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A Note on the Join of Varieties of Monoids with LI

Nathan Grosshans 94
Fachbereich Elektrotechnik/Informatik, University of Kassel, Germany

—— Abstract

In this note, we give a characterisation in terms of identities of the join of V with the variety of finite
locally trivial semigroups LI for several well-known varieties of finite monoids V by using classical
algebraic-automata-theoretic techniques. To achieve this, we use the new notion of essentially-V
stamps defined by Grosshans, McKenzie and Segoufin and show that it actually coincides with the
join of V and LI precisely when some natural condition on the variety of languages corresponding
to V is verified.

This work is a kind of rediscovery of the work of J. C. Costa around 20 years ago from a rather
different angle, since Costa’s work relies on the use of advanced developments in profinite topology,
whereas what is presented here essentially uses an algebraic, language-based approach.
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1 Introduction

One of the most fundamental problems in finite automata theory is the one of characterisation:
given some subclass of the class of regular languages, find out whether there is a way to
characterise those languages using some class of finite objects. This problem is often linked
to and motivated by the problem of decidability: given some subclass of the class of regular
languages, find out whether there exists an algorithm testing the membership of any regular
language in that subclass. The obvious approach to try to find a characterisation of a class of
regular languages would be to look for properties shared by all the minimal finite automata of
those languages. If we find such characterising properties, we can then ask whether they can
be checked by an algorithm to answer the problem of decidability for this class of languages.
However, one of the most fruitful approaches of those two problems has been the algebraic
approach, in which we basically replace automata with morphisms into monoids: a language
L over an alphabet ¥ is then said to be recognised by a morphism ¢ into a monoid M if and
only if L is the inverse image by ¢ of a subset of M. Under this notion of recognition, each
language has a minimal morphism recognising it, the syntatic morphism into the syntactic
monoid of that language, that are minimal under some notion of division. The fundamental
result on which this algebraic approach relies is that a language is regular if and only if its
syntactic monoid is finite. One can thus try to find a characterisation of some class of regular
languages by looking at the algebraic properties of the syntactic monoids of these languages.

And many such characterisations that are decidable were indeed successfully obtained
since Schiitzenberger’s seminal work in 1965 [18]. His famous result, that really started the
field of algebraic automata theory, states that the star-free regular languages are exactly
those whose syntactic monoids are finite and aperiodic. Another important early result in
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that vein is the one of Simon [19] characterising the piecewise testable languages as exactly
those having a finite J-trivial syntactic monoid. Eilenberg [12] was the first to prove that
such algebraic characterisations actually come as specific instances of a general bijective
correspondence between varieties of finite monoids and varieties of languages — classes of,
respectively, finite monoids and regular languages closed under natural operations. Thus,
a class of regular languages can indeed be characterised by the syntactic monoids of these
languages, as soon as it verifies some nice closure properties. Eilenberg’s result was later
completed by Reiterman’s theorem [17], that uses a notion of identities defined using profinite
topology and states that a class of finite monoids is a variety of finite monoids if and only
if it is defined by a set of profinite identities. Therefore, one can always characterise the
variety of finite monoids associated to a variety of languages by a set of profinite identities
and, additionally, this characterisation often leads to decidability, especially when this set is
finite. A great deal of research works have been conducted to characterise varieties of finite
monoids or semigroups by profinite identities (see the book of Almeida [3] for an overview;
see also the book chapter by Pin [15] for more emphasis on the “language” part).

A kind of varieties of finite monoids or semigroups that has attracted many research
efforts aiming for characterisations through identities are the varieties defined as the join
of two other varieties. Given two varieties of finite monoids V and W, the join of V and
W, denoted by V V W, is the least variety of finite monoids containing both V and W.
One of the main motivations to try to understand V V' W is that the variety of languages
corresponding to it by the Eilenberg correspondence, £(V VvV W), is the one obtained by
considering direct products of automata recognising languages from both £(V) and L(W),
the varieties of languages corresponding to, respectively, V and W. This is a fundamental
operation on automata, and while it is straightforward that £(V vV W) is simply the least
variety of languages containing both £(V) and £(W), this does not at all furnish a decidable
characterisation of L(V V W), let alone a set of identities defining VVW. Generally speaking,
the problem of finding a set of identities defining V vV W is difficult (see [3, 23]): in fact,
there exist two varieties of finite semigroups that have a decidable membership problem but
whose join has an undecidable membership problem [1]. However, sets of identities have been
found for many specific joins: have a look at [2, 4, 6, 22, 21, 7, 9, 10] for some examples.

In this paper, we give a general method to find a set of identities defining the join of an
arbitrary variety of finite monoids V and the variety of finite locally trivial semigroups LI, as
soon as one has a set of identities defining V and V verifies some criterion. Joins of that sort
have been studied quite a lot in the literature we mentioned in the previous paragraph (e.g.
in [6, 21, 9, 10]), but while these works usually rely heavily on profinite topology with some
in-depth understanding of the structure of the elements of the so-called free pro-V monoids
and free pro-LI semigroups, we present a method that reduces the use of profinite topology
to the minimum and that relies mainly on algebraic and language-theoretic techniques. The
variety LI is well-known to correspond to the class of languages for which membership only
depends on bounded-length prefixes and suffixes of words. In [13], McKenzie, Segoufin and
the author introduced the notion of essentially-V stamps (surjective morphisms ¢: ¥* — M
for ¥ an alphabet and M a finite monoid) to characterise the built-in ability that programs
over monoids in V have to treat separately some constant-length beginning and ending of a
word. Informally said, a stamp is essentially-V when it behaves like a stamp into a monoid
of V as soon as a sufficiently long beginning and ending of the input word has been fixed.
Our method builds on two results, that we prove in this article.

1. The first result is a characterisation in terms of identities of the class EV of essentially-V
stamps given a set of identities F defining V: a stamp is in EV if and only if it satisfies
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all identities x“yuzt* = z“yvzt* for u = v an identity in F and where x, vy, z,t do appear

neither in » nor in v.

2. The second result says that EV and V V LI do coincide if and only if V verifies some
criterion, that can be formulated in terms of quotient-expressibility in £(V): any language

L € £L(V) must, for an arbitrary choice of z,y, be such that the quotient u=*Lv~1! for u

and v long enough can be expressed as the quotient (zu) 1K (vy)~! for a K € L(V).
Using these results, we can find a set of identities defining V V LI as soon as a set of identities
defining V is known by proving that V verifies the criterion in point 2. Note that actually, for
technical reasons, we work with the so-called ne-variety of stamps corresponding to V v LI
rather than directly with the variety of finite semigroups V V LI, but this is not a problem
since a variety of finite semigroups can always be seen as an ne-variety of stamps and vice
versa. We apply this method to reprove characterisations of the join of LI with each of the
well-known varieties of finite monoids R, L, J and any variety of finite groups.

The author noticed after proving those results that his work actually forms a kind of
rediscovery of the work of J. C. Costa in [9]. He defines an operator U associating to each set
of identities E the exact same new set U(F) of identities as in point 1. Costa then defines a
property of cancellation for varieties of finite semigroups such that for any V verifying it,
U(FE) defines V Vv LI for E defining V. He finally uses this result to derive characterisations
of V v LI for all the cases we are treating in our paper and many more.

What is, then, the contribution of our article? In a nutshell, it does mainly use algebraic
and language-theoretic techniques while Costa’s work relies heavily on profinite topology. In
our setting, once the stage is set, all proofs are quite straightforward without real difficulties
and rely on classical language-theoretic characterisations of the varieties under consideration.
This is to contrast with Costa’s work, that for instance draws upon the difficult analysis of
the elements of free pro-R monoids by Almeida and Weil [5] to characterise R V LI.

Organisation of the article. Section 2 is dedicated to the necessary preliminaries. In
Section 3, we recall the definition of essentially-V stamps and prove the characterisation
by identities of point 1 above. Section 4 is then dedicated to the necessary and sufficient
criterion for EV and V V LI to coincide presented in point 2 and finally those results are
applied to specific cases in Section 5. We finish with a short conclusion.

2 Preliminaries

We briefly introduce the mathematical material used in this paper. For the basics and the
classical results of automata theory, we refer the reader to the two classical references of the
domain by Eilenberg [11, 12] and Pin [14]. For definitions and results specific to varieties of
stamps and associated profinite identities, see the articles by Straubing [20] and by Pin and
Straubing [16]. We also assume some basic knowledge of topology.

General notations. Let ¢ € N be a natural number. We shall denote by [i] the set of all
natural numbers n € N verifying 1 <n <.

Words and languages. Let 3 be a finite alphabet. We denote by ¥* the set of all finite
words over Y. We also denote by ¥T the set of all finite non empty words over X, the empty
word being denoted by €. Our alphabets and words will always be finite, without further
mention of this fact. Given a word w € ¥*, we denote its length by |w| and the set of letters
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it contains by alph(w). Given n € N, we denote by 2", ¥ and <" the set of words over
> of length, respectively, at least n, exactly n and less than n.

A language over X is a subset of ¥*. A language is regular if it is recognised by a
deterministic finite automaton. The quotient of a language L over % relative to the words u
and v over ¥ is the language, denoted by u~'Lv~!, of the words w such that uwv € L.

Monoids, semigroups and varieties. A semigroup is a non-empty set equipped with an
associative law that we will write multiplicatively. A monoid is a semigroup with an identity.
An example of a semigroup is X1, the free semigroup over ¥. Similarly X* is the free monoid
over .. A morphism ¢ from a semigroup S to a semigroup T is a function from S to T such
that p(zy) = p(z)e(y) for all x,y € S. A morphism of monoids additionally requires that
the identity is preserved. A semigroup T is a subsemigroup of a semigroup S if T' is a subset
of S and is equipped with the restricted law of S. Additionally the notion of submonoids
requires the presence of the identity. A semigroup T' divides a semigroup S if T is the image
by a semigroup morphism of a subsemigroup of S. Division of monoids is defined in the same
way. The Cartesian (or direct) product of two semigroups is simply the semigroup given by
the Cartesian product of the two underlying sets equipped with the Cartesian product of
their laws. An element s of a semigroup is idempotent if ss = s.

A wariety of finite monoids is a non-empty class of finite monoids closed under Cartesian
product and monoid division. A wariety of finite semigroups is defined similarly. When
dealing with varieties, we consider only finite monoids and semigroups, so we will drop the
adjective finite when talking about varieties in the rest of this article.

Varieties of stamps. Let f: ¥* — I'* be a morphism from the free monoid over an alphabet
3} to the free monoid over an alphabet I', that we might call an all-morphism. We say that
f is an ne-morphism (non-erasing morphism) whenever f(X) C I'".

We call stamp a surjective morphism ¢: ¥* — M for ¥ an alphabet and M a finite
monoid. We say that a stamp ¢: ¥* — M all-divides (respectively ne-divides) a stamp
1: I’ — N whenever there exists an all-morphism (respectively ne-morphism) f: ¥* — I'*
and a surjective morphism «: Jm(¢ o f) — M such that ¢ = a oo f. The direct product
of two stamps ¢: ¥* — M and ¢: ¥* — N is the stamp ¢ x ¢: ¥* — K such that K is the
submonoid of M x N generated by {(¢(a),%(a)) | a € £} and ¢ x ¢(a) = (¢(a),¥(a)) for
all a € .

An all-variety of stamps (respectively ne-variety of stamps) is a non-empty class of stamps
closed under direct product and all-division (respectively ne-division).

We will often use the following characteristic index of stamps, defined in [8]. Consider
a stamp ¢: ¥* — M. As M is finite there is a k € Ny such that ¢(32¥) = p(XF): this
implies that (X¥) is a semigroup. The least such & is called the stability index of .

Varieties of languages. A language L over an alphabet X is recognised by a monoid M if
there is a morphism ¢: * — M and F C M such that L = p~1(F). We also say that ¢
recognises L. It is well known that a language is regular if and only if it is recognised by a
finite monoid. The syntactic congruence of L, denoted by ~ , is the equivalence relation
on ¥* defined by u ~p v for u,v € ¥* whenever for all z,y € ¥*, zuy € L if and only if
vy € L. The quotient ¥*/~ is a monoid, called the syntactic monoid of L, that recognises
L via the syntactic morphism ny, of L sending any word u to its equivalence class [u].., for
~r. A stamp ¢: ¥* — M recognises L if and only if there exists a surjective morphism
p: M — X*/~p verifying n;, = a o .
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A class of languages C is a correspondence that associates a set C(X) to each alphabet
Y. A (all-)variety of languages (respectively an ne-variety of languages) V is a non-empty
class of regular languages closed under Boolean operations, quotients and inverses of all-
morphisms (respectively ne-morphisms). A classical result of Eilenberg [12, Chapter VII,
Section 3] says that there is a bijective correspondence between varieties of monoids and
varieties of languages: to each variety of monoids V we can bijectively associate L£L(V)
the variety of languages whose syntactic monoids belong to V. This was generalised by
Straubing [20] to varieties of stamps: to each all-variety (respectively ne-variety) of stamps
V we can bijectively associate £(V) the all-variety (respectively ne-variety) of languages
whose syntactic morphisms belong to V. Given two all-varieties (respectively ne-varieties)
of stamps V1 and Vg, we have V1 C Vo & L(V1) C L(V2).

For V a variety of monoids, we define (V),;; the all-variety of all stamps ¢: ¥* — M
such that M € V. Of course, in that case L(V) = L((V)qu). Similarly, for V a variety of
semigroups, we define (V). the ne-variety of all stamps : X* — M such that ¢(X7) € V.
In that case, we consider £(V) to be the ne-variety of languages corresponding to (V) ..
The operations ()4 and (-),. form bijective correspondences between varieties of monoids
and all-varieties of stamps and between varieties of semigroups and ne-varieties of stamps,
respectively (see [20]).

Identities. Let X be an alphabet. Given u,v € X*, we set
r(u,v) = min{|M| | 3p: " = M stamp s.t. o(u) # p(v)}

and d(u,v) = 277(%%) using the conventions that min() = +oo and 27°° = 0. Then d
is a metric on ¥*. The completion of the metric space (X*,d), denoted by (f];,g), is a
metric monoid called the free profinite monoid on ¥*. Its elements are all the formal
limits lim,,_, o @, of Cauchy sequences (2,)n>0 in (£*,d) and the metric d on ¥* extends
to a metric d on ©* defined by g(limn_>OO Ty UMy, o0 Y ) = limy, o0 (x4, ¥ ) for Cauchy
sequences (Z,)n>0 and (Yn)n>o in (X*,d). Note that, when it is clear from the context, we
usually do not make the metric explicit when talking about a metric space. One important
example of elements of T+ is given by the elements ¥ = lim,,_,, 2™ for all 2 € ¥*.

Every finite monoid M is considered to be a complete metric space equipped with the

0 ifm=n

discrete metric d defined by d(m,n) = for all m,n € M. Every stamp
1 otherwise

@: X* — M extends uniquely to a uniformly continuous morphism @: $* & M with
P(limy, 00 ) = lim, 00 (2 ) for every Cauchy sequence (z,)n>0 in X*. Similarly, every
all-morphism f: ¥* — I'* extends uniquely to a uniformly continuous morphism f: S+ T
with f(limnﬁm Zp) = lim, o0 f(xy,) for every Cauchy sequence (z,)n>0 in 2*.

For u,v € A* with A an alphabet, we say that a stamp ¢: ¥* — M all-satisfies
(respectively ne-satisfies) the identity w = v if for every all-morphism (respectively ne-
morphism) f: A* — ¥* it holds that ¢ o f(u) =gpo f(v) Given a set of identities F,
we denote by [E],,, (respectively [E], ) the class of stamps all-satisfying (respectively ne-
satisfying) all the identities of E. When [E],,;, (respectively [E], ) is equal to an all-variety

(respectively ne-variety) of stamps V, we say that F all-defines (respectively ne-defines) V.

» Theorem 1 ([16, Theorem 2.1]). A class of stamps is an all-variety (respectively ne-variety)
of stamps if and only if it can be all-defined (respectively ne-defined) by a set of identities.

To give some examples, the classical varieties of monoids J, R and L can be characterised



A Note on the Join of Varieties of Monoids with LI

by identities in the following way:

(R)au = [(ab)*a = (ab)*] ;= [(ab)”a = (ab)“],,,
(L)anr = [b(ab)” = (ab)*],;;, = [b(ab)* = (ab)*],,,
(Jau = [(ab)*a = (ab)*, b(ab)” = (ab)*] ;= [(ab)*a = (ab)”,b(ab)” = (ab)*],,, -

Finite locally trivial semigroups and the join operation. The variety LI of finite locally
trivial semigroups is well-known to verify (LI),. = [z“yz* = 2*],,, and to be such that for
any alphabet X, the set £(LI)(X) consists of all Boolean combinations of languages of the
form uX* or X*u for u € ¥*, or equivalently of all languages of the form UX*V U W with
U, V,W C ¥* finite (see [14, p. 38]).

Given a variety of monoids V, the join of V and LI, denoted by V V LI, is the inclusion-
wise least variety of semigroups containing both V and LI. In fact, a finite semigroup S
belongs to V V LI if and only if there exist M € V and T € LI such that S divides the
semigroup M x T'. (See [12, Chapter V, Exercise 1.1].) We can prove the following adaptation
to ne-varieties of the classical results about joins (see the appendix for the proof).

» Proposition 2. Let V be a variety of monoids. Then (V V LI),. is the inclusion-wise
least ne-variety of stamps containing both (V)an and (LI)n.. Moreover, L(V V LI) is the
inclusion-wise least ne-variety of languages containing both L(V) and L(LI) and verifies that
L(V VLI)(X) is the Boolean closure of L(V)(X) U L(LI)(X) for each alphabet X.

3 Essentially-V stamps

In this section, we give a characterisation of essentially-V stamps (first defined in [13]), for
V a variety of monoids, in terms of identities. We first recall the definition.

» Definition 3. Let 'V be a variety of monoids. Let p: ¥* — M be a stamp and let s be its
stability index.

We say that ¢ is essentially-V whenever there exists a stamp p: X* — N with N € V
such that for all u,v € ¥*, we have

p(u) = p(v) = (p(zuy) = p(avy) Yo,y € T°) .
We will denote by EV the class of all essentially-V stamps.'

Now, we give a characterisation for a stamp to be essentially-V, based on a specific
congruence depending on that stamp.

» Definition 4. Let p: X% — M be a stamp and let s be its stability index. We define the
equivalence relation =, on ¥* by u =, v for u,v € £* whenever (zuy) = p(xzvy) for all
z,y € L25,

1 Essentially-V stamps are called that way by analogy with quasi-V stamps and the class of essentially-V
stamps is denoted by EV by analogy with QV, the notation for the class of quasi-V stamps. This makes
sense since the initial motivation for the definition of essentially-V stamps was to capture the class of
stamps into monoids of V that have the additional ability to treat separately some constant-length
beginning and ending of a word. This ability can indeed be seen as orthogonal to the additional
ability of stamps into monoids in V to perform modular counting on the positions of letters in a word,
which is often handled by considering quasi-V stamps. (See [13] for more.) Our definition of EV
does unfortunately not coincide with the usual definition of EV, that classically denotes the variety of
monoids M such that the submonoid generated by the idempotents of M is in V. (This comes, among
others, from the fact that the obtained variety of monoids does always contain at least all finite groups.)
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» Proposition 5. Let ¢: X* — M be a stamp. Then =, is a congruence of finite index and
for any variety of monoids V, we have ¢ € EV if and only if ¥*/=,€ V.

Proof. Let us denote by s the stability index of .

The equivalence relation =, is a congruence because given u,v € ¥* verifying u =, v,
for all o, B € X%, we have auf3 =, avf3 since for any z,y € X=°, it holds that ¢(zaufy) =
o(zavBy) because za, fy € X2°. Furthermore, this congruence is of finite index because for
all u,v € ¥*, we have that p(u) = ¢(v) implies u =, v.

Let now V be a variety of monoids. Assume first that ¥*/=,€ V. It is quite direct to
see that » € EV, as the stamp p: ¥* — ¥* /=, defined by pu(w) = [w]=, for all w € ¥*
witnesses this fact. Assume then that ¢ € EV. This means that there exists a stamp
w: X* — N with N € V such that for all u,v € ¥*, we have

p(u) = p(v) = (p(zuy) = p(rvy) Yo,y e ¥°) .

Now consider u,v € X* such that p(u) = u(v). For any z,y € 2%, we have that x = z179
with 1 € ¥* and x5 € ¥° as well as y = y1y2 with y; € ¥° and yo, € ¥, so that
plazuy) = p(r1)e(rauyr)p(y2) = @(z1)e(z20y1)e(y2) = @(avy). Hence, u =, v. Therefore,
for all u,v € ¥*, we have that p(u) = p(v) implies u =, v, so we can define the mapping
a: N — ¥*/=, such that a(u(w)) = [w]=, for all w € ¥*. It is easy to check that a
is actually a surjective morphism. Thus, we can conclude that ¥*/=,, which divides N,
belongs to V. |

Using this characterisation, we prove that given a set of identities ne-defining (V)4 for a
variety of monoids V, we get a set of identities ne-defining EV.

» Proposition 6. Let 'V be a variety of monoids and let E be a set of identities such that
(V)an = [E],.- Then EV is an ne-variety of stamps and

EV = [z“yuzt” = a“yvzt” |u=v € E,x,y,2,t ¢ alph(u) Ualph(v)] , -
Proof. Let

F = {z“yuzt” = z“yvzt® |u=v € E,x,y, z,t ¢ alph(u) Ualph(v)} .

Central to the proof is the following claim.

> Claim 7. Let ¢: ¥* — M be a stamp. Consider the stamp p: ¥* — ¥* /=, defined by
p(w) = [w]=, for all w € ¥*. Tt holds that for all u,v € X*,

fi(u) = fi(v) & (P(a”furd®) = §(a”pvyd®) Vo,B,7,0 € X7) .

Before we prove Claim 7, we use it to prove that EV = [F], .

Inclusion from left to right. Let ¢: ¥* — M be a stamp in EV. Counsider the stamp
p: X% — ¥* /=, defined by p(w) = [w]=, for all w € £*. Since ¢ € EV, Proposition 5 tells
us that £*/=,€ 'V, hence p € (V).

Let us consider any identity x“yuzt* = x¥yvzt¥ € F. It is written on an alphabet B
that is the union of the alphabet A on which u = v € E is written and of z,y,2,t € B\ A.
Let f: B* — X* be an ne-morphism. Since p € (V),y, we have that p ne-satisfies the

o~ o~ ~

identity u = v, so that f(f(u)) = i(f(v)). Notice that we have that f(a*) = f(z)¥ as well

@
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as f(t*) = f(t)* and that f(z), f(y), f(2), f(t) € =T because f is non-erasing. Therefore,
we have
B(Flayuzt)) = 3(f (@) (W) Fw) F(2) £ (1))
= P(F@)“ W) F) () £(1)°)
= 3(f(ayvzt?))

by Claim 7. As this holds for any ne-morphism f: B* — X* we can conclude that ¢
ne-satisfies the identity z“yuzt” = xz“yvzt®.
This is true for any identity in F, so ¢ € [F], .. In conclusion, EV C [F], .

Inclusion from right to left. Let ¢: ¥* — M be a stamp in [F], . Consider the stamp
p: X — ¥* /=, defined by pu(w) = [w]=, for all w € ¥*. We are now going to show that
€ (V)au.

Take any identity v = v € E written on an alphabet A. There exists an identity
x¥yuzt’ = z¥yvzt¥ € F written on an alphabet B such that A C B and z,y, z,t € B\ A.
Let f: A* — ¥* be an ne-morphism.

Take any a, 3,7, € ©1. Let us define the ne-morphism g: B* — X* as the unique one
which extends f by letting g(z) = «, g(y) = 5, g(2) = v and ¢(t) = §. Observe in particular
that g(w) = f(w) for any w € A* and that g(z¥) = g(x)¥ = ¥ as well as g(t*) = §*. Now,
as ¢ ne-satisfies z“yuzt¥ = z¥yvzt¥, we have that

P(a“Bf(u)yd?) = B yuzt)) = 3(Ga yvzt*)) = §(a* B (v)75*) .

Since this holds for any «, 3,7,d € ¥, by Claim 7, we have that ﬁ(f(u)) = ﬁ(f(v))
Therefore, ﬁ(f(u)) = ;’Z(f(v)) for any ne-morphism f: A* — ¥* which means that u
ne-satisfies u = v.
Since this holds for any u = v € E, we have that u € (V)4;, which implies that X* /=,€ V
and thus ¢ € EV by Proposition 5. In conclusion, [F],, € EV.

The claim still needs to be proved.

Proof of Claim 7. Let ¢: ¥* — M be a stamp of stability index s. Consider the stamp
p: X* = ¥* /=, defined by p(w) = [w]=, for all w € ¥*. We now want to show that for all
u,v € f];,

i(w) = f(v) & (§(a” Buyd’) = p(a”Bvyd?) Va,B,v,6 € £F) .

Let u,v € $*. There exist two Cauchy sequences (uy,)n>0 and (vy)n>0 in £* such that
w = limy, o0 Uy, and v = limy, o0 vp. As X*/=, and M are discrete, we have that all
four Cauchy sequences (u(un)), 55 (#(un)), <qr (4(vn)), <, and (¢(vn)), 5, are ultimately
constant. So there exists k € N such that f(u) = p(ur), p(u) = @(ug), p(v) = p(vg) and
P(v) = @(v).

Assume first that fi(u) = f(v). Take any a, 3,7,6 € XT. Since M is discrete, both
Cauchy sequences (Lp(a"!))n>0 and ((,0(6”1))?1>0 are ultimately constant. So there exists
I € N such that for all m € N,m > [, we have 3(a®) = p(a™) and 3(6“) = ©(6™). Hence,
taking m € N;m > [ such that ’am!5| > s and |’yc5m!’ > s, it follows that

P(a” Buys?) = p(a™ Bupyd™) = p(a™ Buryd™) = Gla® fvyd®)
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because [ug]=, = fi(u) = fi(v) = [vx]=,. Thus, we have that

P(a” uyd?) = p(a’ fuyd®)

for all a, 3,7, € ©+.

Assume then that @(a®Buyd?) = p(av fvyd®) for all o, 8,7,5 € . Take any «, 8 €
2. Since p(X*) is a finite semigroup and verifies that p(3%) = ¢(X*)2, by a classical result
in finite semigroup theory (see e.g. [14, Chapter 1, Proposition 1.12]), we have that there
exist ay,e, f, B2 € ¥° and ag, B1 € X2° such that p(ajeas) = p(a) and p(B1fB2) = ¢(B)
with p(e) and ¢(f) idempotents. Now, since ¢(e) is idempotent, we have that

oW

pe”) = 3( lim e™) = lim p(e™) = lim p(e)™ = p(e)

n—oo n— oo n— o0

and similarly, (f“) = ¢(f). So it follows that

p(aurB) = p(areasuyfi fB2)
= plare“aguf f*B2)
= p(are?agvfy f¥B2)
= p(aeasviB1fB2)
= p(augf) .
As this is true for any «, 8 € ¥2%, by definition it holds that uy =, vk, hence fi(u) = p(uy) =
(k) = fiv). <
This concludes the proof of the proposition. |

4  Essentially-V stamps and the join of V and LI

In this section, we establish the link between essentially-V stamps and V V LI and give a
criterion that characterises exactly when they do correspond.
More precisely, consider the following criterion for a variety of monoids V.

» Criterion (A). For any L € £(V)(X) with ¥ an alphabet, we have Ly € L(V V LI)(X2)
for all z,y € ¥*.

It is a kind of mild closure condition that appears to be a sufficient and necessary condition
for EV and V V LI to correspond.

» Proposition 8. Let V be a variety of monoids. Then (V V LI),, C EV and equality holds
if and only if V verifies criterion (A).

Why this proposition is useful to give characterisations of V Vv LI in terms of identities
will become clear in the next section. For now, we focus on its proof, that entirely relies on
the following characterisation of the languages recognised by essentially-V stamps.

» Proposition 9. Let V be a variety of monoids. For any alphabet 3, the set L(EV)(X)
consists of all Boolean combinations of languages of the form xzLy for L € L(V)(X) and
T,y € X*.

Proof. Let C be the class of languages such that for any alphabet 3, the set C(X) consists of
all Boolean combinations of languages of the form xzLy for L € £L(V)(X2) and z,y € ¥*.
Let ¥ be an alphabet. We need to show that L(EV)(X) = C(Z).
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Inclusion from right to left. Let L € L£(V)(X) and z,y € ¥*. Let pu: ¥* — N be
the syntactic morphism of L: this implies that N € V and that there exists F C N
such that L = p~1(F). Let also p: ¥* — M be the syntactic morphism of the language
xLy = xX*y N E'IM_l(F)Z'y' and let s be its stability index. We then consider u,v € ¥*
such that u(u) = p(v). Take any a’,y’ € ¥* such that |2/| > |z| and |y| > |y|. We clearly
have that z'uy’ € x¥*y if and only if 2'vy’ € 2X*y. Moreover, o’ = 2z} for ) € XI* and
xh € ¥ and 3 = ¢}y for yj € £* and yh € X, so that

'uy € P TY RSV o p(zhuy)) € F
& pryvy)) € F
& vy e el (Fyshil

Hence, z'uy’ € zLy if and only if 2’vy’ € xLy for all 2/,y’ € ¥* such that |z| > |z| and
|y'| > |y, so that, by definition of the stability index s of ¢ and as ¢ is the syntactic morphism
of zLy, we have p(x'uy’) = p(x’vy’) for all ',y € ¥2. Thus, it follows that ¢ € EV.

This implies that Ly € L(EV)(XZ). Therefore, since this is true for any L € L(V)(XZ)
and z,y € ¥* and since L(EV)(X) is closed under Boolean operations, we can conclude that
C(X) C LEV)(D).

Inclusion from left to right. Let L € L(EV)(X) and let ¢: ¥* — M be its syntactic
morphism: it is an essentially-V stamp. Given s its stability index, this means there exists a
stamp p: X* — N with N € V such that for all u,v € X*, we have

p(u) = p(v) = (pruy) = p(zvy) Yo,y € 2°) .

For each m € N and z,y € ©° consider the language zu~!(m)y. For any two words
w,w’ € zp~(m)y, we have w = zuy and w’ = xvy with u(u) = p(v) = m, so that
e(w) = ¢(w'). By definition of the syntactic morphism, this means that for all m € N
and x,y € ¢, either zu~!(m)y C L or zu~t(m)y N L = (. Therefore, there exists a set
E C N x ¥ x X% such that L N X225 = Ui, e.)er zp~(m)y, hence

L= U zp (m)yU F
(m,x,y)€E

for a certain FF C 1<2s,

Take w € F. We have that {w} = w¥* N[, cx(X* \ waX*) with ¥* € L(V)(X). Thus,
the singleton language {w} belongs to C(X) and since this is true for any w € F and F
is finite, we can deduce from this that F' is in C(X), as the latter is trivially closed under
Boolean operations.

Now, for all m € N, the language 11~ (m) belongs to L(V)(X), so we finally have L € C(X).
This is true for any L € L(EV)(X), so in conclusion, L(EV)(X) C C(X).

Proposition 8 then follows from the two next lemmata, that are both easy consequences
of Proposition 9. For completeness, we give the proofs in the appendix.

» Lemma 10. Let V be a variety of monoids. Then (V V LI}, C EV.

» Lemma 11. Let 'V be a variety of monoids. Then EV C (V V LL),. if and only if V
verifies criterion (A).
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5 Applications

In this last section, we use the link between essentially-V stamps and V V LI to reprove some
characterisations of joins between LI and some well-known varieties of monoids in terms of
identities.

One thing seems at first glance a bit problematic about proving that a variety of monoids
V satisfies criterion (A). Indeed, to this end, one needs to prove that certain languages belong
to L(V V LI); however, this poses a problem when one’s goal is precisely to characterise
V V LI, because one shall a priori not know more about £(V V LI) than what is given by
Proposition 2. Nevertheless, there is a natural sufficient condition for criterion (A) to hold
that depends only on L£(V): if given any language L € L(V)(X) and any z,y € ¥* with
Y an alphabet, there exists a language K € L(V)(X) such that L is equal to the quotient
x71Ky~!, then V verifies criterion (A). We don’t know whether this quotient-expressibility
condition that solely depends on the variety V (without explicit reference to LI) is actually
equivalent to it satisfying criterion (A), but we can prove such an equivalence for a weaker
quotient-expressibility condition for V. The proof is to be found in the appendix.

» Proposition 12. Let V be a variety of monoids. Then V satisfies criterion (A) if
and only if for any L € L(V)(Z) and any x,y € X* with ¥ an alphabet, there exist
k,1 € N such that for all u € % v € 3! there exists a language K € L(V)(X) verifying
u Lot = (2u) 1K (vy) L.

This quotient-expressibility condition appears to be particularly useful to prove that a
variety of monoids V does not satisfy criterion (A) without needing to understand what
L(V VLI) is. We demonstrate this for the variety of finite commutative and idempotent
monoids Jy.

» Proposition 13. Jy does not satisfy criterion (A).

Proof. Given an alphabet ¥, the set £(J1)(X) consists of all Boolean combinations of
languages of the form X*aX¥* for a € ¥ (see [14, Chapter 2, Proposition 3.10]).

Let L = {a,b}*b{a,b}* € £(J1)({a,b}) and x = b,y = . Take any k,l € N and set u = a*
and v = a'. Consider a K € £(J1)({a,b}). We have that zuavy € K < zuabvy € K so that
a € (zu) 'K(vy)~™! < ab € (zu) " K(vy)~!. But a ¢ u='Lv~=! and ab € u=*Lv~!, hence
u Lot # (zu) 1K (vy)~! and this holds for any choice of K. So for any k,I € N, there
exists u € X* v € %! such that no K € £(J1)({a,b}) verifies u=' Lo~ = (zu) 1K (vy) 1.

In conclusion, by Proposition 12, J; does not satisfy criterion (A). <

We now prove the announced characterisations of joins between LI and some well-known
varieties of monoids in terms of identities.

» Theorem 14. We have the following.

. (RVLI),, = ER = [z¥y(ab)¥azt’ = 2*y(ab)* 2t*] .

2. (LVLI),, = EL = [2¥yb(ab)“ 2t¥ = a¥y(ab)¥ 2t*] .-

3. (JVLI),e = EJ = [2¥y(ab)¥azt” = 2¥y(ab)¥ 2t¥, x“yb(ab)* 2t = x“y(ab)* 2t*] ..
4. (HV LI),, = EH for any variety of groups H.

—

Proof. In each case, we prove that the variety of monoids under consideration satisfies
criterion (A) using Proposition 12. We then use Propositions 8 and 6.

11
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Proof of 1. Tt is well-known that given an alphabet 3, the set £(R)(X) consists of all
languages that are disjoint unions of languages that are of the form Afa; A7 - - - ap A} where
keN, ay,...,ax €%, Ag, A1,..., Ay C X and a; ¢ A;_1 for all i € [k] (see [14, Chapter 4,
Theorem 3.3]).

Let 3 be an alphabet and take a language Ajai1 A7 ---ar A}, where k €N, aq,...,a; € 3,
Ao, A1y, Ay C X and a; ¢ A; 4 for all i € [k]. Take z,y € X*. Observe that y can be
uniquely written as y = 2t where z € A} and t € {e¢} U (X \ Ax)X*. We have

AéalAT---akAz:x’l(xASalA"{---akA,’;tﬁ N (2*\xA3a1A’;---akvt))y*1

UGA:M

using the convention that zAja1 A} - - - apvt = zvt for all v € A,jlz| when k& = 0. The language
AGar AL - ap ARtN), o 4<i= (B \TAfa1 AT - - - agvt) does belong to the set L(R)(X) because
the latter is closed underkBoolean operations and by definition of z and ¢. Thus, we can
conclude that for each L € L(R)(X) and x,y € ¥*, there exists K € L(R)(X2) such that
L =2 1'Ky~! by using the characterisation of £(R)(X), the fact that quotients commute
with unions [14, p. 20] and closure of £L(R)(X) under unions.

Proof of 2. Tt is also well-known that given an alphabet X, the set £(L)(X) consists of all
languages that are disjoint unions of languages that are of the form Afa; A7 - - - ar A}, where
kEeN, ay,...,ap € X, Ag, A1,..., A C ¥ and a; ¢ A; for all i € [k] (see [14, Chapter 4,
Theorem 3.4]). The proof is then dual to the previous case.

Proof of 3. Given an alphabet 3, for each k& € N, we define the equivalence relation ~y
on X* by u ~p v for u,v € ¥* whenever v and v have the same set of subwords of length
at most k. This relation is a congruence of finite index on ¥*. Simon proved [19] that a
language belongs to £(J)(X) if and only it is equal to a union of ~-classes for a k € N.

Let 3 be an alphabet and take L € £(J)(X) as well as z,y € ¥*. Thus, there exists k € N
such that L is a union of ~j-classes. Define the language K = J, ¢ [twy]~,,, ., it belongs
to L(J)(2) by construction. We now show that L = =Ky 1, which concludes the proof.
Let w € L: we have that zwy € [xwy]N‘mka C K, so that w € 2 ' Ky~'. Let conversely
w € 7' Ky~!. This means that xwy € K, which implies that there exists w’ € L such that
TWY ~|gy|+k TW'Y. Actually, it holds that any u € X* of length at most k is a subword of w
if and only if it is a subword of w’, because zuy is a subword of zwy if and only if it is a
subword of zw'y. Hence, w ~j w’, which implies that w € L.

Proof of 4. Consider any variety of groups H. Take a language L € L(H)(X) for an
alphabet ¥ and let x,y € ¥*. Consider the syntactic morphism 7n: ¥* — M of L: we
have that M is a group in H. Define the language K = n~* (n(z)n(L)n(y)): it belongs to
L(H)(X). We now show that L = x7!Ky~!, which concludes the proof. Let w € L: we
have that n(zwy) € n(z)n(L)n(y), so that w € x~ 1Ky~ L.
We have that zwy € K, which means that n(zwy) = n(x)n(w")n(y) for a w’ € L, so that

n(w) = n(w') € n(L), as any element in M is invertible. Thus, w € L. <

Conversely, let w € v~ 1Ky~1.

6 Conclusion

The general method presented in this paper actually allows to reprove in a straightforward
language-theoretic way even more characterisations of the join of LI with some variety of
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finite monoids. This can for instance be done for the variety of finite commutative monoids
Com or the variety of finite commutative aperiodic monoids ACom.

In fact, as already observed in some sense by Costa [9], many varieties of finite monoids

seem to verify criterion (A). The main question left open by this present work is to understand
better what exactly those varieties are. Another question left open is whether Proposition 12
can be refined by using the stronger quotient-expressibility condition alluded to before the
statement of the proposition. The answers to both questions are unclear to the author, but
making progress on them may also lead to a better understanding of joins of varieties of
finite monoids with LI.
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A  Missing proofs

Proof of Proposition 2. Let W be an ne-variety of stamps such that (V) g, U (LI),. C W.
There exists a variety of semigroups W’ such that (W'),,. = W.

Let S € VULI. We denote by S* the monoid S if S is already a monoid and the monoid
S U {1} otherwise. Then the evaluation morphism ns: S* — S! such that ng(s) = s for
all s € S verifies ng(ST) = S and additionally S = S when S € V. This implies that
ns € (VYo U (LI),. € W. But by definition of W', it must be that S = ns(ST) € W'.

Therefore, W’ contains both V and LI, which implies that V' VLI C W’ by inclusion-wise
minimality of V VV LI. By definition, we can then conclude that (V v LI),. C (W'),. = W.
So (V V LI),. is the inclusion-wise least ne-variety of stamps containing both (V),; and
(LI) e

Let now W be an ne-variety of languages such that £(V) U L(LI) C W. It holds that
W = L(W) for an ne-variety of stamps W. We have that (V) ;, which is in particular an
ne-variety of stamps, is included in W because L({V)q) = L(V) C W = L(W), but also
that (LI),. is included in W because L({LI),.) = L(LI) C W = L(W). By inclusion-wise
minimality of (V V LI),., it follows that (V v LI),. C W. Hence, using again the above
fact on the Eilenberg correspondence, we can conclude that £(V vV LI) = L((V VLI),.) C
L(W) =W. So L(V V LI) is the inclusion-wise least ne-variety of languages containing both
L(V) and L(LI).

Consider now the class of languages C such that C(X) is the Boolean closure of £(V)(Z) U
L(LI)(X) for each alphabet 3. By closure under Boolean operations of £(V V LI), we
have that C C £L(V Vv LI). Now, as Boolean operations commute with both quotients [14,
p. 20] and inverses of ne-morphisms [14, Proposition 0.4], by closure of £(V) and L(LI)
under quotients and inverses of me-morphisms, we actually have that C is an ne-variety
of languages. Therefore, by inclusion-wise minimality of £(V V LI), we can conclude that
L(VVLI)=C. <

Proof of Lemma 10. We actually have that £(V) U L(LI) C L(EV), which allows us to
conclude by inclusion-wise minimality of £(V V LI) (Proposition 2) and by the fact that
L(EV) is an ne-variety of languages (Proposition 6).

Let ¥ be an alphabet. The fact that £(V)(X) C L(EV)(X) follows trivially from
Proposition 9. Moreover, for all u € ¥*, since necessarily ¥* € £(V)(X), we have that both
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uX* and X*u belong to L(LI)(X). Thus, as L(EV)(X) is closed under Boolean operations,
it follows that L(LI)(X) C L(EV)(X).
This concludes the proof, since it holds for any alphabet X. |

Proof of Lemma 11. Assume that EV C (V V LI),.. For any L € £(V)(X) and any z,y €

¥* with ¥ an alphabet, by Proposition 9, we have that Ly € L(EV)(X) C L(V vV LI)(X).

Hence, V verifies criterion (A).
Conversely, assume that 'V verifies criterion (A). For any alphabet X, the set £(V V LI)(X)
contains all languages of the form xzLy for L € L(V)(X) and z,y € ¥*, so it contains all

Boolean combinations of languages of that form, since it is closed under Boolean operations.

Therefore, by Proposition 9, we have L(EV) C L(V V LI), so that EV C (VV LI),.. <«

Proof of Proposition 12. Let us first observe that given any alphabet ¥, given any language
K on that alphabet and given any two words z,y € ¥*, we have that z(z 1Ky 1)y =
rX*yN K and 271 (2 Ky)y~! = K.

Implication from right to left. Assume that for any L € £(V)(X) and any z,y € ¥* with
¥ an alphabet, there exist k,1 € N such that for all u € ¥ v € %!, there exists a language
K € L(V)(2) verifying u='Lv™! = (zu) "1 K (vy)~!. Take L € L(V)(X) for an alphabet %
and take z,y € ¥*. Consider also k,l € N that are guaranteed to exist by the assumption we
just made.

For all u € ¥¥ v € X! there exists a language K € L(V)(X) verifying v~ 'Lv~! =
(ru)"1K(vy)~!, so that by our observation at the beginning of the proof, we have

z(uS*v N L)y = zu(u™ "' Lo Yoy = zu((zu) 'K (vy) vy = zuS oy N K .

Using Proposition 2, we thus have that z(uX*v N L)y € £L(V V LI)(X) for all u € ¥* v € ¥\
Moreover, since we have that the set of words of L of length at least k + [ is

»2hnL = U (uX*vNL)
ueXk vext

and since
L=F"nL)uF
where F' is a finite set of words on X of length less than k + [, we have that

xLy = x((ZZkH NL)UF)y = U z(uX*vN LyyUzFy .
ueXk vext

We can thus conclude that Ly € L(V Vv LI)(X) since xFy € L(LI)(X) and because
L(V Vv LI)(X) is closed under unions.

Implication from left to right. Assume that V satisfies criterion (A). Take L € L(V)(X)
for an alphabet ¥ and take z,y € ¥*. By hypothesis, we know that 2Ly € £L(V V LI)(XZ).
By Proposition 2, this means that x Ly is a Boolean combination of languages in £(V)(X)U
L(LI)(X). Further, this implies that Ly can be written as the union of intersections of
languages of £(V)(X) and L(LI)(X) or their complements, which in turn implies, by closure
of L(V)(X) and L(LI)(X) under Boolean operations, that Ly can be written as a finite
union of languages of the form KN (UX*VUW) with K € £(V)(X) and U, V, W C £* finite.
Since any word in xLy must be of length at least |xy| and have x as a prefix and y as a
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suffix, we can assume that any language K N (UX*V U W) appearing in a finite union as
described above verifies that U C xX*, that V' C X*y and that W C 2¥*y. Now, if we take
k,l € N big enough, we thus have that

xLy = U (Kyo NzuX*oy) UF
ueXk vedt

where K., , € L(V)(X) for all u € £¥, v € ! and F C <2¥I+k+ Hence, for all u € ¢, v €
! we have

u Lot =uT (@7 (@Ly)y ot
= (zu)™! ( U (Ky o Nau' S 0"y) U F) (vy)~*
u' €Xk v exl
= U @ (o (@) Kuw (0'y) 70y (o) U
u’ €Xk v exl
(zu) " F(oy) ™
= (zu) ' Kyuo(vy)™t,

using classical formulae for quotients [14, p. 20] and observing that (zu) 1K (vy)~! = 0 for
any K C X* such that K NzuX*vy = 0. <
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