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A note on the join of varieties of monoids with

LI

Nathan Grosshans∗

Abstract

In this note, we give a characterisation in terms of identities of the

join of V with LI for several well-known varieties of monoids V by using

classical algebraic-automata-theoretic techniques. To achieve this, we use

the new notion of essentially-V stamps defined by Grosshans, McKenzie

and Segoufin and show that it actually coincides with the join of V and

LI precisely when some natural condition on the variety of languages

corresponding to V is verified.

This work is a kind of rediscovery of the work of J. C. Costa 20 years

ago from a rather different angle, since Costa’s work relies on the use of

advanced developments in profinite topology, whereas what is presented

here essentially uses an algebraic, language-based approach.

1 Introduction

The general endeavour to understand the join of two varieties has attracted
many research efforts (see [1, 9]) and a non-negligible part of those efforts were
concentrated on the question of charaterising the join of LI and some variety of
monoids in terms of identities (see [2]).

In this note, we give a characterisation in terms of identities of V ∨ LI for
several well-known varieties of monoids V by using classical algebraic-automata-
theoretic techniques. To achieve this, we use the new notion of essentially-V
stamps defined by McKenzie, Segoufin and the author in [5] and show that it
actually coincides with V ∨LI precisely when some natural condition on L(V)
is verified.

This work is a kind of rediscovery of the work of J. C. Costa [2] from a rather
different angle, since Costa’s work relies on the use of advanced developments in
profinite topology, whereas what is presented here essentially uses an algebraic,
language-based approach.

2 Preliminaries

For the basics and the classical results of automata theory, we refer the reader
to the two classical references of the domain by Eilenberg [3, 4] and Pin [6]. For
definitions and results specific to C-varieties of stamps and associated profinite
identities, see the article by Pin and Straubing [7].

∗Universität Kassel, Fachgebiet Elektrotechnik / Informatik, Kassel, Germany,
nathan.grosshans@polytechnique.edu , https://nathan.grosshans.me .
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Note that if V is a variety of monoids, then 〈V〉all is the all -variety of
stamps of all stamps ϕ : Σ∗ → M such that M ∈ V. Note that in that case, the
variety of languages corresponding to V is exactly the all -variety of languages
corresponding to 〈V〉all.

Similarly, if V is a variety of semigroups, then 〈V〉ne is the ne-variety of
stamps of all stamps ϕ : Σ∗ → M such that ϕ(Σ+) ∈ V. In that case, we
consider L(V) to be the ne-variety of languages corresponding to 〈V〉ne.

The variety LI of finite locally trivial semigroups is well-known to be defined
by the identity xωyxω = xω and such that L(LI) is the class of languages that are
Boolean combinations of languages of the form uΣ∗ or Σ∗u for Σ any alphabet
and u ∈ Σ+, or equivalently the class of languages of the form UΣ∗V ∪W with
U, V,W ⊆ Σ∗ finite for Σ any alphabet (see [6, p. 38]).

Given some variety of monoids V, the join of V and LI, denoted by V∨LI,
is the inclusion-wise smallest variety of semigroups containing both V and LI.
In fact, a finite semigroup S belongs to V ∨LI if and ony if there exist M ∈ V

and T ∈ LI such that S divides the semigroup M × T . (See [4, Chapter V,
Exercise 1.1].)

Proposition 2.1. Let V be a variety of monoids. Then L(V ∨ LI) is the
inclusion-wise smallest ne-variety of languages containing both L(V) and L(LI)
and is equal to the Boolean closure of L(V) ∪ L(LI).

3 Essentially-V stamps

In this section, we give a characterisation of essentially-V stamps (defined in [5]),
for V a variety of monoids, in terms of identities. We first recall the definition.

Definition 3.1. Let V be a variety of monoids. Let ϕ : Σ∗ → M be a stamp
from an alphabet Σ to a finite monoid M . Let s be the stability index of ϕ.

We say that ϕ is essentially-V whenever there exists a stamp µ : Σ∗ → N
with N ∈ V such that for all u, v ∈ Σ∗, we have

µ(u) = µ(v) ⇒
(
ϕ(xuy) = ϕ(xvy) ∀x, y ∈ Σs

)
.

We will denote by EV the class of all essentially-V stamps.

Now, we give an equivalent condition for a stamp to be essentially-V, based
on a specific congruence depending on that stamp.

Definition 3.2. Let ϕ : Σ∗ → M for Σ an alphabet and M a finite monoid be
a stamp and let s be its stability index. We define the equivalence relation ≡ϕ

on Σ∗ by u ≡ϕ v for u, v ∈ Σ∗ whenever ϕ(xuy) = ϕ(xvy) for all x, y ∈ Σ≥s.

Proposition 3.3. Let ϕ : Σ∗ → M for Σ an alphabet and M a finite monoid
be a stamp. Then ≡ϕ is a congruence of finite index and for any variety of
monoids V, we have ϕ ∈ EV if and only if Σ∗/≡ϕ∈ V.

Proof. Let us denote by s the stability index of ϕ.
The equivalence relation≡ϕ is a congruence because given u, v ∈ Σ∗ verifying

u ≡ϕ v, for all α, β ∈ Σ∗, we have αuβ ≡ϕ αvβ since for any x, y ∈ Σ≥s, it
holds that ϕ(xαuβy) = ϕ(xαvβy) because xα, βy ∈ Σ≥s. Furthermore, this
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congruence is of finite index because for all u, v ∈ Σ∗, we have that ϕ(u) = ϕ(v)
implies u ≡ϕ v.

Let now V be a variety of monoids. Assume first that Σ∗/≡ϕ∈ V. It is
quite direct to see that ϕ ∈ EV, as the stamp µ : Σ∗ → Σ∗/≡ϕ defined by
µ(w) = [w]≡ϕ

for all w ∈ Σ∗ witnesses this fact. Assume then that ϕ ∈ EV.
This means that there exists a stamp µ : Σ∗ → N with N ∈ V such that for all
u, v ∈ Σ∗, we have

µ(u) = µ(v) ⇒
(
ϕ(xuy) = ϕ(xvy) ∀x, y ∈ Σs

)
.

Now consider u, v ∈ Σ∗ such that µ(u) = µ(v). For any x, y ∈ Σ≥s, we have
that x = x1x2 with x1 ∈ Σ∗ and x2 ∈ Σs as well as y = y1y2 with y1 ∈ Σs

and y2 ∈ Σ∗, so that ϕ(xuy) = ϕ(x1)ϕ(x2uy1)ϕ(y2) = ϕ(x1ϕ(x2vy1)ϕ(y2) =
ϕ(xvy). Hence, u ≡ϕ v. Therefore, for all u, v ∈ Σ∗, we have that µ(u) = µ(v)
implies u ≡ϕ v, so we can define the application α : N → Σ∗/≡ϕ such that
α(µ(w)) = [w]≡α

for all w ∈ Σ∗. It is easy to check that α is actually a
surjective morphism. Thus, we can conclude that Σ∗/≡ϕ, which divides N ,
belongs to V.

Using this equivalent condition, we prove that given a set of ne-identities
defining 〈V〉all for some variety of monoids V, we get a set of ne-identities
defining EV, which actually shows that EV is an ne-variety of stamps along
the way.

Proposition 3.4. Let V be a variety of monoids and let E be a set of identities
such that 〈V〉all = [[E]]

ne
. Then

EV = [[xωyuztω = xωyvztω | u = v ∈ E, x, y, z, t /∈ alph(u) ∪ alph(v)]]
ne

.

Proof. Let

F = {xωyuztω = xωyvztω | u = v ∈ E, x, y, z, t /∈ alph(u) ∪ alph(v)} .

Central to the proof is the following claim.

Claim 3.5. Let ϕ : Σ∗ → M for Σ an alphabet and M a finite monoid be a
stamp. Consider the stamp µ : Σ∗ → Σ∗/≡ϕ defined by µ(w) = [w]≡ϕ

for all

w ∈ Σ∗. It holds that for all u, v ∈ Σ̂∗,

µ̂(u) = µ̂(v) ⇔
(
ϕ̂(αωβuγδω) = ϕ̂(αωβvγδω) ∀α, β, γ, δ ∈ Σ+

)
.

Using this claim, we can prove that EV = [[F ]]
ne

.

Inclusion from left to right. Let ϕ : Σ∗ → M for Σ an alphabet and M a
finite monoid be a stamp in EV. Consider the stamp µ : Σ∗ → Σ∗/≡ϕ defined
by µ(w) = [w]≡ϕ

for all w ∈ Σ∗. Since ϕ ∈ EV, Proposition 3.3 tells us that
Σ∗/≡ϕ∈ V, hence µ ∈ 〈V〉all.

Let us consider any identity xωyuztω = xωyvztω ∈ F . It is thus defined on an
alphabet B with u = v ∈ E defined on an alphabet A ⊆ B and x, y, z, t ∈ B \A.
Let f : B∗ → Σ∗ be an ne-morphism. Since µ ∈ 〈V〉all, we have that µ satisfies
the identity u = v, so that µ̂(f̂(u)) = µ̂(f̂(v)). Notice that we have that
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f̂(xω) = f(x)ω as well as f̂(tω) = f(t)ω and that f(x), f(y), f(z), f(t) ∈ Σ+

because f is non-erasing. Therefore, we have

ϕ̂
(
f̂(xωyuztω)

)
= ϕ̂

(
f(x)ωf(y)f̂(u)f(z)f(t)ω

)

= ϕ̂
(
f(x)ωf(y)f̂(v)f(z)f(t)ω

)

= ϕ̂
(
f̂(xωyvztω)

)

by Claim 3.5. As this holds for any ne-morphism f : B∗ → Σ∗, we can conclude
that ϕ satisfies the identity xωyuztω = xωyvztω.

This is true for any identity in F , so ϕ ∈ [[F ]]
ne

. In conclusion, EV ⊆ [[F ]]
ne

.

Inclusion from right to left. Let ϕ : Σ∗ → M for Σ an alphabet and M a
finite monoid be a stamp in [[F ]]

ne
. Consider the stamp µ : Σ∗ → Σ∗/≡ϕ defined

by µ(w) = [w]≡ϕ
for all w ∈ Σ∗. We are now going to show that µ ∈ 〈V〉all.

Take any identity u = v ∈ E defined on an alphabet A. There is thus an
identity xωyuztω = xωyvztω ∈ F defined on an alphabet B such that A ⊆ B
and x, y, z, t ∈ B \A. Let f : A∗ → Σ∗ be an ne-morphism.

Take any α, β, γ, δ ∈ Σ+. Let us define the ne-morphism g : B∗ → Σ∗ as the
unique one such that for all b ∈ B,

g(b) =





f(b) if b ∈ A

α if b = x

β if b = y

γ if b = z

δ if b = t

.

Observe in particular that ĝ(w) = f̂(w) for any w ∈ Â∗ and that ĝ(xω) =
g(x)ω = αω as well as ĝ(tω) = δω. Now, as ϕ satisfies xωyuztω = xωyvztω, we
have that

ϕ̂
(
αωβf̂(u)γδω

)
= ϕ̂

(
ĝ(xωyuztω)

)

= ϕ̂
(
ĝ(xωyvztω)

)

= ϕ̂
(
αωβf̂(v)γδω

)
.

Since this holds for any α, β, γ, δ ∈ Σ+, by Claim 3.5, we have that µ̂(f̂(u)) =

µ̂(f̂(v)).
Therefore, µ̂(f̂(u)) = µ̂(f̂(v)) for any ne-morphism f : A∗ → Σ∗, which

means that µ satisfies u = v.
So, to conclude, since this is true for any u = v ∈ E, we have that µ ∈

〈V〉all, which implies that Σ∗/≡ϕ∈ V and thus ϕ ∈ EV by Proposition 3.3. In
conclusion, [[F ]]

ne
⊆ EV.

The claim still needs to be proved.

Proof of Claim 3.5. Let ϕ : Σ∗ → M for Σ an alphabet and M a finite monoid
be a stamp of stability index s. Consider the stamp µ : Σ∗ → Σ∗/≡ϕ defined by
µ(w) = [w]≡ϕ

for all w ∈ Σ∗. We now want to show that for all u, v ∈ Σ̂∗,

µ̂(u) = µ̂(v) ⇔
(
ϕ̂(αωβuγδω) = ϕ̂(αωβvγδω) ∀α, β, γ, δ ∈ Σ+

)
.
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Let u, v ∈ Σ̂∗. There exist two Cauchy sequences (un)n≥0 and (vn)n≥0 in
Σ∗ such that u = limn→∞ un and v = limn→∞ vn. This means that

µ̂(u) = lim
n→∞

µ(un) and ϕ̂(u) = lim
n→∞

ϕ(un)

as well as

µ̂(v) = lim
n→∞

µ(vn) and ϕ̂(v) = lim
n→∞

ϕ(vn) .

But as Σ∗/≡ϕ and M are discrete, we have that all four Cauchy sequences(
µ(un)

)
n≥0

,
(
ϕ(un)

)
n≥0

,
(
µ(vn)

)
n≥0

and
(
ϕ(vn)

)
n≥0

are ultimately constant.
So there exists k ∈ N such that µ̂(u) = µ(uk), ϕ̂(u) = ϕ(uk), µ̂(v) = µ(vk) and
ϕ̂(v) = ϕ(vk).

Assume first that µ̂(u) = µ̂(v). Take any α, β, γ, δ ∈ Σ+. We have that

ϕ̂(αω) = ϕ̂( lim
n→∞

αn!) = lim
n→∞

ϕ(αn!)

and ϕ̂(δω) = limn→∞ ϕ(δn!). Since M is discrete, both Cauchy sequences(
ϕ(αn!)

)
n≥0

and
(
ϕ(δn!)

)
n≥0

are ultimately constant. So there exists l ∈

N such that for all m ∈ N,m ≥ l, we have limn→∞ ϕ(αn!) = ϕ(αm!) and
limn→∞ ϕ(δn!) = ϕ(δm!). Hence, taking some m ∈ N,m ≥ l such that

∣∣αm!β
∣∣ ≥

s and
∣∣γδm!

∣∣ ≥ s, it follows that

ϕ̂(αωβuγδω) = ϕ(αm!βukγδ
m!) = ϕ(αm!βvkγδ

m!) = ϕ̂(αωβvγδω)

because [uk]≡ϕ
= µ̂(u) = µ̂(v) = [vk]≡ϕ

. Thus, we have that

ϕ̂(αωβuγδω) = ϕ̂(αωβvγδω)

for all α, β, γ, δ ∈ Σ+.
Assume then that ϕ̂(αωβuγδω) = ϕ̂(αωβvγδω) for all α, β, γ, δ ∈ Σ+. Take

any α, β ∈ Σ≥s. Since ϕ(Σs) is a finite semigroup and verifies that ϕ(Σs) =
ϕ(Σs)2, by a classical result in finite semigroup theory (see e.g. [6, Chapter 1,
Proposition 1.12]), we have that there exist α1, e, f, β2 ∈ Σs and α2, β1 ∈ Σ≥s

such that ϕ(α1eα2) = ϕ(α) and ϕ(β1fβ2) = ϕ(β) with ϕ(e) and ϕ(f) idempo-
tents. Now, since ϕ(e) is idempotent, we have that

ϕ̂(eω) = ϕ̂( lim
n→∞

en!) = lim
n→∞

ϕ(en!) = lim
n→∞

ϕ(e)n! = ϕ(e)

and similarly, ϕ̂(fω) = ϕ(f). So it follows that

ϕ(αukβ) = ϕ(α1eα2ukβ1fβ2)

= ϕ̂(α1e
ωα2uβ1f

ωβ2)

= ϕ̂(α1e
ωα2vβ1f

ωβ2)

= ϕ(α1eα2vkβ1fβ2)

= ϕ(αvkβ) .

As this is true for any α, β ∈ Σ≥s, by definition it holds that uk ≡ϕ vk, hence
µ̂(u) = µ(uk) = µ(vk) = µ̂(v).

This concludes the proof of the proposition.
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4 Essentially-V stamps and the join of V and LI

In this section, we establish the link between essentially-V stamps and V ∨ LI

by giving a criterion that characterises exactly when they do correspond.
A first result we can prove is that any stamp whose semigroup obtained as

image of the set of non-empty words belongs to V ∨ LI is essentially-V.

Lemma 4.1. Let V be a variety of monoids and ϕ : Σ∗ → M for Σ an alphabet
and M a finite monoid a stamp such that ϕ(Σ+) ∈ V∨LI. Then ϕ is essentially-
V.

Proof. Let S = ϕ(Σ+) and let s be the stability index of ϕ. Since S ∈ V ∨ LI,
there exist N ∈ V and T ∈ LI such that S divides the semigroup N × T . So
there exist a subsemigroup S′ of N × T and a surjective morphism α : S′ → S.
We define π1 : N ×T → N and π2 : N ×T → T to be the projection morphisms
from N × T onto N and T , respectively.

Let h : S → S′ be an arbitrary mapping from S to S′ such that α(h(r)) = r
for all r ∈ S. We can then uniquely define the morphism ϕ′ : Σ+ → S′ such that
ϕ′(a) = h(ϕ(a)) for all a ∈ Σ. We can also define the unique stamp µ : Σ∗ → N ′

such that µ(a) = π1(ϕ
′(a)) for all a ∈ Σ and N ′ ∈ V is the submonoid of

N generated by
{
π1(ϕ

′(a)) | a ∈ Σ
}
. Hence, for all w ∈ Σ+, we have that

µ(w) = π1(ϕ
′(w)) and that α(ϕ′(w)) = ϕ(w).

Now, take u, v ∈ Σ∗ such that µ(u) = µ(v) and take any x, y ∈ Σs. Since
ϕ(Σs) is a finite semigroup and verifies that ϕ(Σs) = ϕ(Σs)2, by a classical
result in finite semigroup theory (see e.g. [6, Chapter 1, Proposition 1.12]), we
have that there exist x1, e, x2, y1, f, y2 ∈ Σs such that ϕ(x1ex2) = ϕ(x) and
ϕ(y1fy2) = ϕ(y) with ϕ(e) and ϕ(f) idempotents. If we denote by ω the
idempotent power of T , since S′ is a subsemigroup of N × T with T ∈ LI, it
follows that

π2(ϕ
′(eωx2uy1f

ω)) = π2(ϕ
′(e))ωπ2(ϕ

′(x2uy1))π2(ϕ
′(f))ωπ2(ϕ

′(e))ωπ2(ϕ
′(f))ω

= π2(ϕ
′(e))ωπ2(ϕ

′(f))ω

= π2(ϕ
′(eωx2vy1f

ω)) ,

so that
π2(ϕ

′(x1e
ωx2uy1f

ωy2)) = π2(ϕ
′(x1e

ωx2vy1f
ωy2)) .

Moreover, from the hypothesis that µ(u) = µ(v), we can deduce that

π1(ϕ
′(x1e

ωx2uy1f
ωy2)) = π1(ϕ

′(x1e
ωx2))µ(u)π1(ϕ

′(y1f
ωy2))

= π1(ϕ
′(x1e

ωx2))µ(v)π1(ϕ
′(y1f

ωy2))

= π1(ϕ
′(x1e

ωx2vy1f
ωy2)) .

Therefore, we can conclude that

ϕ′(x1e
ωx2uy1f

ωy2) = ϕ′(x1e
ωx2vy1f

ωy2)

ϕ(x1e
ωx2uy1f

ωy2) = ϕ(x1e
ωx2vy1f

ωy2)

ϕ(x1ex2uy1fy2) = ϕ(x1ex2vy1fy2)

ϕ(xuy) = ϕ(xvy) .
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Hence, for all u, v ∈ Σ∗, we have

µ(u) = µ(v) ⇒
(
ϕ(xuy) = ϕ(xvy) ∀x, y ∈ Σs

)
,

so that ϕ ∈ EV.

When does the converse of this statement hold? Consider the following
criterion for a variety of monoids V.

Criterion (A). For any L ∈ L(V) over some alphabet Σ, we have xLy ∈
L(V ∨ LI) for all x, y ∈ Σ∗.

It is a kind of mild closure condition that appears naturally as a necessary
condition for the converse of Lemma 4.1 to be true. (Basically because for any
variety of monoids V, we always have that xLy ∈ L(EV) for any L ∈ L(V)
over some alphabet Σ and x, y ∈ Σ∗.)

Lemma 4.2. Let V be a variety of monoids such that for any stamp ϕ : Σ∗ → M
for Σ an alphabet and M a finite monoid, we have ϕ ∈ EV if and only if
ϕ(Σ+) ∈ V ∨ LI. Then V verifies criterion (A).

Proof. Let L ∈ L(V) over some alphabet Σ. Let µ : Σ∗ → N be its syntactic
morphism: this means that N ∈ V and that there exists F ⊆ N such that
L = µ−1(F ).

Now take x, y ∈ Σ∗. Let ϕ : Σ∗ → M be the syntactic morphism of the
language xLy = xΣ∗y ∩ Σ|x|µ−1(F )Σ|y| and let s be its stability index. We
then consider some u, v ∈ Σ∗ such that µ(u) = µ(v). Take any x′, y′ ∈ Σ∗ such
that |x′| ≥ |x| and |y′| ≥ |y|. We clearly have that x′uy′ ∈ xΣ∗y if and only
if x′vy′ ∈ xΣ∗y. Moreover, x′ = x′

1x
′
2 for some x′

1 ∈ Σ|x| and x′
2 ∈ Σ∗ and

y′ = y′1y
′
2 for some y′1 ∈ Σ∗ and y′2 ∈ Σ|y|, so that

x′uy′ ∈ Σ|x|µ−1(F )Σ|y| ⇔ µ(x′
2uy

′
1) ∈ F

⇔ µ(x′
2vy

′
1) ∈ F

⇔ x′vy′ ∈ Σ|x|µ−1(F )Σ|y| .

Hence, x′uy′ ∈ xLy if and only if x′vy′ ∈ xLy for all x′, y′ ∈ Σ∗ such that
|x′| ≥ |x| and |y′| ≥ |y|, so that, by definition of the stability index s of ϕ, we
have ϕ(x′uy′) = ϕ(x′vy′) for all x′, y′ ∈ Σs. Thus, it follows that ϕ ∈ EV.

By hypothesis, this means that ϕ(Σ+) ∈ V ∨ LI, that is, the syntactic
semigroup of xLy belongs to V ∨ LI. Therefore, xLy ∈ L(V ∨ LI).

As it is true for any L ∈ L(V) over some alphabet Σ and any x, y ∈ Σ∗, we
can conclude that V verifies criterion (A).

But criterion (A) is also a sufficient condition for the converse of Lemma 4.1
to be true, as we will now prove.

Lemma 4.3. Let V be a variety of monoids that verifies criterion (A). Then
for any stamp ϕ : Σ∗ → M for Σ an alphabet and M a finite monoid, we have
ϕ ∈ EV if and only if ϕ(Σ+) ∈ V ∨ LI.

Proof. Let ϕ : Σ∗ → M for Σ an alphabet and M a finite monoid be a stamp.
Assume first that ϕ(Σ+) ∈ V ∨ LI. Then, by Lemma 4.1, we have that

ϕ ∈ EV.
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Assume now that ϕ ∈ EV. Given s its stability index, this means there
exists a stamp µ : Σ∗ → N with N ∈ V such that for all u, v ∈ Σ∗, we have

µ(u) = µ(v) ⇒
(
ϕ(xuy) = ϕ(xvy) ∀x, y ∈ Σs

)
.

As V verifies criterion (A), for any m ∈ N and x, y ∈ Σs, the syntactic morphism
ηm,x,y : Σ

∗ → Mm,x,y of the language xµ−1(m)y verifies ηm,x,y(Σ
+) ∈ V ∨ LI.

Let E = N × Σs × Σs and let us now define the unique stamp ϕ′ : Σ∗ → S′1

such that ϕ′(a) =
∏

(m,x,y)∈E ηm,x,y(a) for all a ∈ Σ and S′ is the subsemigroup
of

∏
(m,x,y)∈E ηm,x,y(Σ

+) generated by {
∏

(m,x,y)∈E ηm,x,y(a) | a ∈ Σ}. It is
obvious that S′ belongs to V ∨ LI.

Let w,w′ ∈ Σ+ such that ϕ′(w) = ϕ′(w′): this means that ηm,x,y(w) =
ηm,x,y(w

′) for all m ∈ N and x, y ∈ Σs. We are going to show that ϕ(w) = ϕ(w′),
by considering two different cases.

• Either it is the case that |w| ≥ 2s or |w′| ≥ 2s. Assume without loss of
generality that |w| ≥ 2s. We thus have that w = xuy for some x, y ∈ Σs

and u ∈ Σ∗. This means that xuy ∈ xµ−1(µ(u))y, but since ηµ(u),x,y(w) =
ηµ(u),x,y(w

′), we also have that w′ ∈ xµ−1(µ(u))y. Hence, w′ = xvy
with v ∈ Σ∗ verifying µ(v) = µ(u). So, to conclude, ϕ(w) = ϕ(xuy) =
ϕ(xvy) = ϕ(w′).

• Or it is the case that |w| < 2s and |w′| < 2s. Assume without loss of
generality that |w′| ≤ |w| < 2s. Take an arbitrary z ∈ Σ2s−|w|: we thus
have that wz = xy for some x, y ∈ Σs, so that wz ∈ xµ−1(1)y where we
denote by 1 the identity of N . But since η1,x,y(w) = η1,x,y(w

′), it must
be that w′z ∈ xµ−1(1)y. However, the sole member of xµ−1(1)y of length
at most 2s is xy, so we have that w′z = wz and hence necessarily that
w = w′. This entails that ϕ(w) = ϕ(w′).

Hence, for all w,w′ ∈ Σ+, we have that ϕ′(w) = ϕ′(w′) ⇒ ϕ(w) = ϕ(w′).
Let S = ϕ(Σ+). Let ρ : S′ → Σ+ be an arbitrary mapping from S′ to Σ+

such that ϕ′(ρ(s′)) = s′ for all s′ ∈ S′. Define the mapping α : S′ → S by
α(s′) = ϕ(ρ(s′)) for all s′ ∈ S′.

Let s′1, s
′
2 ∈ S′. We have that α(s′1s

′
2) = ϕ(ρ(s′1s

′
2)). Now, ϕ′(ρ(s′1s

′
2)) =

s′1s
′
2 = ϕ′(ρ(s′1))ϕ

′(ρ(s′2)) = ϕ′(ρ(s′1)ρ(s
′
2)). Hence,

ϕ(ρ(s′1s
′
2)) = ϕ(ρ(s′1)ρ(s

′
2)) = ϕ(ρ(s′1))ϕ(ρ(s

′
2)) = α(s′1)α(s

′
2) .

So α is a morphism. Moreover, it is surjective because for all t ∈ S, there exists
w ∈ Σ+ such that ϕ(w) = t and thus α(ϕ′(w)) = ϕ(ρ(ϕ′(w))) = ϕ(w) since
ϕ′(ρ(ϕ′(w))) = ϕ′(w).

This allows us to conclude that S divides S′ and, thus, that ϕ(Σ+) ∈ V∨LI.
This concludes the proof of the lemma.

The following proposition summarises the results of this section.

Proposition 4.4. Let V be a variety of monoids. Then 〈V ∨LI〉ne ⊆ EV and
there is equality if and only if V verifies criterion (A).
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5 Applications

In this last section, we use the link between essentially-V stamps and V ∨ LI

to reprove some characterisations of joins between LI and some well-known
varieties of monoids in terms of identities.

We first give an equivalent formulation of criterion (A) that solely depends
on the variety of monoids V, without explicit reference to LI.

Proposition 5.1. Let V be a variety of monoids. Then V satifies criterion (A)
if and only if for any L ∈ L(V)(Σ) for some alphabet Σ and x, y ∈ Σ∗, there
exist k, l ∈ Σ∗ such that for all u ∈ Σk, v ∈ Σl, there exists some language
K ∈ L(V) over alphabet Σ verifying u−1Lv−1 = (xu)−1K(vy)−1.

Proof. Let us first observe that given any alphabet Σ, given any language K on
that alphabet and given any two words x, y ∈ Σ∗, we have that x(x−1Ky−1)y =
xΣ∗y ∩K and x−1(xKy)y−1 = K.

Inclusion from right to left. Assume that for any L ∈ L(V)(Σ) for some
alphabet Σ and x, y ∈ Σ∗, there exist k, l ∈ Σ∗ such that for all u ∈ Σk, v ∈ Σl,
there exists some language K ∈ L(V) over alphabet Σ verifying u−1Lv−1 =
(xu)−1K(vy)−1.

This implies, by our observation at the beginning of the proof, that

x(uΣ∗v ∩ L)y = xu(u−1Lv−1)vy = xu
(
(xu)−1K(vy)−1

)
vy = xuΣ∗vy ∩K

for all u ∈ Σk, v ∈ Σl. Using Proposition 2.1, we thus have that x(uΣ∗v∩L)y ∈
L(V ∨ LI)(Σ) for all u ∈ Σk, v ∈ Σl. Moreover, since we have that the set of
words of L of length at least k + l is

Σk+l ∩ L =
⋃

u∈Σk,v∈Σl

(uΣ∗v ∩ L)

and since
L = (Σ≥k+l ∩ L) ∪ F

where F is a finite set of words on Σ of length less than k + l, we have that

xLy = x
(
(Σ≥k+l ∩ L) ∪ F

)
y =

⋃

u∈Σk,v∈Σl

x(uΣ∗v ∩ L)y ∪ xFy .

We can thus conclude that xLy ∈ L(V ∨ LI)(Σ) by using Proposition 2.1 as
well as the fact that xFy ∈ L(LI)(Σ) and because L(V ∨ LI)(Σ) is closed
under unions.

Inclusion from left to right. Assume that V satisfies criterion (A). Take
some L ∈ L(V)(Σ) for some alphabet Σ and take x, y ∈ Σ∗. By hypothesis, we
know that xLy ∈ L(V ∨ LI).

By Proposition 2.1, this means that xLy is a Boolean combination of lan-
guages in L(V)(Σ) ∪ L(LI)(Σ). Further, this implies that xLy can be written
as the union of intersections of languages of L(V)(Σ) and L(LI)(Σ) or their
complements, which in turn implies, by closure of L(V)(Σ) and L(LI)(Σ) un-
der Boolean operations, that xLy can be written as a finite union of languages
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of the form K∩ (UΣ∗V ∪W ) with K ∈ L(V)(Σ) and U, V,W ⊆ Σ∗ finite. Since
any word in xLy must be of length at least |xy| and have x as a prefix and y
as a suffix, we can assume that any language K ∩ (UΣ∗V ∪W ) appearing in a
finite union as described above verifies that U ⊆ xΣ∗, that V ⊆ Σ∗y and that
W ⊆ xΣ∗y. Now, if we take k, l ∈ N big enough, we thus have that

xLy =
⋃

u∈Σk,v∈Σl

(Ku,v ∩ xuΣ∗vy) ∪ F

where Ku,v ∈ L(V)(Σ) for all u ∈ Σk, v ∈ Σl and F ⊆ Σ<|xy|+k+l. Hence, for
all u ∈ Σk, v ∈ Σl, we have

u−1Lv−1 = u−1
(
x−1(xLy)y−1

)
v−1

= (xu)−1
( ⋃

u′∈Σk,v′∈Σl

(Ku′,v′ ∩ xu′Σ∗v′y) ∪ F
)
(vy)−1

=
⋃

u′∈Σk,v′∈Σl

(xu)−1
(
xu′

(
(xu′)−1Ku′,v′(v′y)−1

)
v′y

)
(vy)−1∪

(xu)−1F (vy)−1

= (xu)−1Ku,v(vy)
−1 ,

observing that (xu)−1K(vy)−1 = ∅ for any K ⊆ Σ∗ such that K ∩ xuΣ∗vy =
∅.

We now prove the announced characterisations of joins between LI and some
well-known varieties of monoids in terms of identities.

Theorem 5.2. We have the following.

1. 〈R ∨ LI〉ne = ER = [[xωy(ab)ωaztω = xωy(ab)ωztω]]
ne

.

2. 〈L ∨ LI〉ne = EL = [[xωyb(ab)ωztω = xωy(ab)ωztω]]
ne

.

3. 〈J ∨ LI〉ne = EJ = [[xωy(ab)ωztω = xωy(ba)ωztω, aω+1 = aω]]
ne

.

4. 〈H ∨ LI〉ne = EH for any variety of groups H.

Proof. In each case, we prove that the variety of monoids under consideration
satisfies criterion (A) using Proposition 5.1. We then use Proposition 4.4.

Proof of 1. It is well-known that given an alphabet Σ, the set L(R)(Σ)
contains all languages that are disjoint unions of languages that are of the
form A∗

0a1A
∗
1 · · ·akA

∗
k where k ∈ N, a1, . . . , ak ∈ Σ, A0, A1, . . . , Ak ⊆ Σ∗ and

ai /∈ Ai−1 for all i ∈ [k] (see [6, Chapter 4, Theorem 3.3]).
Let Σ be an alphabet and take some language A∗

0a1A
∗
1 · · · akA

∗
k where k ∈ N,

a1, . . . , ak ∈ Σ, A0, A1, . . . , Ak ⊆ Σ∗ and ai /∈ Ai−1 for all i ∈ [k]. Take
x, y ∈ Σ∗. Observe that y can be uniquely written as y = zt where z, t ∈ Σ∗

and either |t| = 0 and z ∈ A∗
k, or |t| > 0 and t1 /∈ Ak. We have

A∗
0a1A

∗
1 · · · akA

∗
k

=x−1
(
xA∗

0a1A
∗
1 · · · akA

∗
kt ∩

⋂

v∈A
<|z|
k

(xA∗
0a1A

∗
1 · · ·akA

∗
kvt)

∁
)
y−1
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where xA∗
0a1A

∗
1 · · · akA

∗
kt∩

⋂
v∈A

<|z|
k

(xA∗
0a1A

∗
1 · · ·akA

∗
kt)

∁ does belong to the set

L(R)(Σ) because the latter is closed under Boolean operations and by construc-
tion of z and t. We can conclude that for each L ∈ L(R)(Σ) and x, y ∈ Σ∗, there
exists K ∈ L(R)(Σ) such that L = x−1Ky−1 by using the characterisation of
L(R)(Σ) and the fact that x−1K1y

−1 ∪ x−1K2y
−1 = x−1(K1 ∪K2)y

−1 for all
K1,K2 ∈ Σ∗.

Proof of 2. It is also well-known that given an alphabet Σ, the set L(L)(Σ)
contains all languages that are disjoint unions of languages that are of the form
A∗

0a1A
∗
1 · · · akA

∗
k where k ∈ N, a1, . . . , ak ∈ Σ, A0, A1, . . . , Ak ⊆ Σ∗ and ai /∈ Ai

for all i ∈ [k] (see [6, Chapter 4, Theorem 3.4]). The proof is then dual to the
previous case.

Proof of 3. Given an alphabet Σ, for each k ∈ N, we define the equivalence
relation ∼k on Σ∗ by u ∼k v for u, v ∈ Σ∗ whenever u and v have the same set
of subwords of length at most k. This relation is a congruence of finite index
on Σ∗. Simon proved [8] that for all any alphabet Σ, a language belongs to
L(J)(Σ) if and only it is equal to a union of ∼k-classes for some k ∈ N.

Let Σ be an alphabet and take some L ∈ L(J)(Σ) as well as x, y ∈ Σ∗. Thus,
there exists k ∈ N such that L is a union of ∼k-classes. Define the language
K =

⋃
w∈L[xwy]∼|xy|+k

: it belongs to L(J)(Σ) by construction. We now show
that L = x−1Ky−1, which concludes the proof. Let w ∈ L: we have that
xwy ∈ [xwy]∼|xy|+k

⊆ K, so that w ∈ x−1Ky−1. Let conversely w ∈ x−1Ky−1.
This means that xwy ∈ K, which implies that there exists w′ ∈ L such that
xwy ∼|xy|+k xw′y. Actually, it holds that any u ∈ Σ∗ of length at most k is a
subword of w if and only if it is a subword of w′, because xuy is a subword of
xwy if and only if it is a subword of xw′y. Hence, w ∼k w, which implies that
w ∈ L.

Proof of 3. Consider some variety of groups H. Take some language L ∈
L(H)(Σ) for an alphabet Σ and let x, y ∈ Σ∗. Consider the syntactic morphism
η : Σ∗ → M of L: we have that M is a group in H. Define the language
K = η−1

(
η(x)η(L)η(y)

)
. We now show that L = x−1Ky−1, which concludes the

proof. Let w ∈ L: we have that η(xwy) ∈ η(x)η(L)η(y), so that w ∈ x−1Ky−1.
Conversely, let w ∈ x−1Ky−1. We have that xwy ∈ K, which means that
η(xwy) = η(x)η(w′)η(y) for some w′ ∈ L, so that η(w) = η(w′) ∈ η(L), as any
element in H is invertible. Thus, w ∈ L.

6 Conclusion
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