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A note on the join of varieties of monoids with

LI

Nathan GROSSHANS*

Abstract

In this note, we give a characterisation in terms of identities of the
join of V with LI for several well-known varieties of monoids V by using
classical algebraic-automata-theoretic techniques. To achieve this, we use
the new notion of essentially-V stamps defined by Grosshans, McKenzie
and Segoufin and show that it actually coincides with the join of V and
LI precisely when some natural condition on the variety of languages
corresponding to V is verified.

This work is a kind of rediscovery of the work of J. C. Costa 20 years
ago from a rather different angle, since Costa’s work relies on the use of
advanced developments in profinite topology, whereas what is presented
here essentially uses an algebraic, language-based approach.

1 Introduction

The general endeavour to understand the join of two varieties has attracted
many research efforts (see [I,[9]) and a non-negligible part of those efforts were
concentrated on the question of charaterising the join of LI and some variety of
monoids in terms of identities (see [2]).

In this note, we give a characterisation in terms of identities of V Vv LI for
several well-known varieties of monoids V by using classical algebraic-automata-
theoretic techniques. To achieve this, we use the new notion of essentially-V
stamps defined by McKenzie, Segoufin and the author in [5] and show that it
actually coincides with V Vv LI precisely when some natural condition on £(V)
is verified.

This work is a kind of rediscovery of the work of J. C. Costa [2] from a rather
different angle, since Costa’s work relies on the use of advanced developments in
profinite topology, whereas what is presented here essentially uses an algebraic,
language-based approach.

2 Preliminaries

For the basics and the classical results of automata theory, we refer the reader
to the two classical references of the domain by Eilenberg [3] 4] and Pin [6]. For
definitions and results specific to C-varieties of stamps and associated profinite
identities, see the article by Pin and Straubing [7].
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Note that if V is a variety of monoids, then (V). is the all-variety of
stamps of all stamps p: ¥* — M such that M € V. Note that in that case, the
variety of languages corresponding to V is exactly the all-variety of languages
corresponding to (V).

Similarly, if V is a variety of semigroups, then (V),,. is the ne-variety of
stamps of all stamps : ¥* — M such that o(XT) € V. In that case, we
consider £(V) to be the ne-variety of languages corresponding to (V).

The variety LI of finite locally trivial semigroups is well-known to be defined
by the identity z“yx* = a* and such that £(LI) is the class of languages that are
Boolean combinations of languages of the form uX* or ¥X*u for ¥ any alphabet
and u € X7, or equivalently the class of languages of the form UX*V U W with
U,V,WW C ¥* finite for ¥ any alphabet (see [0, p. 38]).

Given some variety of monoids V| the join of V and LI, denoted by V vV LI,
is the inclusion-wise smallest variety of semigroups containing both V and LI.
In fact, a finite semigroup S belongs to V Vv LI if and ony if there exist M € V
and T € LI such that S divides the semigroup M x T. (See [4, Chapter V,
Exercise 1.1].)

Proposition 2.1. Let V be a variety of monoids. Then L(V V LI) is the
inclusion-wise smallest ne-variety of languages containing both L(V) and L(LI)

and is equal to the Boolean closure of L(V)U L(LI).

3 [Essentially-V stamps

In this section, we give a characterisation of essentially-V stamps (defined in [5]),
for V a variety of monoids, in terms of identities. We first recall the definition.

Definition 3.1. Let V be a variety of monoids. Let ¢: ¥* — M be a stamp
from an alphabet X to a finite monoid M. Let s be the stability index of ¢.

We say that ¢ is essentially-V whenever there exists a stamp u: X* — N
with N € V such that for all u,v € ¥, we have

p(u) = p(v) = (plauy) = p(avy) Yo,y € 2°) .
We will denote by EV the class of all essentially-V stamps.

Now, we give an equivalent condition for a stamp to be essentially-V, based
on a specific congruence depending on that stamp.

Definition 3.2. Let ¢: ¥* — M for ¥ an alphabet and M a finite monoid be
a stamp and let s be its stability index. We define the equivalence relation =,
on ¥* by u =, v for u,v € £* whenever p(zuy) = ¢(zvy) for all z,y € =5,

Proposition 3.3. Let p: X* — M for ¥ an alphabet and M a finite monoid
be a stamp. Then =, is a congruence of finite index and for any variety of
monoids V, we have ¢ € EV if and only if £*/=,€ V.

Proof. Let us denote by s the stability index of .

The equivalence relation =, is a congruence because given u, v € ¥* verifying
u =, v, for all o, 8 € ¥*, we have auf =, avf since for any z,y € Y25 it
holds that (zauBy) = @(ravBy) because za, By € L=°. Furthermore, this



congruence is of finite index because for all u,v € ¥*, we have that p(u) = ¢(v)
implies © =, v.

Let now V be a variety of monoids. Assume first that ¥*/=,€ V. It is
quite direct to see that ¢ € EV, as the stamp pu: ¥* — X*/=, defined by
p(w) = [w]=, for all w € ¥* witnesses this fact. Assume then that ¢ € EV.
This means that there exists a stamp p: ¥* — N with N € V such that for all
u,v € X*, we have

p(u) = p(v) = (pruy) = p(zvy) Yo,y € ¥°) .

Now consider u,v € ¥* such that p(u) = p(v). For any x,y € 2%, we have
that x = x129 with 1 € X* and zo € ¥° as well as y = y1y2 with y; € ¥°
and yo € ¥*, so that p(zuy) = p(z1)p(z2uyr)p(y2) = w(T19(T20Y1)9(Y2) =
(zvy). Hence, u =, v. Therefore, for all u,v € £*, we have that pu(u) = p(v)
implies v =, v, so we can define the application a: N — X*/=,, such that
alp(w)) = [wlz, for all w € ¥*. It is easy to check that « is actually a
surjective morphism. Thus, we can conclude that ¥*/=,, which divides N,
belongs to V. O

Using this equivalent condition, we prove that given a set of ne-identities
defining (V)4 for some variety of monoids V, we get a set of ne-identities
defining EV, which actually shows that EV is an ne-variety of stamps along
the way.

Proposition 3.4. Let V be a variety of monoids and let E be a set of identities
such that (V)an = [E],,.. Then

EV = [2“yuzt” = a¥yvzt” |u=v € E,x,y, z,t ¢ alph(u) U alph(v)],, -
Proof. Let
F = {a%yuzt” = a¥yvzt* |u=v € E,z,y,z,t ¢ alph(u) Ualph(v)} .

Central to the proof is the following claim.

Claim 3.5. Let p: ¥* — M for ¥ an alphabet and M o finite monoid be a
stamp. Consider the stamp p: ¥* — ¥* /=, defined by p(w) = [w]=, for all
w € X*. It holds that for all u,v € 2/]\*,

itu) = filv) & (Bla*Buyd®) = Ba“Br7d®) Va,B,7,6 € TF) .

Using this claim, we can prove that EV = [FT], .

Inclusion from left to right. Let ¢: ¥* — M for ¥ an alphabet and M a
finite monoid be a stamp in EV. Consider the stamp p: ¥* — X*/=, defined
by p(w) = [w]=, for all w € ¥*. Since ¢ € EV, Proposition tells us that
Y*/=,€ V, hence p € (V) qu.

Let us consider any identity x“yuzt¥ = x“yvzt¥ € F. It is thus defined on an
alphabet B with u = v € E defined on an alphabet A C B and z,y, z,t € B\ A.
Let f: B* — ¥* be an ne-morphism. Since p € (V) 4, we have that p satisfies

-~

the identity u = v, so that u(f(u)) = G(f(v)). Notice that we have that



fla®) = f(x)* as well as f(t<) = f(t)* and that f(2), f(y), f(2), f(t) € =+

because f is non-erasing. Therefore, we have

B(fx=yuat®)) = B(f(@)° fy) F(u) f(2) F (1))

)¢
= B (@) F ) F ) F ()1 0))
=o(f ( “yvat®))

by Claim B35l As this holds for any ne-morphism f: B* — 3*, we can conclude
that ¢ satisfies the identity x“yuzt¥ = z*yvzt®.
This is true for any identity in F, so ¢ € [F],,.. In conclusion, EV C [F], .

Inclusion from right to left. Let ¢: ¥* — M for ¥ an alphabet and M a
finite monoid be a stamp in [F],,,. Consider the stamp p: X* — X*/=,, defined
by p(w) = [w]=, for all w € ¥*. We are now going to show that p € (V).

Take any identity u = v € E defined on an alphabet A. There is thus an
identity x“yuzt¥ = x¥yvztY € F defined on an alphabet B such that A C B
and z,y,2,t € B\ A. Let f: A* — ¥* be an ne-morphism.

Take any o, 3,7, € 7. Let us define the ne-morphism g: B* — X* as the
unique one such that for all b € B,

f(b) ifbe A
Q@ ifb==x
gb)=48 b=y .
¥ ifb==z
1) ifb=t

Observe in particular that g(w) = fA(w) for any w € A* and that g(zv) =
g(x)? = o as well as g(t¥) = ¢“. Now, as ¢ satisfies z“yuzt* = z¥yvzt?, we
have that

o~

Since this holds for any «, 3,7,d € X7, by Claim [B.5, we have that f(f(u)) =
A(F()). ) A

Therefore, fi(f(u)) = f(f(v)) for any ne-morphism f: A* — ¥*, which
means that u satisfies u = v.

So, to conclude, since this is true for any v = v € E, we have that u €
(V) au, which implies that £*/=,€ V and thus ¢ € EV by Proposition B3 In
conclusion, [F],, C EV.

The claim still needs to be proved.

Proof of Claim [ Let : ¥* — M for ¥ an alphabet and M a finite monoid
be a stamp of stability index s. Consider the stamp p: ¥* — ¥£* /=, defined by

p(w) = [w]=, for all w € ¥*. We now want to show that for all u,v € ¥*,

fi(u) = fi(v) & (B(a” furd®) = §(a”fvyd®) Vo, B,7,0 € X7) .



Let u,v € $*. There exist two Cauchy sequences (uy)n>0 and (vp)n>0 in
¥* such that v = lim,,_, o u,, and v = lim,,_,oc v5,. This means that

pu) = lim_ p(un) and Plu) = lim p(un)
as well as
fi(v) = Tim p(on) and Pv) = lim @(vy) .

But as ¥*/=, and M are discrete, we have that all four Cauchy sequences
(M(Un))n>0, (ga(un))n>0, (u(vn))n>0 and (cp(vn))nzo are ultimately constant.
So there exists k € N such that fi(u) = pu(ux), @(u) = @(ug), fi(v) = pu(vy) and
P(v) = @(v)-

Assume first that fi(u) = fi(v). Take any «, 8,7,0 € XT. We have that

~ WY A 1: n\ 1 n!
p(a”) = @(lim ™) = lim p(a™)

and @(0¥) = lim, oo (™). Since M is discrete, both Cauchy sequences
((p(a”!))n>0 and (@(6”!))n>0 are ultimately constant. So there exists | €
N such that for all m € N,m > [, we have lim, . p(a™) = ¢(a™) and
limy o0 (™) = ©(6™). Hence, taking some m € N,m > [ such that [o™ | >
s and ’76’"!‘ > s, it follows that

P(a”Burd?) = p(a™ Buryd™) = p(a™ Bupyd™) = Ga Buyd®)

because [ug]=, = fi(u) = [i(v) = [vg]=,. Thus, we have that
P(a® Puyd®) = p(a” fuyd®)

for all o, 8,7,0 € &T.

Assume then that (o Buyd?) = p(a® Bvyd®) for all o, 3,v,6 € XT. Take
any a, 3 € X2%. Since p(X*) is a finite semigroup and verifies that ¢(X%) =
©(3*)2, by a classical result in finite semigroup theory (see e.g. [6, Chapter 1,
Proposition 1.12]), we have that there exist ay,e, f, B2 € X* and ag, 31 € X2°
such that p(areas) = p(a) and (81 f82) = ¢(B) with ¢(e) and ¢(f) idempo-
tents. Now, since p(e) is idempotent, we have that

B(e) = B( lim ™) = lim p(e") = lim ()" = p(e)

n—oo n— oo

and similarly, §(f“) = ¢(f). So it follows that

plaugB) = p(areazurfi fB2)
= p(are”azuf ffB2)
= p(are”azvp1 f*B2)
= p(areagvf fB2)
= p(avkp) .
As this is true for any o, 3 € X2°, by definition it holds that wuy =, Vg, hence
i) = p(ug) = ploy) = ). O
This concludes the proof of the proposition. [l



4 Essentially-V stamps and the join of V and LI

In this section, we establish the link between essentially-V stamps and V Vv LI
by giving a criterion that characterises exactly when they do correspond.

A first result we can prove is that any stamp whose semigroup obtained as
image of the set of non-empty words belongs to V Vv LI is essentially-V.

Lemma 4.1. Let V be a variety of monoids and ¢: X* — M for ¥ an alphabet
and M a finite monoid a stamp such that o(X1) € VVLI. Then @ is essentially-
V.

Proof. Let S = ¢(X7) and let s be the stability index of ¢. Since S € V v LI,
there exist N € V and T € LI such that S divides the semigroup N x T. So
there exist a subsemigroup S’ of N x T and a surjective morphism a: S’ — S.
We define m1: N XT — N and w2: N X T — T to be the projection morphisms
from N x T onto N and T, respectively.

Let h: S — S’ be an arbitrary mapping from S to S” such that a(h(r)) =r
for all r € S. We can then uniquely define the morphism ¢': ¥+ — S’ such that
¢'(a) = h(p(a)) for all a € . We can also define the unique stamp p: * — N’
such that p(a) = m1(¢'(a)) for all @ € ¥ and N’ € V is the submonoid of
N generated by {m1(¢'(a)) | a € $}. Hence, for all w € £F, we have that
p(w) = m(¢'(w)) and that (e’ (w)) = p(w).

Now, take u,v € ¥* such that p(u) = pu(v) and take any x,y € X°. Since
©(¥*) is a finite semigroup and verifies that o(X%) = p(X%)2, by a classical
result in finite semigroup theory (see e.g. [6, Chapter 1, Proposition 1.12]), we
have that there exist x1,e,z2,y1, f,y2 € X° such that p(z1exs) = p(z) and
oy1fye) = ¢(y) with p(e) and o(f) idempotents. If we denote by w the
idempotent power of T, since S’ is a subsemigroup of N x T with T € LI, it
follows that

ma (¢’ (€ zauyy f¥ )) m2(¢'(€))“ma (' (wauyr))ma (&' () w2 (¢ (€))“m2 (&' (f))*
ma(¢'(e))“ma(' (£))*
= Wz(@’(e“’xzvyﬁ )
so that
T2 (¢ (z1e”Touys fy2)) = ma (¢’ (21 T20Y1 f¥y2)) -
Moreover, from the hypothesis that u(u) = p(v), we can deduce that

(@' (w1e” zauys f¥y2)) = mi (@' (216%22)) pu(w)m1 (9 (Y1 f“y2))
T (¢ (z1e%w2)) ()1 (¢ (Y1 f“y2))
= mi(¢' (z1“T2001 fy2)) -

Therefore, we can conclude that

@' (x1ezouys fUy2) = @' (1 220Y1 [¥Y2)
p(zre?vauys f¥y2) = p(z1e¥T20Y1 f¥Y2)
p(zrexauyr fy2) = p(z1ex2vy1 fy2)

p(zuy) = p(zvy) .



Hence, for all u,v € ¥*, we have

p(u) = p(v) = (plauy) = plavy) Va,y € £°)
so that p € EV. |

When does the converse of this statement hold? Consider the following
criterion for a variety of monoids V.

Criterion (A). For any L € L(V) over some alphabet ¥, we have xLy €
L(VVLI) for all z,y € X*.

It is a kind of mild closure condition that appears naturally as a necessary
condition for the converse of Lemma [L.1] to be true. (Basically because for any
variety of monoids V, we always have that Ly € L(EV) for any L € L(V)
over some alphabet ¥ and z,y € ¥*.)

Lemma 4.2. Let V be a variety of monoids such that for any stamp ¢: X* — M
for ¥ an alphabet and M a finite monoid, we have ¢ € EV if and only if
©(XT) € VVLIL Then V wverifies criterion .

Proof. Let L € L(V) over some alphabet . Let u: ¥* — N be its syntactic
morphism: this means that N € V and that there exists F' C N such that
L=pY(F).

Now take z,y € ¥*. Let p: ¥* — M be the syntactic morphism of the
language Ly = zX*y N X*1 1 (F)ZY and let s be its stability index. We
then consider some u,v € ¥* such that pu(u) = p(v). Take any 2/,y’ € ¥* such
that |2/| > |z| and |y'| > |y|. We clearly have that z'uy’ € zX*y if and only
if 2'vy’ € x¥*y. Moreover, ' = z)z} for some z} € XI*l and z}, € ¥* and
y' =yl for some g} € ¥* and y, € XY, so that

uy € 2R eV o p(ahuy)) € F
& p(rguyy) € F
& vy e el (Fysl

Hence, 2'uy’ € xLy if and only if z'vy’ € xLy for all 2/,y’ € ¥* such that
|2’'| > |x| and |y’| > |y|, so that, by definition of the stability index s of ¢, we
have (2'uy’) = @(a’'vy’) for all 2’,y’ € ¥°. Thus, it follows that ¢ € EV.

By hypothesis, this means that o(X7) € V Vv LI, that is, the syntactic
semigroup of 2Ly belongs to V Vv LI. Therefore, 2Ly € L(V V LI).

As it is true for any L € £(V) over some alphabet 3 and any z,y € ¥*, we
can conclude that V verifies criterion |

But criterion [(A)|is also a sufficient condition for the converse of Lemma [£.]]
to be true, as we will now prove.

Lemma 4.3. Let V be a variety of monoids that verifies criterion|(A) Then
for any stamp ¢: X* — M for ¥ an alphabet and M a finite monoid, we have
v € EV if and only if o(X7) € V VLL

Proof. Let p: ¥* — M for ¥ an alphabet and M a finite monoid be a stamp.
Assume first that ¢(XT) € V v LI. Then, by Lemma EIl we have that
p e EV.



Assume now that ¢ € EV. Given s its stability index, this means there
exists a stamp p: X* — N with N € V such that for all u,v € ¥*, we have

p(u) = p(v) = (pruy) = p(zvy) Yo,y € ¥°) .

As V verifies criterion|(A)] for any m € N and z,y € X¢, the syntactic morphism
Nyt B — My, 2, of the language zp=1(m)y verifies 9y, . ,(X1) € V V LL
Let E = N x £° x £° and let us now define the unique stamp ¢': ¥* — S’
such that ¢'(a) =[], z.y)ep Tme,y(a) for all a € ¥ and S is the subsemigroup

of H(m,gg,y)eEnm,I,y(EJr) generated by {[[,, . ,yepmey(@) | a € E}. Tt is
obvious that S’ belongs to V Vv LI.

Let w,w’ € ¥ such that ¢’'(w) = ¢'(w): this means that 7, ., (w) =
Nm,zy (W) for allm € N and z,y € 3°. We are going to show that p(w) = ¢(w’),
by considering two different cases.

o Either it is the case that |w| > 2s or |w’| > 2s. Assume without loss of
generality that |w| > 2s. We thus have that w = zuy for some x,y € X°
and v € ¥*. This means that zuy € zp~" (u(u))y, but since 9,(y) 2., (w) =
Nu(u),e,y(W'), we also have that w' € xp~'(u(u))y. Hence, w' = avy
with v € ¥* verifying p(v) = p(u). So, to conclude, p(w) = p(zuy) =
p(zvy) = p(w').

e Or it is the case that |w| < 2s and |w'| < 2s. Assume without loss of
generality that |w'| < |w| < 2s. Take an arbitrary z € ¥2*~1*l: we thus
have that wz = zy for some z,y € X%, so that wz € zu~!(1)y where we
denote by 1 the identity of N. But since n1 5 (W) = m1,5,y(w'), it must
be that w'z € zpu~1(1)y. However, the sole member of zu~!(1)y of length
at most 2s is xy, so we have that w'z = wz and hence necessarily that
w = w’. This entails that p(w) = (w').

Hence, for all w,w’ € ¥T, we have that ¢'(w) = ¢'(w') = p(w) = p(w').

Let S = p(XT). Let p: 8" — ¥ be an arbitrary mapping from S’ to X
such that ¢'(p(s’)) = & for all s’ € §’. Define the mapping a: S — S by
a(s') = p(p(s')) for all s’ € S'.

Let sf,s5 € S’. We have that a(s)sh) = ¢(p(s1s5)). Now, ¢'(p(s)sh)) =
s185 = @' (p(s1))¢' (p(s2)) = ¢’ (p(s1)p(s3)). Hence,

P(p(s155)) = w(p(s1)p(s2)) = w(p(s1))p(p(s2)) = alsi)alss) .

So « is a morphism. Moreover, it is surjective because for all ¢t € S, there exists
w € B such that p(w) = t and thus a(¢’'(w)) = @(p(¢'(w))) = @(w) since

@' (p(¢' (w))) = ¢'(w).
This allows us to conclude that S divides S” and, thus, that ¢(X7) € VVLL.
This concludes the proof of the lemma. ([l

The following proposition summarises the results of this section.

Proposition 4.4. Let V be a variety of monoids. Then (VV LI),, C EV and
there is equality if and only if V verifies criterion|(A)



5 Applications

In this last section, we use the link between essentially-V stamps and V V LI
to reprove some characterisations of joins between LI and some well-known
varieties of monoids in terms of identities.

We first give an equivalent formulation of criterion that solely depends
on the variety of monoids V, without explicit reference to LI.

Proposition 5.1. Let 'V be a variety of monoids. Then V satifies criterion
if and only if for any L € L(V)(X) for some alphabet ¥ and z,y € ¥*, there
exist k,1 € ¥* such that for all u € YF v € X, there exists some language
K € L(V) over alphabet 3 verifying u=*Lv=! = (zu) 'K (vy) .

Proof. Let us first observe that given any alphabet ¥, given any language K on
that alphabet and given any two words x,y € ¥*, we have that z(z 'Ky~ 1)y =
X*yN K and 271 (2 Ky)y~! = K.

Inclusion from right to left. Assume that for any L € £L(V)(X) for some
alphabet ¥ and x,y € £*, there exist k,1 € ¥* such that for all u € X*,v € X!,
there exists some language K € L£(V) over alphabet X verifying u='Lv~! =
(2u) LK (vy) 1.

This implies, by our observation at the beginning of the proof, that

z(uS*vN L)y = zu(u™ Lo Yoy = zu((zu) " K (vy) vy = zul*oy N K

for all u € ¥* v € ¥!. Using Proposition I} we thus have that z(uX*vN L)y €
L(V VLI)(E) for all u € ¥* v € %!, Moreover, since we have that the set of
words of L of length at least k + [ is

s = U (uX*vN L)
uexk pexlt

and since
L=(*"nL)uF

where F' is a finite set of words on X of length less than k£ 4 I, we have that

xLy :x((EZk"’l NL)UF)y= U z(uX*vNL)yUzFy .
ueXk vext

We can thus conclude that xLy € £(V Vv LI)(X) by using Proposition [Z1] as
well as the fact that aFy € L(LI)(X) and because £(V V LI)(X) is closed
under unions.

Inclusion from left to right. Assume that V satisfies criterion Take
some L € L(V)(X) for some alphabet ¥ and take x,y € ¥*. By hypothesis, we
know that Ly € L(V V LI).

By Proposition 2.1l this means that xLy is a Boolean combination of lan-
guages in L(V)(X) U L(LI)(X). Further, this implies that 2Ly can be written
as the union of intersections of languages of £(V)(X) and L(LI)(X) or their
complements, which in turn implies, by closure of £(V)(X) and £(LI)(X) un-
der Boolean operations, that xLy can be written as a finite union of languages



of the form KN(UX*VUW) with K € L(V)(X) and U, V, W C ¥* finite. Since
any word in zLy must be of length at least |zy| and have x as a prefix and y
as a suffix, we can assume that any language K N (UX*V U W) appearing in a
finite union as described above verifies that U C xX*, that V C X*y and that
W C xX¥*y. Now, if we take k,l € N big enough, we thus have that

xLy = U (Kyo NzuXoy) UF
ueXk vext

where K, , € L(V)(Z) for all u € ¥, v € %! and F C S<l#vl+k+ Hence, for
all u € £F v € 2!, we have

u Lot =u (@7 (eLy)y ot
= (zu)™? ( U (Ky o Nzu' 30" y) U F) (vy)~!

u’ €Lk v/ exl

U @) (a0 ((0u) " Kuw (@'y))o'y ) (0g) "0

u/ €Lk v/ exl
(zu) ' F(vy) !
= (xu)_lKuﬁv(vy)_l ,

observing that (zu) 1K (vy)™! = 0 for any K C ¥* such that K NzuX*vy =
0. O

We now prove the announced characterisations of joins between LI and some
well-known varieties of monoids in terms of identities.

Theorem 5.2. We have the following.
1. (RV LI, = ER = [z¥y(ab)azt = z¥y(ab)* 2t“] ..
2. (LV LI)ne = EL = [2¥yb(ab)“ 2t¥ = 2¥y(ab)“ 2t“] .-
3. (JV LI = EJ = [2¥y(ab)¥zt* = z*y(ba)* 2t*, a* ! = a] ..
4. (HV LI),. = EH for any variety of groups H.
Proof. In each case, we prove that the variety of monoids under consideration

satisfies criterion |(A)| using Proposition [F.11 We then use Proposition €4

Proof of Il It is well-known that given an alphabet ¥, the set L(R)(X)
contains all languages that are disjoint unions of languages that are of the
form Afai1 A7 ---arAj, where k € N, aq,...,ar € X, Ag, A1,...,Ar € X" and
a; ¢ A;— for all i € [k] (see [6, Chapter 4, Theorem 3.3]).

Let 3 be an alphabet and take some language Aja1 A7 - - - ap A} where k € N,
ay,...,ar € E, Ao,Al,...,Ak g >¥* and a; g Ai,1 for all 7 € [k] Take
z,y € X*. Observe that y can be uniquely written as y = zt where z,t € ¥*
and either [t| =0 and z € A}, or [t| > 0 and t; ¢ Ax. We have

Ajar Al - - - apAj,
=z ! (mASalAT ceapApt N ﬂ (xAja A - - - akAth)G)yfl

UGA:‘Z‘
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where xA§a  Af - - - akAZtﬁﬂUeA:\z\ (xAjar A - ~akAZt)C does belong to the set
L(R)(X) because the latter is closed under Boolean operations and by construc-
tion of z and ¢. We can conclude that for each L € L(R)(X) and z,y € ¥*, there
exists K € L(R)(Z) such that L = 27! Ky~! by using the characterisation of
L(R)(X) and the fact that 2 'Ky ' Ua 1Koyt = 27 1(K; U Ky)y~? for all
K1, K> € 2.

Proof of 2l It is also well-known that given an alphabet X, the set £(L)(X)
contains all languages that are disjoint unions of languages that are of the form
Afar Ay - apAf where k €N, a1,...,a, € X, Ag, Ay,..., A, C X" and a; ¢ A;
for all i € [k] (see [0, Chapter 4, Theorem 3.4]). The proof is then dual to the
previous case.

Proof of 3l Given an alphabet X, for each k € N, we define the equivalence
relation ~j on X* by u ~p v for u,v € ¥* whenever v and v have the same set
of subwords of length at most k. This relation is a congruence of finite index
on ¥*. Simon proved [§] that for all any alphabet %, a language belongs to
L(J)(X2) if and only it is equal to a union of ~-classes for some k € N.

Let 3 be an alphabet and take some L € £(J)(X) as well as z,y € X*. Thus,
there exists k£ € N such that L is a union of ~j-classes. Define the language
K = Uyeplrwyl~,, . it belongs to £(J)(X) by construction. We now show
that L = 'Ky ~!, which concludes the proof. Let w € L: we have that
zwy € [zwyl~,,, .. € K, so that w € 27" Ky~'. Let conversely w € x~'Ky~'.
This means that zwy € K, which implies that there exists w’ € L such that
TWY ~|gy|+k Tw'y. Actually, it holds that any u € ¥* of length at most & is a
subword of w if and only if it is a subword of w’, because zuy is a subword of
zwy if and only if it is a subword of zw’y. Hence, w ~j w, which implies that
w € L.

Proof of Bl Consider some variety of groups H. Take some language L €
L(H)(X) for an alphabet ¥ and let «,y € ¥*. Consider the syntactic morphism
n: X* — M of L: we have that M is a group in H. Define the language
K =n7'(n(z)n(L)n(y)). We now show that L = 2~ *Ky~!, which concludes the
proof. Let w € L: we have that n(zwy) € n(z)n(L)n(y), so that w € 2= Ky =1
Conversely, let w € z7!Ky~!. We have that zwy € K, which means that
n(zwy) = n(z)n(w')n(y) for some w’ € L, so that n(w) = n(w’) € n(L), as any
element in H is invertible. Thus, w € L. ([l

6 Conclusion
Acknowledgements. The author wants to thank Thomas Place, who sug-
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