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ABSTRACT
Nested/Extended Page Table (EPT) is the current hardware solution
for virtualizing memory in virtualized systems. It induces a signif-
icant performance overhead due to the 2D page walk it requires,
thus 24 memory accesses on a TLB miss (instead of 4 memory ac-
cesses in a native system). This 2D page walk constraint comes
from the utilization of paging for managing virtual machine (VM)
memory. This paper shows that paging is not necessary in the hy-
pervisor. Our solution Compromis, a novel Memory Management
Unit, uses direct segments for VM memory management combined
with paging for VM’s processes. This is the first time that a direct
segment based solution is shown to be applicable to the entire VM
memory while keeping applications unchanged. Relying on the
310 studied datacenter traces, the paper shows that it is possible to
provision up to 99.99% of the VMs using a single memory segment.
The paper presents a systematic methodology for implementing
Compromis in the hardware, the hypervisor and the datacenter
scheduler. Evaluation results show that Compromis outperforms
the two popular memory virtualization solutions: shadow paging
and EPT by up to 30% and 370% respectively.

CCS CONCEPTS
• Software and its engineering→ Virtual machines.

KEYWORDS
Virtualization, Memory, Segmentation, Pagination

1 INTRODUCTION
Virtualization has become the de facto cloud computing standard
because it brings several benefits such as optimal server utilization,
security, fault tolerance and quick service deployment [1, 3, 10].
However, there is still room for improvement, mainly at thememory
level which represents up to 90% [46] of the global virtualization
overhead.

Memory virtualization overhead comes from the necessity to
manage three address spaces (application, guest OS and host OS)
instead of two (application and OS) as in native systems. Shadow
paging [44] is the most popular memory virtualization solution.
Each page table inside the guest OS is shadowed by a corresponding
page table inside the hypervisor, which contains the real mapping
between Guest Virtual Addresses (GVA) and Host Physical Ad-
dresses (HPA). Thus, shadow page tables are those used for address
translation by the hardware page table walker (which resides inside
the Memory Management Unit, MMU). Page tables inside the guest
OS are never used.

Shadow paging leads to one-dimensional (1D) page walk on a
TLB miss, as in a native system. However, building shadow page

tables comes with costly context switches between the guest OS and
the hypervisor for synchronization. Nested/Extended Page Table
(EPT) [15, 43] has been introduced for avoiding page table synchro-
nization cost. It improves the page table walker to walk through two
page tables (from the guest and from the hypervisor) at the same
time in a 2D manner. Thus, building the shadow page table does
not require the protection of guest’s page tables. This drastically
reduces the number of context switches. However, this solution
induces several memory accesses during address translation due to
the 2D page walk mechanism. In a radix-4 page table [41] (the most
popular case) for instance, this 2D page walk leads to 24 memory
accesses on each TLB miss instead of 4 in a native system, resulting
in significant performance degradation.

While many recent works proved the effectiveness of paging
when dealing with processes (e.g., for reducing memory fragmenta-
tion), to the best of our knowledge, there is no clear assessment of
its effectiveness when dealing with virtual machines (VMs). One
explanation is that the implementation of hypervisors was inspired
by the bare metal implementation of OSes. By analyzing traces from
two public clouds (Microsoft Azure and Bitbrain) and 308 private
clouds (managed by Nutanix1), we show in Section 4 that paging
is not mandatory for managing memory allocated to VMs. In fact,
we found that memory fragmentation is not an issue in virtualized
datacenters thanks to VM memory sizing and arrival rate.

This paper presents Compromis, a novel MMU solution which
uses segmentation for VMs and paging for processes inside VMs.
Compromis allows a 1D pagewalk and generates zero context switch
to virtualize memory. Compromis is inspired by Direct Segment
(DS) introduced by Basu et al. [13] for native systems. For memory
hungry applicationswhich allocate at start time their entirememory
and self-manage it at runtime (e.g., Java Virtual Machine), their
virtual memory space can be directly mapped to a large physical
memory segment identified by a triple (Base, Limit,Offset). This way,
the translation of a virtual address 𝑣𝑎 is given by a simple register
to register addition (va+Offset). Compromis generalizes DS to DS-n,
allowing the provisioning of a VM with several memory segments.
In Compromis, every processor context includes 2𝑛 new registers
for address translation. Contrary to other DS based solutions [9, 24],
Compromis considers the entire VM memory and requires no guest
OS and application modification.

This paper also investigates systems implications and presents
a systematic methodology for adapting the hypervisor and other
cloud services (e.g., datacenter scheduler) for making Compromis
effective. To the best of our knowledge, this is the first DS-based
approach in virtualized systems which puts the entire puzzle to-
gether.

1Nutanix is a world wide private cloud provider.
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We have implemented a whole prototype in both Xen and KVM
virtualized systems managed by OpenStack. This involves: firstly,
integrating our DS-aware memory allocation algorithm; secondly:
improving the Virtual Machine Control Structure (VMCS) data
structure for configuring new hardware registers introduced by
DS-n; and finally, improving OpenStack’s VM placement algorithm
to minimize the number of memory segments. To evaluate our
prototype, since our solution relies on hardware modifications, we
mimicked the functioning of a VM running on a DS-n machine
in the following fashion: We run the VM in para-virtualized (PV)
mode [11], using its 1D page walk as DS-n. However in PVmode, all
page table modifications performed by the VM kernel trap into the
hypervisor using hypercalls. To avoid this behavior which will not
exist on a DS-n machine, we modified the guest kernel to directly
set page table entries with the correct HPAs, calculated in the same
way as a DS-n hardware would have done.

In total, our paper makes the following contributions:

• We first studied the potential effectiveness of DS in virtual-
ized datacenters. In other words, we answered the following
question: considering VM memory demands, arrival times
and departure times, is it advantageous to provision all or
the majority of VMs with one large memory segment? To
answer this question, we studied memory fragmentation
in virtualized systems by analyzing traces from two public
clouds (Microsoft Azure [21] and Bitbrains [40]) and 308
private clouds. We found that using a DS aware memory
allocation system, memory fragmentation is not a critical
issue in virtualized datacenters like in native ones.

• Drawing on this observation, we proposed DS-n, a general-
ization of DS to provision a VM with multiple memory seg-
ments. We presented the hardware modifications required
by DS-n.

• We proposed a DS-aware VM memory allocation algorithm
which minimizes the number of memory segments to use
for each VM.

• We evaluated the performance gain of DS-n using an accu-
rate methodology on a real environment. The main results
are as follows. Firstly, the analyzed datacenter traces show
that it is possible to provision up to 99.99% of VMs with one
memory segment, while three segments are sufficient for
provisioning all VMs. Secondly, concerning the performance
gain, DS-n reduces memory virtualization overhead to only
0.35%, outperforming both shadow paging and EPT by up to
30% and 370% respectively. The results also show that our
memory allocation algorithm runs faster than traditional
ones. For example, Xen’s algorithm is outperformed by 80%.

The remainder of the paper is as follows. Section 2 presents the
necessary background to understand our contributions. Section
3 evaluates the limitations of state-of-the-art solutions. Section 4
presents the analysis of several production datacenter traces and
validates the opportunity to apply DS in virtualized systems. Section
5 presents the necessary hardware and software improvements
to make DS-n effective. Section 6 presents the evaluation results.
Section 7 presents works relevant to our contributions. Section 8
concludes the paper.

Table 1: Benchmarks used for assessment and evaluation of
our solution.

Benchmark Description
SpecCPU 2006 Compute multi-threaded workloads
PARSEC 3.0 Compute multi-threaded workloads
Redis In-memory database
Elastic search In-memory database

2 BACKGROUND
This section presents two main techniques used to achieve memory
virtualization, namely Shadow paging [44] and Extended Page Table
(noted EPT) [15, 43].

2.1 Shadow Paging
Shadow paging is a software memory virtualization technique. In
Shadow paging, the hypervisor creates a shadow Page Table (PT)
for each guest PT. This shadow PT holds the complete translation
from GVA to HPA. It is walked by the Hardware Page Table Walker
(HPTW) on a Translation Look-aside Buffer (TLB) miss. Guest Page
Tables (GPTs) are fake page tables not utilized by hardware. To
put in place shadow paging, the hypervisor write protects both
the CR3 register (which holds the current PT address) and GPTs.
Each time the guest OS attempts to modify these structures, the
execution then traps into the hypervisor, which in turn updates the
CR3 register or the shadow PT. Using shadow paging, the HPTW
only performs a 1D page walk as in a native system, leading to
4 memory accesses per TLB miss. However, the resulting context
switches during these traps severely degrade the VM performance.

2.2 Extended Page Table
EPT (also called Nested Page Table) is a hardware-assisted memory
virtualization solution proposed by many chip vendors such as Intel
and AMD. It relies on a two layer PT: the first PT layer resides in
the guest address space and is exclusively managed by its OS, at the
ratio of one PT per process. This first layer PT thus contains GPAs
which point to guest pages in the guest address space. Every process
context switch triggers the guest OS to set the CR3 register with
the GPA of the scheduled-in process’s PT address. The second PT
layer resides in the hypervisor, at the ratio of one PT per VM. This
PT represents the address space of the guest, and includes HPAs
that point to pages (real pages in RAM) in the host address space.
Every vCPU context switch triggers the hypervisor to set the nested
CR3 register (nCR3) with the HPA of the scheduled-in VM’s PT
address. On a TLB miss, the hardware page table walker translates
a virtual address va into the corresponding HPA by performing a
2-dimensional page walk, leading to 24 memory accesses per TLB
miss.

3 ASSESSMENT
This section presents the overhead of memory virtualization in
both native and virtualized systems. Note that even in a native
system, the expression “memory virtualization” is used because
of the mapping of the process linear address space to the physical
address space.
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Table 2: Formulas to estimate the overhead ofmemory virtu-
alization. (“handler” is the handler which treats the VMExit
generated when the guest OS attempts to modify the page
table.)

Native total cycles of all page walks
EPT total cycles of all (GPT+EPT) walks
Shadow total cycles of all (hypervisor level PT walk+ VMEn-

try+VMExit+handler)

Methodology. Table 1 lists the benchmarks used to evaluate
the performance overhead of memory virtualization. In order to
evaluate huge page-based solutions, we executed the benchmarks
while varying the memory page size in both the hypervisor and
the guest OS. The notation gX -hY means X and Y are the memory
page sizes in the guest OS and the hypervisor, respectively. We use
the time taken by both the hardware and the software for memory
virtualization as our evaluation metric. Table 2 presents how this
metric is calculated for each virtualization technology. We rely
on both Performance Monitoring Counters (PMC) and low-level
software probes that we have written for the purpose of this paper.
Details on the experimental setup are given in Section 6.2.1.

Results. Figure 1 presents our benchmark results. Firstly, even
in native systems, memory virtualization takes a significant pro-
portion of an application’s execution time, up to 42% for the mcf
benchmark. Secondly, running applications in a virtualized environ-
ment increases the said proportion up to 50.93% for Elastic Search
under shadow paging. Thirdly, shadow paging incurs more over-
head than EPT for the majority of applications, with up to 43.89%
of difference for vips. Finally, we can observe that even when huge
pages are used simultaneously in the guest OS and hypervisor,
memory virtualization overhead is still high, at almost 31.5% for
the Redis benchmark. [9, 13, 24, 36] reached the same conclusion
with the use of huge pages.

Conclusion. These results show that the overhead of memory
virtualization is very significant in a virtualized system, even when
utilizing huge pages. The root cause of this overhead is the utiliza-
tion of paging as a basis for memory virtualization in VMs.

4 PAGING IS NOT A FATALITY FOR VMS
Several research works tried to reduce the overhead of memory
virtualization in virtualized systems. However, no work has ques-
tioned the relevance of paging in this context. This section studies
the (ir)relevance of paging when dealing with VMs. To this end, we
compared paging with segmentation, an alternative approach that
is often left out.

Paging involves organizing both the virtual address space of
a process and the physical address space into fixed size memory
chunks (4KB, 2MB, etc.) called pages. Thus, each virtual page can be
housed in any physical page frame. The process PT and the HPTW
make it possible to find the actual mapping of a virtual page to a
physical page address. Segmentation, on the other hand, organizes
both the virtual and the physical address spaces in the form of
variable size memory chunks called segments. The size of the latter
is chosen by the programmer. The correspondence between virtual
segments and physical segments is provided by a segment table.

The virtual address to physical address mapping is done by a simple
addition.

The main reasons to promote paging over segmentation in native
systems are as follows: (𝑅1) Paging is invisible to the programmer;
this is not the case with segmentation, which makes application
programming more difficult. (𝑅2) Paging makes implementing OS
memory allocators easier. Indeed, it only requires the use of a list
of free pages; it is sufficient to simply choose any page within this
list upon receiving a memory allocation request. This property is
important for scalability; segmentation, in contrast, requires the
OS to find an appropriate physical segment that satisfies the size of
the virtual segment requested by the application. (𝑅3) Paging limits
memory fragmentation 2, which is not the case with segmentation.
(𝑅4) Paging allows overcommitment, which is useful for optimizing
memory utilization.

The question is whether all of these reasons are valid when ma-
nipulating VMs. To answer this question, we analyzed the relevance
of each reason in virtualized systems. Before continuing, note that
when we talk about memory management in a virtualized system,
we are talking about the allocation of physical memory to VMs and
not memory allocation to applications inside VMs.

Relevance of𝑅1 (Segmentationmakes applicationprogram-
ming more difficult). This reason is valid in native environments
(when dealing with applications) because application programmers
do not have the expertise to manage segment size in a segmen-
tation based system. Moreover, such a problem is not relevant to
the business logic of their applications. On the other hand, with
VMs the developers are experts in operating systems; therefore it
is within their reach to have the responsibility to manage memory
segments.

Relevance of 𝑅2 (Pagingmakesmemory allocation easier).
It is necessary to facilitate the work of the memory allocator for
scalability purposes. In a native system, the memory allocator is
subject to thousands of memory allocation and deallocation re-
quests per second. This is not true when dealing with VMs. Each
VM performs only one allocation (at startup) and deallocation (at
shutdown). Thus, the frequency of memory allocation and deallo-
cation requests received by the hypervisor is not on the same order
of magnitude as those received by the OS in a native system. Table
3 presents the average memory allocation frequency received by
a server from a native system, virtualized private clouds, as well
as public clouds (see Section 6 for more details on the analyzed
datasets). We observed a phenomenal difference between native
and virtualized systems, which are quite stable. Given the extremely
low values for virtualized datacenters, finding free memory chunks
with segmentation when dealing with VMs is not a difficult problem.

Relevance of 𝑅3 (Paging limits fragmentation). Fragmenta-
tion is due to the heterogeneity of memory allocation sizes. Indeed,
a system in which all allocation sizes are identical would not suffer
from fragmentation. To verify whether fragmentation could be a
problem in a virtualized datacenter, we analyzed the memory allo-
cation sizes of the traces from the datacenters presented in Table 3.
Figure 2 shows the CDF of these allocation sizes.

2Internal fragmentation within pages is always possible, but it is negligible compared
to the external fragmentation caused by segmentation
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Figure 1: Proportion of CPU time used for memory virtualization in native, virtualized shadow paging (SP) and virtualized
EPT.
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Figure 2: CDF of memory allocation sizes in different datacenter types.

Table 3: Memory allocation frequency (per hour on a server)
in native and virtualized datacenters.

Dataset Alloc./Hour/Server
Native - Our lab machine 82071.5
Virtualized - Private clouds 0.056
Virtualized - Microsoft Azure 0.31

We observe that public clouds stand out with very few different
allocation sizes (14). This is because in public clouds VM sizes are
imposed by the provider. Things are slightly different in private
clouds (201) where there is more freedom in VM size definition. On
the contrary, allocation sizes vary a lot in native systems (25k) than
in virtualized environments. These results show that fragmentation
is not a relevant issue when dealing with VMs.

Relevance of𝑅4 (Paging allowsmemory overcommitment).
Overcommitment is a practice which allows to reserve more mem-
ory than the physical machine actually has. It exploits the fact that
not all applications require their entire memory demand at the same
time. As a result, overcommitment helps avoid resource waste. How-
ever, overcommitment comes with performance degradation during
memory reclamation and performance unpredictability [32]. These
limitations are acceptable in a native system because there is no con-
tract between application owners and the datacenter owner; they
both belong to the same company. Best-effort allocation becomes
the practice in such contexts. Things are different in a virtualized
datacenter, especially in commercial clouds, where the datacenter
operator must respect the contract signed with the VM owner, who
paid for the reserved resources. Therefore, even if a VM is not using
its resources, these resources have already been amortized. The
necessity to avoid resource waste is thus less critical compared to

a native system. Furthermore, the implementation of overcommit-
ment in a virtualized system is challenging because of the blackbox
nature of a VM [32]. It requires expertise in the workload and the
system to configure it and to react in case of performance issues. As
a consequence, no public cloud supports overcommitment. Private
cloud providers either do not support it (Nutanix), disable it by
default (VMWare TPS, Hyper-V dynamic memory) or enable it with
extra warnings (RedHat with KVM).

5 COMPROMIS: A DS-BASED MEMORY
VIRTUALIZATION APPROACH FOR VMS

Compromis is a hardware memory virtualization solution imple-
mented within the MMU that exploits the strengths of both direct
segments (DS) and paging. The former is used by the hypervisor to
deal with VMs, while the latter is used by the guest OS to deal with
processes. The innovation is the utilization of DS instead of paging
by the hypervisor. Considering the fact that it may be impossible
to satisfy a VM allocation request using a single memory segment,
Compromis generalizes DS to DS-n, where a VM is allocated k seg-
ments (1 ≤ 𝑘 ≤ 𝑛) using the Compromis hardware feature. This
section presents the set of improvements that should be applied to
the datacenter stack in order to make Compromis effective.

5.1 General Overview
Figure 3 presents the general operations of a datacenter using Com-
promis. When a user requests a VM creation from a certain VM
flavor (#CPU, memory size), the cloud scheduler chooses the physi-
cal machine that will host the said instance. This choice is made
according to a placement policy, which generally takes into ac-
count constraints in resource availability. In a Compromis-aware
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Figure 3: General functioning of a datacenter which imple-
ments Compromis.

datacenter, this policy is extended to choose the machine with the
greatest chance of allocating large memory segments to the VM.
To this end, the cloud scheduler quickly simulates the execution of
the memory allocator implemented by the hypervisor or compute
nodes. This simulation is built by the cloud scheduler on top of
every machine’s memory layout state, which is locally stored and
periodically updated (see Section 5.4).

When the hypervisor of the selected physical machine receives
a VM creation request, it reserves memory for the VM in the form
of large memory segments rather than small page chunks as it is
currently done (see Section 5.3). If the number of segments used
to satisfy the VM is less than or equal to 𝑛, then the hypervisor
configures the VM in DS-n mode, a new mode implemented in
hardware (see Section 5.5.1). Otherwise, the VM is configured in
shadow or EPT mode, depending on the datacenter operator. In
DS-n mode, the hardware performs an address translation by doing
a 1D page walk (instead of 2D) followed by a series of register to
register operations (see Section 5.2). Notice that a Compromis-aware
machine can simultaneously run DS-n and non-DS-n VMs. The next
subsections detail the modifications that should be applied to each
datacenter layer for building Compromis.

5.2 Hardware-Level Contribution
A hardware which implements Compromis includes new registers
to indicate the mapping of GPA segments (in the guest address
space) to HPA segments (in the host address space). The value
of each register comes from a Virtual Machine Control Structure
(VMCS), configured by the hypervisor at VM startup (see Sec-
tion 5.3). The number of added registers is a function of 𝑛. In
particular, there are 𝑛 − 1 guest base registers (noted 𝐺𝐵𝑅𝑒𝑔1, ...,
𝐺𝐵𝑅𝑒𝑔𝑛−1, no such registers in DS-1), 𝑛 host base registers (noted
𝐻𝐵𝑅𝑒𝑔0, ..., 𝐻𝐵𝑅𝑒𝑔𝑛−1), and the limit register. These registers in-
dicate the mapping as follows: the GPA segment [0,𝐺𝐵𝑅𝑒𝑔1 − 1]
is mapped to the HPA segment [𝐻𝐵𝑅𝑒𝑔0,𝐺𝐵𝑅𝑒𝑔1 − 1], and each
GPA segment [𝐺𝐵𝑅𝑒𝑔𝑖−1,𝐺𝐵𝑅𝑒𝑔𝑖 − 1] is mapped to a HPA segment
[𝐻𝐵𝑅𝑒𝑔𝑖−1, 𝐻𝐵𝑅𝑒𝑔𝑖−1 + (𝐺𝐵𝑅𝑒𝑔𝑖 −𝐺𝐵𝑅𝑒𝑔𝑖−1)] (where

𝐺𝐵𝑅𝑒𝑔𝑖 −𝐺𝐵𝑅𝑒𝑔𝑖−1 is the size of this segment). For a VM with 𝑘

segments, the mapping of the last GPA segment
𝐺𝐵𝑅𝑒𝑔𝑘−1, 𝐺𝐵𝑅𝑒𝑔𝑘−1 +(𝑙𝑖𝑚𝑖𝑡− 𝐻𝐵𝑅𝑒𝑔𝑘−1)

is the HPA segment [𝐻𝐵𝑅𝑒𝑔𝑘−1, limit]. Once the hypervisor finishes
configuring these registers, the translation of a virtual address va
to the corresponding HPA hpa for a DS-n VM type (whose number
of segments is less than 𝑛) is summarized in Figure 4. Firstly, the
MMU performs a 1D GPT walk, taking as input va and returning a
GPA gpa. hpa is then calculated as follows:

ℎ𝑝𝑎 = 𝐻𝐵𝑅𝑟𝑒𝑔𝑖 + (𝑔𝑝𝑎 −𝐺𝐵𝑅𝑟𝑒𝑔𝑖 ) (1)

with [𝐺𝐵𝑅𝑟𝑒𝑔𝑖 , ∗] being the smallest GPA segment which contains
gpa. If no such segment exists, a boundary violation is raised and
trapped in the hypervisor as a “DS-n violation” exception. More
generally, for each gpa extracted from a GPT layer, we perform an
offset addition followed by a comparison, meaning that every EPT
walk is replaced by these two operations. For instance, when the
VM has only one segment, the computation of hpa is as follows

ℎ𝑝𝑎 = 𝐻𝐵𝑅𝑟𝑒𝑔0 + 𝑔𝑝𝑎 (2)

We raise a boundary violation if hpa is greater than limit. The
performance benefit of these operations compared to the 2D page
walk done in EPT is discussed in Section 6.

5.3 Hypervisor-Level Contribution
The hypervisor needs two main changes: the integration of a mem-
ory allocator for VMs and the configuration of the VMCS to indicate
DS-n type VMs.

5.3.1 A DS-Based Memory Allocator for VMs. We assume that the
physical memory is organized in two parts: the first part is reserved
for the hypervisor and privileged VM tasks, while the second part
is dedicated to user VMs. This memory organization is found in
almost all popular hypervisors. In Compromis, the first memory part
is managed using the traditional memory allocator. Concerning the
second memory part, a new allocation algorithm is used to enforce
large memory segment allocation to VMs. This section describes
this new allocator.

Implementing amemory allocator requires answering three ques-
tions: (𝑄1) which data structure to use for storing information about
free memory segments? (𝑄2) how do we choose elements from this
data structure for responding to an allocation request? (𝑄3) how
do we insert an element into this data structure when there is a
memory de-allocation?

Answer to 𝑄1: data structure. We use a doubly-linked list to
describe free memory segments (a list is the data structure used
by most memory allocators). Each element in the list describes a
segment using three variables:

• base: start address of the segment;
• limit: end address of the segment;
• date: allocation date of the segment containing base-1.

The elements of the list are ordered in an ascending order of base.
We hereafter note each element [𝑏𝑎𝑠𝑒, 𝑙𝑖𝑚𝑖𝑡, 𝑑𝑎𝑡𝑒].

Answer to 𝑄2: allocation policy. When the hypervisor re-
ceives a request to start a VM with a memory allocation𝑀 , it goes
through the list described above to find out which segments should
be allocated to the VM. If it finds a segment of size 𝑀 , then that
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Figure 4: Address translation handling in two DS-n machine types (left: DS-1, right: DS-4).

segment is taken off the list and allocated to the VM. Otherwise, the
allocator chooses the largest segment 𝑆𝑏 [𝑏𝑎𝑠𝑒, 𝑙𝑖𝑚𝑖𝑡𝑖 , 𝑑𝑎𝑡𝑒] among
those whose sizes are greater than𝑀 . The VM allocation is satisfied
with a portion of 𝑆𝑏 . Note that taking the largest segment prevents
the aggregation of small segments, which is bad for a DS based
approach. If there is no segment larger than𝑀 , then two options
are possible. The first option (Opt1) satisfies the VM with smaller
segments. This gives a chance for VMs coming later to use the
big free segments. The second option (Opt2) chooses the largest
segment that exists and executes the above algorithm with a new
memory size𝑀 ′, where𝑀 ′ equals𝑀 minus the size of the chosen
segment.

Compromis offers these two options to support various workload
patterns and datacenter constitutions. A workload pattern is the set
of VM creation and shutdown requests submitted to the datacenter
during a period of time. The constitution of a datacenter is the
physical machine sizes. It is the responsibility of the cloud scheduler,
which has a global view of the datacenter, to choose among these
options (see Section 5.4).

Answer to 𝑄3: freed memory taken into account. Stopping
a VM results in the freeing of its memory, which has to be inserted
into the list of free memory segments. Let 𝑆 be a memory segment
to insert into the list. If 𝑆 coincides with the beginning or the end
of a segment 𝑆 ′ in the list, then 𝑆 ′ is simply extended (forward or
backward). If this extension causes the new big segment to coincide

with the beginning or the end of the segments that follow or precede
it, then the extension continues. If there is no shared border between
𝑆 and the existing segments in the list, then 𝑆 is inserted in the list
so that the ascending order is respected.

5.3.2 VM Type Configuration. Let 𝑘 be the number of memory
segments allocated to a VM. If 𝑘 ≤ 𝑛 then the VM is of type DS-n,
otherwise it is configured with EPT or shadow paging according to
the datacenter administrator’s choice. The type configuration of a
VM is done by modifying the VMCS of its vCPUs. To indicate that
a VM is of type DS-n, a new bit of the Secondary Processor-Based
VM-Execution Controls is set. Otherwise, this bit remains at zero.
For DS-n VMs, the hypervisor also positions new VMCS fields that
will be used to populate GBReg, HBReg, and limit registers. The
fields are populated in ascending order of crossing segments. The
values of the fields which map to HBReg and limit registers come
from the list of segments allocated to the VM. Concerning the fields
which map to GBReg registers, their values are calculated as they
are filled. When 𝑘 < 𝑛, the remaining fields are set to zero.

5.4 Cloud Scheduler Level Contribution
The cloud scheduler is improved for two purposes: a DS-n-aware
VM placement algorithm and selection of a memory allocation
option.
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VM placement algorithm improvement. The placement al-
gorithm determines the physical machine that will instantiate the
VM. Traditionally, this algorithm has a particular objective, e.g.
load balancing. For example, the schedulers of OpenStack [23] and
CloudStack [20] consist of a list of filters. Each filter implements
a set of constraints such as resource-matchmaking [37], VM-VM
or VM-host (anti-) affinities. A filter receives as arguments a set
of possible machines for the VM to boot on, and removes among
them those not satisfying its constraints. Each time the scheduler
is invoked to decide where to place a VM, it chains the filters to
eventually retrieve the satisfactory machines and picks one among
them.

To enjoy the benefit of DS-n, the VM scheduler must integrate
inside its objective the maximization of the number of VMs of type
DS-n. For filter-based schedulers, this consists of implementing a
new filter to append to the existing list. This filter maintains a local
copy of the free memory segments on every machine, and uses a
simulator to evaluate the number of segments that will be used if
the VM is instantiated on each machine. It then selects the machine
leading to the fewest number of segments. For schedulers that do
not rely on filters, the strategy is to weigh the existing objectives
against the ones that consists of picking the machine minimizing
the number of memory segments. Note that this cloud scheduler
modification does not reduce the hosting capacity of the datacenter,
because the destination machine is selected among the original
cloud scheduler candidates.

Memory allocation option selection. Section 5.3.1 noted that
the cloud scheduler has the responsibility to select the memory
allocation option that all hypervisors will use. To this end, it embeds
a memory allocator simulator which implements the two options
presented in 5.3.1. Then it periodically (e.g. every week) replays
the recorded VM startup and shutdown logs in its simulator. This
is done while varying the memory allocation option. The selected
option is the one that produces the most DS-n VMs. All hypervisors
are then notified of the selected option and the log repository is
reset.

5.5 Prototype
We implemented Compromis in two popular hypervisors (Xen and
KVM), as well as in OpenStack’s Nova scheduler.

5.5.1 Implementation in the Hypervisor.
Implementation in Xen. The implementation of Compromis in
Xen is straightforward. Firstly, Xen already organizes the main
memory in two parts as we wished. The first part is managed by
the Linux memory allocator subsystem hosted within the privi-
leged VM (dom0). The memory allocator for user VMs resides in
the hypervisor core, and is invoked by the dom0 during the VM
instantiation process. We simply replaced this allocator with the
one described in Section 5.3.1. We validated the effectiveness of
this algorithm by starting VMs in hardware-assisted virtualization
(HVM) mode with single segments, while the hypervisor still uses
EPT for address translation.

Concerning the configuration of the VM type, the modification of
Xen does not require any particular description other than what has
been said in Section 5.3.2. Concerning the handling of cloud sched-
uler notifications related to the changing of the memory allocation

option, we defined a new hypercall that informs the hypervisor of
the selected option.

Implementation in KVM. Unlike Xen, KVM does not hold
memory in two blocks. KVM relies on the Linux memory allocator
which sees VMs as normal processes. To implement Compromis
in KVM, we first enforced the organization of the physical mem-
ory in two blocks using the cgroup mechanism. The default Linux
memory allocator is then associated to the first block while our
memory allocator manages the second block. The /proc file system
is used to record the memory allocation option imposed by the
cloud scheduler.

5.5.2 Implementation in the Cloud Scheduler. The implementation
of Compromis in OpenStack Nova is quite straightforward because
Nova’s placement algorithm is easy to identify. Its execution steps
are also easy to identify, making its extension with a memory allo-
cation simulator very simple. Concerning the periodical selection
of the memory allocation option, we implemented a separate pro-
cess which starts at the same time as Nova. That process relies on
existing OpenStack logs for obtaining VM startup and shutdown
requests.

5.6 Discussion
Memory over commitment and VMmigration. Since Compro-
mis allows DS-n, it is possible to implement memory over commit-
ment by performing dynamic segment resizing, addition or removal,
combined with a slight cooperation between the guest OS and the
hypervisor. A VM which needs more memory gains new segments
or sees its segments extended. Inversely, a VM whose memory
needs to be reduced will see either its segment sizes or number
reduced. The cooperation between the guest OS and hypervisor is
only necessary in this case. In fact, the hypervisor should indicate
to the guest OS the range of GPAs that should be released by the
VM (using the balloon driver mechanism). Indeed, the hypervisor
is the only component which knows segment ranges.
Memory Mapped IO (MMIO) region virtualization. IO device
emulation and direct IO are two IO virtualization solutions imple-
mented by hypervisors in HVMmode. The former andmost popular
solution involves protecting virtual MMIO ranges seen by the guest
OS so that all IO operations performed by the guest trap into the
hypervisor. With this IO virtualization solution, the utilization of
Compromis is straightforward since virtual MMIO regions are at the
GPA layer. The validation step presented in Section 5.5.1 was per-
formed under this solution. With direct IO virtualization, the guest
OS is directly presented with the physical MMIO ranges configured
by the hardware device. This solution requires Compromis to use
several memory segments. Note that this solution is not popular in
today’s clouds because it limits scalability (only enables very few
virtual devices) and dynamic consolidation (VM live migration is
not possible).

6 EVALUATIONS
We evaluated the following aspects of our solution: (1) Effectiveness
(see section 6.1): the capability to start a large number of VMs using
the DS-n technology; (2) Performance gain (see section 6.2): whether
DS-n VMs improve the performance of applications running within;
(3) Startup impact (see Section 6.3): whether there’s any potential
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positive/negative impact on VM startup latency. If not otherwise
indicated, the hypervisor and cloud management system utilized
in our evaluations are Xen and OpenStack respectively.

6.1 Effectiveness
Effectiveness evaluation is done by simulation using real datacenter
traces.

6.1.1 Methodology. We developed a simulator which mimics a dat-
acenter managed with OpenStack [23], improved with our contri-
butions. The simulator replays VM startup and shutdown requests
collected from several production datacenters, the details of which
are presented in Section 6.1.2. The simulator considers each VM
startup request to include a number of CPU cores and a memory
size. For each simulated VM startup request, the simulator logs
two metrics: the number of segments used for satisfying the VM
memory demand, and the time taken by our changes (extension of
the cloud scheduler and the utilization of our memory allocation
algorithm in the hypervisor).

To highlight the benefits of each Compromis feature, we evalu-
ated different versions of our improvements, including: – BaseLine:
the simulator implements both the native OpenStack scheduler and
Xen’s memory allocation algorithms;
– ImprovPlacement: in this version, the VM placement algorithm is
improved to choose for every VM the machine which will use the
minimum number of memory segments (as described in Section
5.3.1);
– DynamicOptionSelec: in this version, the cloud scheduler calcu-
lates every week the best memory allocation option to be used (as
described in Section 5.4).

6.1.2 Datasets. We used the traces of 2 public clouds (Bitbrains
[40] and Microsoft Azure [21]) and 308 private clouds. Among other
fields, each trace includes: the VM creation and destruction time,
and the VM size (#CPU and memory size).

Bitbrains. This cloud is a service provider specialized in man-
aging hosting and business computation for many enterprises. The
dataset consists of 1,750 VMs, collected between August and Sep-
tember 2013. Bitbrains does not include physical machine charac-
teristics.

Azure. This is a public Microsoft cloud. The dataset comprises
2, 013, 767 VMs running on Azure from November 16𝑡ℎ , 2016 to
February 16𝑡ℎ , 2017.

Private clouds. This group aggregates data of 308 private IaaS
clouds running diverse workloads between November 1𝑠𝑡 , 2018
to November 29𝑡ℎ , 2018. For a given cloud, we collected one or
more consistent snapshots of the cluster state at the moment the
cluster triggered its hotspot mitigation service, which indicates
that a machine is getting close to saturation. A snapshot depicts
the running VMs, their sizing (in terms of memory and cores) and
their host (in terms of available memory and cores). The collected
dataset includes 301,440 VMs. As the dataset contains snapshots
and not the VM creation and destruction time, we derived from
each snapshot a bootstorm scenario where all the VMs are created
simultaneously. This dataset includes server characteristics.

Composition and characteristics of servers used byBitbrains
and Azure. Having no hardware information about the first two

Table 4: Server generations used in the replay of Bitbrains
and Azure traces.

Name RAM (GB) Cores % in the traces
HPC 128 24 20
Gen4 192 24 20
Gen5 256 40 20
Gen6 192 48 20
Godzilla 512 32 20

Table 5: Number ofmemory segments allocated toVMs from
Bitbrains and Azure.

Bitbrains
Solution 1 seg. 2 seg. 3 seg. >3 seg.
BaseLine 12.816 44.376 30.078 12.728
ImprovPlacement+Opt1 100 0 0 0
ImprovPlacement+Opt2 100 0 0 0
DynamicOptionSelec 100 0 0 0

Azure
Solution 1 seg. 2 seg. 3 seg. >3 seg.
BaseLine 3.581 11.171 9.996 75.252
ImprovPlacement+Opt1 99.9736 0.026 0 6.18E-05
ImprovPlacement+Opt2 99.947 0.007 0.022 0.021
DynamicOptionSelec 99.999 7.07E-04 0 0

datasets, we consider that they are composed of server generations
presented in Table 4. We chose these server generations as they
are used in Azure according to this Youtube video [2]. Gen6 and
Godzilla are new generations while Gen2 HPC, Gen4 and Gen5 are
older ones. All server generations have the same proportion.

6.1.3 Results. Bitbrains and Azure - Table 5. BaseLine provides
better results in Bitbrains (up to 81% of VMs are satisfied with less
than four memory segments) compared to Azure (only about 24%
of VMs are satisfied with less than four memory segments). This is
because the VMs running on Bitbrain have a longer life time than
Azure. However, our solutions satisfy more VMs than BaseLine
(99.95%-100%). This is because BaseLine, which implements Xen, or-
ganizes the physical memory in the forms of small memory chunks
which are then used for allocation. As a naive algorithm, Xen can-
not enforce DS to a VM even if it exists a free memory segment
which is larger than the memory demand. In contrast, Compromis
enforces DS to near-perfection (more than 99% of VMs are satisfied
with only one memory segment). Our two memory application
options discussed in 5.3.1 show their slight difference in Bitbrains:
ImprovPlacement+Opt1 satisfies more VMs with only one segment
in comparison with ImprovPlacement+Opt2. Finally, dynamically
switching between the two options (DynamicOptionSelec) is the
best solution, with 99.99% of VMs using only one memory segment.

Private clouds - Figure 5. We plot the results for these clouds
separately from the previous ones because of the multitude of
different cloud environments. We can make the same observation as
above. Our solutions satisfy almost all VMs with only one memory
segment; observe the “wall” at 1 memory segment for all 3 versions
of our improvement.
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Figure 5: Number of memory segments allocated to
VMs from 308 private clouds (longitude=cloud, lati-
tude=#segment, depth=proportion).

6.2 Performance Gain
This section evaluates the performance gain brought by the utiliza-
tion of DS-n.

6.2.1 Methodology. A DS-n machine handles a TLB miss using a
1D page walk followed by a set of register-to-register operations.
We mimic this functionality by running the VM in para-virtualized
(noted PV) mode [11] which also uses a 1D page walk. However in
PV, all page table modifications performed by the VM kernel trap
into the hypervisor using hypercalls. We modified the guest kernel
to directly set page table entries with the correct HPAs, calculated
in the same way as a DS-n hardware would have done. The reader
could legitimately ask why use PV to simulate a hardware-assisted
solution. We claim that our approach makes sense in our context
because the benchmarks do not solicit the PV machinery: all disks
are in-memory (tmpfs) based and all network requests use the
loopback interface. Accordingly, only the memory subsystem is
utilized.

The evaluation methodology we used is as follows. Let 𝑇1𝐷 be
the execution time of the VM in this modified PV context. We esti-
mated the cost (noted𝑇𝑛

𝑟𝑒𝑔2𝑟𝑒𝑔) of the register-to-register operations
performed by the DS-n hardware on a TLB miss using an assembly
code which executes these operations. It is adaptable depending
on the value of 𝑛. Let 𝑁𝑡𝑙𝑏 be the number of TLB misses (collected
using PMC) generated by the application when it is executed in a
native system. We estimate the execution time 𝑇𝐷𝑆−𝑛 of a VM on a
DS-n using the following formula:

𝑇𝐷𝑆−𝑛 = 𝑇1𝐷 + 𝑁𝑡𝑙𝑏 ×𝑇𝑛
𝑟𝑒𝑔2𝑟𝑒𝑔 (3)

We evaluated different values of 𝑛 from 1 to 3. We compare DS-n
with EPT (in which the execution time is noted 𝑇𝑒𝑝𝑡 ) and shadow
paging (in which the execution time is noted 𝑇𝑠ℎ𝑎). We used 4KB
page size in guest VMs as the standard size. The characteristics of
the experimental machine are presented in Table 6. Note that this
machine includes a page walk cache [12]. The list of benchmarks
we used (as previous work) are presented in Table 1. Each bench-
mark runs in a VM having a single vCPU and 5 GB of memory. The
hypervisor and OS used in our evaluations are Xen 4.8 and Ubuntu

Table 6: Characteristics of the experimental machine.

Processor Single socket Intel(R) Core (TM) i7-3768
@2.40GHz 4cores

Memory 16GB DDR4 1600MHz
DTLB 4-way, 64 entries
ITLB 4-way, 128 entries

Table 7: The total cost (in seconds) of each memory virtual-
ization technology for Redis, gcc and Elastic Search.

Technology Redis gcc Elastic Search
𝐶𝐷𝑆−𝑛 3 13 14
𝐶𝐸𝑃𝑇 17 17 46
𝐶𝑆ℎ𝑎 25 62 201

16.04 (Linux kernel 4.15) respectively.

6.2.2 Results. Figure 6 presents the evaluation results. We only
presented the results for DS-1 because we obtained almost the same
results with DS-2 and DS-3. This is because the cost of register-to-
register operations realized in DS-1, DS-2 and DS-3 is extremely
low compared to the cost of a 2D page walk.

Figure 6 is interpreted as follows. First, obviously CPU-intensive-
only applications (e.g., hmmer from PARSEC) do not benefit enough
from DS-n. Second, we confirm that DS-n almost nullifies the over-
head of memory virtualization and leads the application to almost
the same performance as in native systems. In fact, all black his-
togram bars are very close to 1. DS-n outperforms both EPT (up
to 30% of performance difference for mcf) and shadow paging (up
to 370% of performance difference for Elastic Search). Finally, we
observe that DS-n produces a very low, close to zero, overhead
(0.35%) but also a stable overhead (0.42 standard deviation). While
a smaller overhead is always appreciated, a stable overhead can
also be a requirement to host latency-sensitive applications, e.g.
databases or real-time systems.

To justify the origin of this significant performance gap between
these memory virtualization technologies, we analyzed the values
of the internal metrics focusing on applications such as Redis, gcc,
and Elastic Search. For DS-n, the cost of memory virtualization is
𝐶𝐷𝑆−𝑛 = 𝐶1𝐷 × 𝑁𝐷𝑆−𝑛

𝑡𝑙𝑏
, where 𝐶1𝐷 is the number of CPU cycles

for performing a 1D page walk and 𝑁𝐷𝑆−𝑛
𝑡𝑙𝑏

is the number of TLB
misses. For EPT, that cost is𝐶𝐸𝑃𝑇 = 𝐶2𝐷 ×𝑁𝐸𝑃𝑇

𝑡𝑙𝑏
, where𝐶2𝐷 is the

number of CPU cycles used to perform a 2D page walk and 𝑁𝐸𝑃𝑇
𝑡𝑙𝑏

is the number of TLB misses. For shadow paging, the cost is𝐶𝑆ℎ𝑎 =

𝐶1𝐷 ×𝑁𝑆ℎ𝑎
𝑡𝑙𝑏

+𝑁𝑆ℎ𝑎
𝑒𝑥𝑖𝑡

× (𝐶𝑒𝑥𝑖𝑡 +𝐶𝑒𝑛𝑡𝑒𝑟 +𝐶ℎ𝑎𝑛𝑑𝑙𝑒𝑟 ), where 𝑁𝑆ℎ𝑎
𝑡𝑙𝑏

is the
number of TLB misses; 𝑁𝑆ℎ𝑎

𝑒𝑥𝑖𝑡
is the number of VMExits related to

page table modification operations; 𝐶𝑒𝑥𝑖𝑡 is the cost of performing
VMExit followed byVMEnter; and𝐶ℎ𝑎𝑛𝑑𝑙𝑒𝑟 is the average execution
time of memory management handlers in the hypervisor. Table 7
presents these particular costs on our experimental machine. We
observe that 𝐶𝐷𝑆−𝑛 is much lower than 𝐶𝐸𝑃𝑇 (e.g., ×6 for Redis)
and 𝐶𝑆ℎ𝑎 (×14).
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Figure 6: Performance overhead of DS-n compared with shadow paging (SP) and EPT. Lower is better.

Table 8: Memory allocation latency (mean-stdev) in ms.

Solution Bitbrains Azure Private
clouds

BaseLine 6.42-139.47 17.76-520.55 1.92-18.27
DynamicOptionSelec 3.57-1.23 3.42-1.18 0.098-0.011

6.3 Startup Impact
Recall that Compromis extends the Cloud scheduler (which inter-
venes at VM startup time) and changes the default memory allocator
used by the hypervisor (also at VM start time). Therefore, one may
legitimately ask where would these changes have an impact regard-
ing VM startup latency. We answer this question by summing the
cost of the extension with the cost of our memory allocation algo-
rithm, then comparing it with the cost of the default Xen memory
allocation algorithm. We rely on simulation logs generated during
the evaluations presented in Section 6.1. The experiment shows
that almost all of the different versions of our solution have the
same complexity, thus we focus the results for DynamicOptionSelec
in Table 8. These results are interpreted as follows. Firstly, we ob-
serve that our solution reduces the startup time by up to 80% for
Azure VMs. This is because our allocation algorithm is simpler with
regards to Xen, which organizes memory in several memory chunk
lists and iterates over these lists several times to satisfy memory
demand. Secondly, the smaller standard deviation illustrates that
VM startup time with our solution is more stable than that of Xen.
Such a predictability is critical for auto-scaling services, as demon-
strated by Nitu et. al. [33]. The Xen unpredictability comes from its
complex memory allocation algorithm presented above.

7 RELATEDWORK
The overhead of memory virtualization has been measured by sev-
eral previous works [12–14, 16–18, 22, 26, 30, 34, 35, 46]. It has also
been shown that this overhead is exacerbated in virtualized environ-
ments [6–9, 15, 19, 24, 25, 25, 36, 43, 45, 46]. This section presents
existing work in the latter context. The research in this domain can
be classified into two categories: software and hardware-assisted
solutions.

Software Solutions. Direct paging [5] is similar to shadow pag-
ing [44] (presented in Section 2.1), but it requires the modification
of the guest OS. In Direct paging [5], the hypervisor introduces an
additional level of abstraction between what the guest sees as phys-
ical memory and the underlying machine memory. This is done
through the introduction of a Physical to Machine (P2M) mapping

maintained within the hypervisor such as in shadow paging. The
guest OS is aware of the P2M mapping and is modified in a such a
way that it writes entries mapping virtual addresses directly to the
machine address space by using the P2M, instead of writing PTEs.
Like shadow paging, direct paging uses a 1D page walk to han-
dle a TLB miss. However, it includes two main drawbacks: context
switches between the guest and the hypervisor for building the P2M
table, and the modification of the guest OS (making proprietary
OSes such as Windows not usable).

Hardware-Assisted Solutions. Both Intel and AMD proposed
EPT [15, 43], a hardware-assisted solution which does not include
the software solution’s limitations. We have already presented this
solution in Section 2.2. As shown in the section, EPT is far from
satisfactory because of the 2D page walk that it imposes. To reduce
the overhead caused by this 2D page walk, several works have
proposed the extension of the page walk cache (PWC) [12] already
used in native systems. Such a cache avoids page walk on PWC hit.
[15] investigated for the first time this extension of PWC for EPT.
The main limitation of such solutions is their inefficiency facing
large working set size VMs (e.g., in-memory databases) [46]. In ad-
dition, PWC based solutions suffer from a high rate of cache misses
when several VMs share the same machine due to cache evictions.
[8] used a flat EPT instead of the traditional multi-level radix. This
way, the authors reduced the number of memory references on
each TLB miss to 9. Compromis totally eliminates the EPT, resulting
in 4 memory references for each TLB miss.

Some solutions improved the TLB [36, 38, 46]. [38] presented
POM-TLB, a very large level-3 in RAM TLB. POM-TLB brings two
main advantages. First, the number of TLB misses is reduced be-
cause of the large TLB size, thus reducing the number of 2D page
walks. Second, POM-TLB benefits the data cache to reduce RAM
references. However, on a cache miss a RAM access is necessary.
Additionally, on a POM-TLB miss, the hardware still needs to per-
form a 2D page walk. This solution can be used at the same time
with Compromis.

[45] and [25] showed that neither EPT nor shadow paging can be
a definite winner. They proposed dynamic switching mechanisms
that exceed the benefits of each technique. To this end, TLB misses
and guest page faults are monitored to determine the best technique
to apply. Such dynamic solutions come with a significant overhead
related to two tasks: the monitoring and computing of necessary
metrics consumes a lot of CPU cycles, and switching from one
technique to another requires rebuilding new page tables.
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Orthogonal Solutions. Some researchers like [28, 29] proposed
the utilization of huge pages [4, 39] in the guest OS and the hy-
pervisor at the same time. This way, the number of hierarchies in
the page table is reduced, thus the number of memory references
during page walk is reduced too. However, using huge pages leads
to two main limitations for the guest. First, it increases memory
fragmentation, thus memory waste for the guest. This could lead
to memory pressure in the guest OS, resulting in swapping, which
is unfavourable for application performance. Second, huge pages
increase average and tail memory allocation latency in the guest
because zeroing a huge page at page allocation time is more time
consuming than zeroing a 4Kb page.

[42] proposed Hashed page tables in native systems as an effi-
cient alternative to the radix page table structure. With hashed page
tables, address translation is done using a single memory reference,
assuming no collision. [46] presented how this technique can be
adapted for virtualized systems. The authors showed that by using
a 2D hashed page table hierarchy, the page walk is done with 3
memory references instead of 24. This is one less than in Compro-
mis and native systems but suffers from hash collisions. A recent
work [31] proposes "Address Translation with Prefetching" (ASAP)
which launches prefetches to the deeper levels of the page table, by-
passing the preceding levels. These prefetches happen concurrently
with a conventional page walk, which observes a latency reduction
due to prefetching while guaranteeing that only correctly-predicted
entries are consumed.

Direct segment (DS) based solutions. Previous work showed
the benefits of DS in both native [13, 27] and virtualized systems
[9, 24, 25]. presented DVMT[9], a mechanism which allows ap-
plications inside the VM to request DS allocations directly from
the hypervisor. The application is responsible for mapping GVAs
which are in the allocated DS address space. This is a limitation for
application developers who are not experts. [24] proposed three
memory virtualization solutions based on DS. Their VMM Direct
mode is very close to Compromis, but DS does not concern the
entire VM memory. In other words, VMM Direct proposes to use
contiguous memory addressing for some applications and not at the
VM scale. In addition, the authors mainly investigated the two other
modes. Our contribution in this article is threefold: Hardware-level
contribution, Hypervisor-level contribution and Cloud scheduler
level contribution which is not the case with existing works.

More generally, existing solutions in this category mainly fo-
cused on hardware contributions while we study the consequences
on the entire cloud stack. These solutions also relied only on sim-
ulations, while we tried to perform accurate experiments on real
machines using real systems. Finally, by relying on trace analy-
sis, we motivate for the first time the relevance of DS on virtual
machines.

8 CONCLUSION
This paper presented Compromis, a novel MMU solution for vir-
tualized systems. Compromis generalizes DS to provide the entire
VM memory space using a minimal number of memory segments.
In this way, the hardware page table walker performs a 1D page
walk as in native systems. By analyzing several production data-
center traces, the paper showed that Compromis provisioned up to

99.99% VMs with a single memory segment. The paper presented a
systematic implementation of Compromis in the hardware, the hy-
pervisor and the cloud scheduler. The evaluation results show that
Compromis reduces the memory virtualization overhead to only
0.35%. Furthermore, Compromis reduces the VM startup latency by
up to 80% while providing also a predictable startup time.
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