,

CPAchecker timed out and VeriAbs terminated with no

result, i.e. returned “unknown”.

𝐼 : 𝑠 = 0 ∧ 𝑖 = 1

while 𝑖 ≤ 𝑛 :

(𝑠, 𝑖) := (𝑠 + 𝑖, 𝑖 + 1)

Figure 6. The program sum. Our target is to reach the end

of this program with 50005000 ≤ 𝑠 ≤ 60505500.

• sum2: This program is similar to sum but it adds the squares
of integers from 1 to 𝑛. Because this program has non-

linear assignments, it is intuitively harder to verify in

comparison with sum.

𝐼 : 𝑠 = 0 ∧ 𝑖 = 1

while 𝑖 ≤ 𝑛 :

(𝑠, 𝑖) := (𝑠 + 𝑖2, 𝑖 + 1)

Figure 7. The program sum2. Our target is to reach the end

of this program with 333383335000 ≤ 𝑠 ≤ 443727168500.

• robot1: This program models the behavior of two robots

on a 2d plane. One robot is located at (𝑥1, 𝑦1) and the other
at (𝑥2, 𝑦2). Initially, we have (𝑥1, 𝑦1) = (𝑥2, 𝑦2). At each
iteration, each robot moves one unit upwards or to the

right. The direction is chosen non-deterministically. The

goal is to prove reachability to the endpoint of the pro-

gram. This is equivalent to proving that it is possible for

the robots to move in such a way that makes their distance

from each other more than

√
10

5 . The main difficulty in

this program is the combinatorial explosion in the number

of paths. Nevertheless, note that a relatively large propor-

tion of the paths lead to the desired target. As such, it was

surprising for us to see that our approach was the only

one that succeeded in handling this example.

𝐼 : 𝑥1 = 𝑥2 ∧ 𝑦1 = 𝑦2

while (𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 ≤ 10
5
:

𝑥1 := 𝑥1 + 1 □ 𝑦1 := 𝑦1 + 1

𝑥2 := 𝑥2 + 1 □ 𝑦2 := 𝑦2 + 1

Figure 8. The program robot1. Our target is to reach the

end of this program.

• robot2: This is a variant of robot1 which intuitively

seems to be a bit harder. The same two robots are put

on opposite sides of a square with side-length 10
4
and the

goal is to prove that they can move in a way that decreases

their distance to less than 10. This example creates the

same combinatorial explosion in the number of possible

paths as in robot1, but this time, only a very small pro-

portion of these paths reach the target. Nevertheless, our

23

Ali Asadi, Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Mohammad Mahdavi

approach can handle this example in virtually the same

amount of time as robot1. This is because our approach is

(semi-)complete and finds a polynomial IRW if one exists.

It does not depend on the proportion of paths that lead to

a target state.

𝐼 : 𝑦1 = 𝑦2 + 10
4 ∧ 𝑥1 = 𝑥2 − 10

4

while (𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 ≥ 100 :

𝑥1 := 𝑥1 + 1 □ 𝑦1 := 𝑦1 + 1

𝑥2 := 𝑥2 + 1 □ 𝑦2 := 𝑦2 + 1

Figure 9. The program robot2. Our target is to reach the

end of this program.

H Related Works
Below, we compare our approach with several families of

previous results.

CEGAR-based Model-Checkers. Counterexample-guided

abstraction refinement [1, 7, 14, 38] is one of the most suc-

cessful ideas in software verification and has been imple-

mented in many model-checkers, including the well-known

tools SLAM [16] and BLAST [24], which handle not only

safety properties, but also problems such as test-case gen-

eration [23]. These model-checkers repeatedly run reacha-

bility analyses in order to obtain the required counterexam-

ples for refining their abstractions. A significant challenge

is that when variable domains are infinite or uncountable,

e.g. R, they cannot guarantee both termination and com-

pleteness. They either provide a complete approach that

might not terminate, or a sound terminating approach with

no completeness guarantee. Another significant challenge

arises when there are many spurious counterexamples. Ap-

proaches for mitigating this problem also rely on reachability

(e.g. see [20]).

Invariant Generation. Invariant generation aims to auto-

matically generate over-approximations of reachable sets,

while our approach targets reachability analysis that aims

to check whether certain undesirable states can be reached

(whether a bug is present in the program). Note that although

we have the same inductiveness idea as in inductive invari-

ant generation, the idea leads to under-approximation (rather

than over-approximation) of the set of states that can reach

some target state. Invariant generation is very well-studied

and many approaches are developed for automating it, in-

cluding recurrence analysis [54, 75, 76], abstract interpreta-

tion [11, 32, 55, 59], constraint-solving [36, 40], inference [97]

and symbolic execution [45].

Symbolic Execution. Symbolic execution [28, 29] runs pro-

gram codes in a static and symbolic manner, thus it is very ef-

fective for analyzing programswithout loops orwith bounded

loops. When tackling loops, symbolic execution can only

unfold the loop a bounded number of steps, hence it is un-

suitable for loops with an unbounded number of iterations.

In contrast, our approach can handle loops with unbounded

iterations, and provides soundness and completeness.

Abstract Interpretation. Abstract interpretation mainly fo-

cuses on over-approximation of reachable states through

the widening operator, which often leads to a loss of preci-

sion [64]. There are also several abstraction-based results

on under-approximation [61, 91, 93, 96]. However, a the-

ory with completeness guarantees for generating under-

approximations such as ourT-inductive sets through abstract
interpretation is still lacking.

Termination Analysis. Termination analysis only consid-

ers whether a program terminates in a finite number of steps,

i.e. whether the program can reach the terminal program

counter or not, without constraints over program variables.

In our approach, we consider reachability to program states

defined by numerical constraints over program variables,

which is a considerable extension of the termination prop-

erty. The primary method of proving termination is to syn-

thesize a ranking function, and there are template-based

algorithms for the synthesis of linear/polynomial ranking

functions [34, 41, 78, 88]. Termination and reachability prop-

erties have also been extensively studied in the context of

probabilistic programs, especially through martingale-based

approaches (e.g. see [31, 73, 100]).

Incorrectness Logic. Incorrectness logic [86] and reverse

Hoare logic [50] are similar to Hoare logic but target under-

approximations. The logical background behind our approach

is a bit different from incorrectness logic. Incorrectness logic

obtains under-approximations of the set of reachable states.

Hence, a bug can be found by taking the intersection of the

under-approximation obtained by incorrectness logic and

the set T of undesirable states. In contrast, we find under-

approximations of the sets of states from which reachability

to an undesirable state (or bug) in T is guaranteed. Intu-

itively, the relationship between our approach and incorrect-

ness logic is similar to the relationship between inductive

invariants and Hoare logic. It is also noteworthy that in-

correctness logic needs manual effort to write assertions,

while our approach is entirely automated when we consider

linear/polynomial IRWs/UIRWs.

24

	Abstract
	1 Introduction
	2 Inductive Reachability Witnesses
	3 Automated Synthesis of IRWs/UIRWs
	3.1 Synthesizing Linear IRWs/UIRWs
	3.2 Synthesizing Polynomial IRWs/UIRWs

	4 Experimental Results
	5 Conclusion and Future Work
	Acknowledgments
	References
	A Universal Reachability Witnesses
	B Proofs of Theorems Presented in Section 2
	C Computing Universal Constraint Pairs
	D Proofs of Theorems Presented in Section 3.1
	E Synthesizing Linear IRWs/UIRWs for Linear Systems with Polynomial Target Sets
	F Enforcing a Polynomial to be a Sum of Squares
	G Polynomial Programs used in the Experimental Results
	H Related Works

