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Abstract. We present some results about connections between Littelmann
paths and Brownian paths in the framework of affine Lie algebras. We expect

that they will be the first steps on a way which could hopefully lead to a

Pitman type theorem for a Brownian motion in an alcove associated to an
affine Weyl group.

1. Introduction

A Pitman’s theorem states that if {bt, t ≥ 0} is a one dimensional Brownian
motion, then

{bt − 2 inf
0≤s≤t

bs, t ≥ 0}

is a three dimensional Bessel process, i.e. a Brownian motion conditioned in the
sense of Doob to remain forever positive [10]. Philippe Biane, Philippe Bougerol
and Neil O’Connell have proved in [2] that a similar theorem exists in which the
real Brownian motion is replaced by a Brownian motion on a finite dimensional real
vector space. A finite Coxeter group acts on this space and the positive Brownian
motion is replaced by a conditioned Brownian motion with values in a fundamental
domain for the action of this group. In that case, the second process is obtained
by applying to the first one Pitman transformations in successive directions given
by a reduced decomposition of the longest word in the Coxeter group.

The paper [3] gives a similar representation theorem for a space-time Brownian
motion {(t, bt) : t ≥ 0} conditioned to remain in the cone

C′ = {(t, x) ∈ R× R : 0 ≤ x ≤ t}.

Actually C′ is a fundamental domain for the action on R+ ×R of an affine Coxeter
group of type A1

1, which is not a finite group. This affine Coxeter group is generated
by two reflections and it could be natural to think that one could obtain a space-
time Brownian motion conditioned to remain in C′ applying successively to a space-
time Brownian motion two Pitman transformations corresponding to these two
reflections. We have proved with Philippe Bougerol in [3] that this is not the case.
Actually a Lévy type transformation has to be added at the end of the successive
Pitman transformations if we want to get a Pitman’s representation theorem in this
case.

It is now natural to ask if such a theorem exists for the other affine Coxeter
groups. We will focus on Coxeter groups of type A1

n, with n ≥ 1. Such a Coxeter
group is the Weyl group of a type A extended affine Lie algebra. The presence of
the Lévy transformations in the case when n = 1 makes the higher rank statement
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quite open. When n = 1, the proof of [3] rests on an approximation of the affine
Coxeter group by a sequence of dihedral groups for which the results of [2] are
applicable. Such an approximation does not exist for a higher rank. Nevertheless,
another approximation exists of the Brownian model that we are interested in. It
involves the Littelmann path model. The two models are connected via a semiclas-
sical approximation. The Littelmann’s model is a combinatorial model which allows
to describe weight properties of some particular representations of Kac-Moody al-
gebras. Philippe Biane, Philippe Bougerol and Neil O’Connell pointed out in [1]
the fundamental fact that the Pitman transformations are intimately related to the
Littelmann path model. In the case of an affine Lie algebra, the Littelmann frame-
work allows to construct random paths which approximate the Brownian paths that
we are interested in. The knowledge of the properties of the Littelmann paths gives
then a way to get a better understanding of those of the Brownian paths. This ap-
proach didn’t lead for the moment to a Pitman type theorem. Nevertheless, we have
obtained several non trivial results that we present here. In particular, we prove the
convergence of the string coordinates arising in the framework of the Littelmann
path model towards their analogs defined for the Brownian paths. Besides we use
the Littelmann path approach to try to guess which correction could be needed if
a Pitman type theorem existed in this case. We present it here, with encouraging
simulations. Notice that the space component of a space-time Brownian motion
conditioned to remain in an affine Weyl chamber is equal, up to a time inversion,
to a Brownian motion conditioned to remain in an alcove, so that our suggestion
provides also a suggestion for a Pitman’s theorem for this last conditioned process.

These notes are organized as follows. In section 2 we recall the necessary back-
ground about affine Lie algebras and their representations. The Littelmann path
model is explained briefly in section 3 where we recall in particular the definition of
the string coordinates. Random Littelmann paths associated to representations of
an affine Lie algebra are introduced in section 4. We define a space-time Brownian
motion conditioned to remain in an affine Weyl chamber in section 5. In section 6
we explain what we know about the connection between the Brownian paths and the
Littelmann paths in the framework of affine Lie algebras. In particular we prove the
convergence of the string coordinates associated to our random Littelmann paths
towards their analogs for Brownian paths. Section 7 is devoted to explain what is
missing in the perspective of a Pitman type theorem. Finally in section 8 we use
the description of the highest weight Littelmann modules given in [9] to suggest
transformations which could play the role of the Lévy transformations in the case
when n is greater than one.

2. Basic definitions

This section is based on [7]. In order to make the paper as easy as possible to
read, we consider only the case of an extended affine Lie algebra of type A. For

this we consider a realization (ĥ, Π̂, Π̂∨) of a Cartan matrix of type A1
n for n ≥ 1.

That is to say

Π̂ = {α0, . . . , αn} ⊂ ĥ∗ and Π̂∨ = {α∨0 , . . . , α∨n} ⊂ ĥ

with

〈αi, α∨j 〉 =

 2 if i = j
−1 if |i− j| ∈ {1, n} when n ≥ 2
−2 if |i− j| = 1 when n = 1,
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and dim ĥ = n + 2, where 〈·, ·〉 is the canonical pairing. We consider an element

d ∈ ĥ such that
〈αi, d〉 = δi0,

for i ∈ {0, . . . , n} and define Λ0 ∈ ĥ∗ by

〈Λ0, d〉 = 0 and 〈Λ0, α
∨
i 〉 = δi0,

for i ∈ {0, . . . , n}. We consider the Weyl group Ŵ which is the subgroup of GL(ĥ∗)
generated by the simple reflexions sαi , i ∈ {0, . . . , n}, defined by

sαi(x) = x− 〈x, α∨i 〉αi, x ∈ ĥ∗,

i ∈ {0, . . . , n}, and equip ĥ∗ with a non degenerate Ŵ -invariant bilinear form (·|·)
defined by 

(αi|αj) = 2 if i = j
(αi|αj) = −1 if |i− j| ∈ {1, n} when n ≥ 2
(αi|αj) = −2 if |i− j| = 1 when n = 1,
(αi|αj) = 0 otherwise,

(Λ0|Λ0) = 0 and (αi|Λ0) = δi0, i ∈ {0, . . . , n}. We consider as usual the set of
integral weights

P̂ = {λ ∈ ĥ∗ : 〈λ, α∨i 〉 ∈ Z, i ∈ {0, . . . , n}},
and the set of dominant integral weights

P̂+ = {λ ∈ ĥ∗ : 〈λ, α∨i 〉 ∈ N, i ∈ {0, . . . , n}}.

For λ ∈ P̂+ we denote by V (λ) the irreducible highest weight module of weight λ

of an affine Lie algebra of type A1
n with ĥ as a Cartan subalgebra and Π̂ as a set of

simple roots. We consider the formal character

chλ =
∑
β∈P̂

mλ
βe
β ,

where mλ
β is the multiplicity of the weight β in V (λ). If ν̂ ∈ ĥ∗ satisfies (ν̂|α0) > 0

then the series ∑
β∈P̂

mλ
βe

(β|ν̂),

converges and we denote by chλ(ν̂) its limit.

3. Littelmann path model

From now on we work on the real vector space

ĥ∗R = RΛ0 ⊕
n⊕
i=0

Rαi.

In this section, we recall what we need about the Littelmann path model (see mainly
[9] for more details, and also [8]). Fix T ≥ 0. A path π is a piecewise linear function

π : [0, T ]→ ĥ∗R such that π(0) = 0. We consider the cone generated by P̂+

C = {λ ∈ ĥ∗R : 〈λ, α∨i 〉 ≥ 0, i ∈ {0, . . . , n}}.
A path π is called dominant if π(t) ∈ C for all t ∈ [0, T ]. It is called integral if

min
t∈[0,T ]

〈π(t), α∨i 〉 ∈ Z, for all i ∈ {0, . . . , n}.
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Pitman’s transforms, Littelmann module. We define the Pitman’s transforms

Pαi , i ∈ {0, . . . , n}, which operate on the set of continuous functions η : R+ → ĥ∗R
such that η(0) = 0. They are given by

Pαiη(t) = η(t)− inf
s≤t
〈η(s), α∨i 〉αi, t ∈ R+,

i ∈ {0, . . . , n}. Let us fix a sequence (ik)k≥0 with values in {0, . . . , n} such that

|{k : ik = j}| =∞ for all j ∈ {0, . . . , n}.(1)

Given an integral dominant path π defined on [0, T ], such that π(T ) ∈ P̂+, the
Littelmann module Bπ generated by π is the set of paths η defined on [0, T ] such
that it exists k ∈ N such that Pαik . . .Pαi0 η = π. This module doesn’t depend on

the sequence (ik)k≥0 provided that it satisfies condition (1).
For an integral dominant path π, one defines P on (Bπ)?∞, where ? stands for

the usual concatenation (not the Littelmann’s one), letting for η ∈ (Bπ)?∞

Pη(t) = lim
k→∞

Pαik . . .Pαi0 η(t), t ≥ 0.

Note that for any u ∈ R+ it exists k0 such that

Pη(t) = Pαk0
. . .Pα0

η(t), t ∈ [0, u],

and that the definition of P does not depend on the order in which the Pitman’s
transfoms are applied provided that each of them is applied infinitely many times.

String coordinates, Littelmann transforms. In the following, the sequence
(ik)k≥0 can’t be chosen arbitrarily. It is important that

for each k ≥ 0, sαik . . . sαi1 sαi0 is a reduced decomposition.(2)

It is the case for instance if ik = k mod (n), for every k ≥ 0. Let us fix from now a
sequence i = (ik)k≥0 such that (2) is satisfied (then condition (1) is also satisfied).
For a dominant path π defined on [0, T ], we consider the application ai from Bπ to
the set of almost zero nonnegative integer sequences `(∞)(N) such that for η ∈ Bπ,
ai(η) is the sequence of integers (aik)k≥0 from `(∞)(N) defined by the identities

Pαim . . .Pαi0 η(T ) = η(T ) +

m∑
k=0

aikαik , m ≥ 0.(3)

Notice that we will most often omit i in ai and aik, k ≥ 0. Let us give the connection
with the Littelmann model described in [9]. Let

w(p) = sαip . . . sαi1 sαi0 ,

for any p ≥ 1. Notice that the reflexions are not labeled in the same order as in [9].
Nevertheless the path operators eik and fik defined in [9] are applied in the same
order here. For a tuple a = (a0, . . . , ap) ∈ Np+1 we write fa for

fa := fa0
i0
. . . f

ap
ip
.

For a dominant integral path π and η ∈ Bπ such that η = faπ for a = (a0, . . . , ap),
one says that a is an adapted string for η if a0 is the largest integer such that
ea0
i0
η 6= 0, a1 is the largest integer such that ea1

i1
ea0
i0
η 6= 0 and so on. Actually, given

η, a0, a1, . . . , are exactly the ones defined by (3). In particular the application ai

is injective on Bπ. Peter Littelmann describes its image in [9]. For this he defines
Sw(p) as the set of all a ∈ Np+1, such that a is an adapted string of faπ for some
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dominant integral path π and Sλ
w(p) as the subset {a ∈ Sw(p) : faπλ} where πλ is

a dominant integral path ending at λ ∈ P+. The set Sλ
w(p) can be identified with

the vertices of the crystal graph of a Demazure module. It depends on πλ only
throught λ. If we let

B(∞) =
⋃
p∈N
Sw(p) et B(λ) =

⋃
p∈N
Sλw(p) ,

proposition 1.5 of [9] gives the following one, which will be essential to try to guess
what the Lévy transformations could be for n ≥ 2.

Proposition 3.1.

B(λ) = {a ∈ B(∞) : ap ≤ 〈λ−
∞∑

k=p+1

akαik , α
∨
ip〉,∀p ≥ 0}

= {a ∈ B(∞) : ap ≤ 〈λ− ω(a) +

p∑
k=0

akαik , α
∨
ip〉,∀p ≥ 0}

= {a ∈ B(∞) : 〈ω(a)−
p−1∑
k=0

akαik −
1

2
apαip , α

∨
ip〉 ≤ 〈λ, α

∨
ip〉,∀p ≥ 1},

where ω(a) =
∑∞
k=0 akαik , which is the opposite of the weight of a in the crystal

B(∞) of the Verma module of highest weight 0.

4. Random walks and Littelmann paths

Let us consider a path πΛ0
defined on [0, 1] by

πΛ0
(t) = tΛ0, t ∈ [0, 1],

and the Littelmann module BπΛ0
generated by πΛ0

. We fix an integer m ≥ 1,

choose ν̂ ∈ ĥ∗R such that (α0|ν̂) > 0. Littelmann path theory ensures that

chΛ0
(ν̂/m) =

∑
η∈BπΛ0

e
1
m (η(1)|ν̂).

We equip BπΛ0
with a probability measure µm letting

µm(η) =
e

1
m (η(1)|ν̂)

chΛ0
(ν̂/m)

, η ∈ BπΛ0
.(4)

One considers a sequence (ηmi )i≥0 of i.i.d random variables with law µm and a
random path {πm(t), t ≥ 0} defined by

πm(t) = ηm1 (1) + · · ·+ ηmk−1(1) + ηmk (t− k + 1),

when t ∈ [k− 1, k[, for k ∈ Z+. The Littelmann’s path theory implies immediately
the following proposition.

Proposition 4.1. The random process {P(πm)(k), k ≥ 0} is a Markov chain start-

ing from 0 with values in P̂+ and transition probability

Q(λ, β) =
chβ(ν̂/m)

chλ(ν̂/m) chΛ0
(ν̂/m)

Mβ
λ,Λ0

, λ, β ∈ P+,

where Mβ
λ,Λ0

is the number of irreducible representations in the isotypic componant

of highest weight β in V (λ)⊗ V (Λ0).
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Remark 4.2. If δ is the lowest positive null root, i.e. δ =
∑n
i=0 αi, then V (λ)

and V (β) are isomorphic for λ = β mod δ. Thus {P(πm)(k), k ≥ 0} remains

markovian in the quotient space ĥ∗R/Rδ. This is this process that interests us.

5. A conditioned space-time Brownian motion

One considers the decomposition

ĥ∗R = RΛ0 ⊕ h∗R ⊕ Rδ

where h∗R =
⊕n

i=1 Rαi and one identifies ĥ∗R/Rδ with RΛ0 ⊕ h∗R. We let h∗ =⊕n
i=1 Cαi. We denote by R+ the set of positive roots in h∗, by ρ the corresponding

Weyl vector, i.e. ρ = 1
2

∑
α∈R+

α, by P+ the corresponding set of dominant weights,

i.e.

P+ = {λ ∈ h∗R : 〈λ, α∨i 〉 ∈ N for i ∈ {1, . . . , n}},

and by W the subgroup of Ŵ generated by the simple reflexion sαi , i ∈ {1, . . . , n}.
The bilinear form (·|·) defines a scalar product h∗R so that we write ||x||2 for (x|x)
when x ∈ h∗R. One considers a standard Brownian motion {bt : t ≥ 0} in h∗R with
drift ν ∈ h∗R and {Bt = tΛ0 + bt : t ≥ 0}, which is a space-time Brownian motion.

We define the function π on ĥ∗ letting

π(x) =
∏
α∈R+

sinπ(α|x),

for x ∈ ĥ∗ and for λ1, λ2 ∈ R∗+Λ0 + h∗R, we let

ψλ1
(λ2) =

1

π(λ1/t1)

∑
w∈Ŵ

det(w)e(wλ1,λ2).

where t1 = (δ|λ1). Using a Poisson summation formula, Igor Frenkel has proved in
[6] (see also [5]) that if λ1 = t1Λ0 + x1 and λ2 = t2Λ0 + x2, for x1, x2 ∈ h∗R, then
ψλ1

(λ2)

π(λ2/t2) is proportionnal to

(
t1t2
2π

)−n/2e
t1
2t2

(λ2,λ2)+
t2
2t1

(λ1,λ1)
∑
µ∈P+

χµ(ex2/t2)χµ(e−x1/t1)e−
1

2t1t2
(2π)2||µ+ρ||2 ,(5)

where χµ is the character of the representation of highest weight µ of the underlying
semi-simple Lie algebra having h as a Cartan subalgebra, i.e.

χµ(β) ∝ 1

π(β)

∑
w∈W

e2iπ(w(µ+ρ)|β), β ∈ h∗R.

We consider the cone C′ which is the cone C viewed in the quotient space, i.e.

C′ = {λ ∈ ĥ∗R/Rδ : 〈λ, α∨i 〉 ≥ 0, i = 0, . . . , n},

and the stopping time T = inf{t ≥ 0 : Bt /∈ C′}. One recognizes in the sum over P+

of (5), up to a positive multiplicative constant, a probability density related to the
heat Kernel on a compact Lie group (see [6] or [5] for more details). As the function
π is a positive function on the interior of the cone C′ vanishing on its boundary,
one obtains easily the following proposition. We let ν̂ = Λ0 + ν.
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Proposition 5.1. The function

λ ∈ C′ → e−(ν̂|λ)ψν̂(λ)

is a constant sign harmonic function for the killed process {Bt∧T : t ≥ 0}, vanishing
only on the boundary of C′.

Definition 5.2. We define {At : t ≥ 0} as the killed process {Bt∧T : t ≥ 0}
conditionned (in Doob’s sens) not to die, via the harmonic function e−(ν̂|·)ψν̂(·).

6. What we know

We suppose from now that ν̂ = Λ0 + ν in (4), where ν ∈ h∗R such that ν̂ ∈ C′.

6.1. Convergence of the random walk and the Markov chain. The Fourier
transform of ηm1 (1) can be written with the character chΛ0

and the following lemma
is easily obtained using a Weyl character formula and formula (5).

Lemma 6.1. For x ∈ h∗, one has

lim
m→∞

E(e(x| 1
m

∑[mt]
i=1 η

m
i (1))) = e

t
2 ((x+ν|x+ν)−(ν|ν)).

As the coordinate of
∑[mt]
i=1 η

m
i (1) along Λ0 is [mt], the previous lemma shows

that the random walk whose increments are distributed according to µm converges

in ĥ∗R/Rδ after a renormalisation in 1/m towards a space-time Brownian motion.
By analycity, lemma implies also the convergence of the joint moments.

Lemma 6.2. The joint moments of 1
m

∑[mt]
i=1 η

m
i (1) converge in the quotient space

towards the ones of Bt.

One can show as in [4] that the Markov chain converges too in the quotient
space. One has the following proposition where convergences are convergences in
finite-dimensional distribution. We denote by d.e the ceiling function.

Proposition 6.3. In the quotient space ĥ∗R/Rδ one has the following convergences.

(1) The sequence

{ 1

m
πm(dmte) : t ≥ 0}, m ≥ 1,

converges towards {Bt : t ≥ 0} when m goes to infinity.
(2) The sequence

{ 1

m
Pπm(dmte) : t ≥ 0}, m ≥ 1,

converges towards {At : t ≥ 0} when m goes to infinity.

Now we want to prove that the first sequence of the proposition is tight in
order to prove that the string coordinates associated to the Littelmann path model
converges towards their analogs defined for the Brownian paths.



8 MANON DEFOSSEUX

6.2. Convergence of the string coordinates. We want to prove that for any
integer k

{ 1

m
Pαik . . .Pαi0π

m(dmte) : t ≥ 0} and { 1

m
Pαik . . .Pαi0π

m(mt) : t ≥ 0}

converges in the quotient space towards

{Pαik . . .Pαi0B(t) : t ≥ 0},

when m goes to infinity. For this we will prove that the sequence { 1
mπ

m(mt) : t ≥
0}, m ≥ 1, is tight. We begin to establish the following lemmas, which will be used
to control the increments.

Lemma 6.4. For x ∈ h∗, one has

lim
m→∞

E(e
(x| 1√

m
ηm1 (1))

) = e
1
2 (x|x)

and the joint moments of the projection of 1√
m
η1
m(1) on h∗R converge towards the

ones of a standard Gaussian random variable on h∗R.

Proof. We use the character formula and formula (5) for the first convergence and
analycity for the convergence of the moments. �

In lemma 6.5 and its corollary, for a path η defined on [0, 1], a0(η) is the first
string coordinate of η corresponding to the sequence i = i0, i1, . . . , that is to say
a0(η) = − infs≤1〈η(s), α∨i0〉.

Lemma 6.5. For r ∈ N, u ∈ C,

E(e(uαi0 |η
m
1 (1))|〈ηm1 (1) + a0(ηm1 )αi0 , α

∨
i0〉 = r) =

sr(e
1
2 (αi0 |uαi0+ν̂/m))

sr(e
1
2 (αi0 |ν̂/m))

,

where sr(q) = qr+1−q−(r+1)

q−q−1 , q > 0.

Proof. We use the description of the cone of string coordinates in proposition 3.1
and the fact that there is no condition for the first string coordinate in B(∞). �

As 〈ηm1 (1), α∨i0〉 admits a Laplace transform defined on R, which implies in par-
ticular that the moments of each odrer of 〈ηm1 (1), α∨i0〉 exist, the lemma has the
following corollary.

Corollaire 6.6.

E(〈ηm1 (1), α∨i0〉
4) = E([〈ηm1 (1) + a0(ηm1 )αi0 , α

∨
i0〉+ 1]4)

As the Littelmann module Bπ does not depend on the sequence i = (ik)k≥0,
corollary implies immediately the following proposition.

Proposition 6.7. For all i ∈ {0, . . . , n},

E(〈ηm1 (1)− inf
s≤1
〈ηm1 (s), α∨i 〉αi, α∨i 〉4) ≤ E(〈ηm1 (1), α∨i 〉4)

Proposition 6.8. One has for any i ∈ {0, . . . , n}, m ≥ 1, t ≥ 0,

|〈πm(mt)− π(n)(dmte), α∨i 〉| ≤
n∑
j=0

〈ηmdmte(1)− inf
s≤1
〈ηmdmte(s), α

∨
j 〉αj , α∨j 〉
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Proof.

|〈πm(mt)− πm(dmte), α∨i 〉|
≤ max(〈ηmdmte(1), α∨i 〉 − inf

s≤1
〈ηmdmte(s), α

∨
i 〉, sup

s≤1
〈ηmdmte(s), α

∨
i 〉 − 〈ηmdnte(1), α∨i 〉)

Besides

〈ηmdmte(1), α∨i 〉 − inf
s≤1
〈ηmdmte(s), α

∨
i 〉 ≤ 〈η

(n)
dmte(1)− inf

s≤1
〈η(n)
dmte(s), α

∨
i 〉αi, α∨i 〉

and

sup
s≤1
〈ηmdmte(s), α

∨
i 〉 − 〈ηmdnte(1), α∨i 〉 = sup

s≤1
(δ −

∑
j 6=i

αj |ηmdmte(s))− (δ −
∑
j 6=i

αj |ηmdmte(1))

= sup
s≤1

(s−
∑
j 6=i

(αj |ηmdmte(s)))− (1−
∑
j 6=i

(αj |ηmdmte(1)))

≤
∑
j 6=i

(αj |ηmdmte(1))− inf
s≤1

((αj |ηmdmte(s))

≤
∑
j 6=i

〈ηmdmte(1)− inf
s≤1
〈ηmdmte(s), α

∨
j 〉αj , α∨j 〉

�

Lemma 6.9. It exists C such that for any ε > 0, m ≥ 1, t ≥ 0, one has

P(

n∑
j=0

〈 1

m
ηmdmte(1)− inf

s≤1
〈 1

m
ηmdmte(s), α

∨
j 〉αj , α∨j 〉 ≥ ε) ≤

C

ε4m2

Proof. It comes from lemma 6.4 and proposition 6.7. �

Proposition 6.10. In the quotient space { 1
mπ

m(mt) : t ≥ 0} converges in a sense
of finite dimensional law towards {B(t) : t ≥ 0}.

Proof. It comes from the convergence of { 1
mπ

m(dmte) : t ≥ 0}, lemma 6.9 and
proposition before. �

Proposition 6.11. In the quotient space, the sequence { 1
mπ

m(mt), t ≥ 0}, m ≥ 1,
is tight.

Proof. It is enough to prove that for any i ∈ {0, . . . , n}, ε, η > 0, it exists an integer
k such that

lim
m

sup k max
0≤l≤k−1

P( sup
0≤r≤1/k

1

m
〈πm((r + l/k)m)− πm(lm/k), α∨i 〉 ≥ η) ≤ ε.(6)

We write that |〈πm(ms)− πm(mt), α∨i 〉| is smaller than

|〈πm(ms)− πm(dmse), α∨i 〉|+ |〈πm(dmse)− πm(dmte), α∨i 〉|
+ |〈πm(mt)− πm(dmte), α∨i 〉|.
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One has for m, k ≥ 1, l ≤ k − 1

P( sup
r≤1/k

1

m
〈πm((r + l/k)m)− πm(d(r + l/k)me), α∨i 〉 ≥ η)

≤ P( sup
r≤1/k

1

m

n∑
j=0

〈ηmd(r+l/k)me(1)− inf
s≤1
〈ηmd(r+l/k)me(s), α

∨
j 〉αj , α∨j 〉 ≥ η)

≤ dm
k
eP(

n∑
j=0

1

m
〈ηm1 (1)− inf

s≤1
〈ηm1 (s), α∨j 〉αj , α∨j 〉 ≥ η) ≤ dm

k
e C

η4m2
.

We prove in a standard way that { 1
mπ

m(dmte) : t ≥ 0} satisfies (6) for a particular
integer k, which achieves the prove. �

Thanks to the Skorokhod representation theorem we can always suppose and we
suppose that the first convergence in propositon 6.3 is a locally uniform almost sure
one. We have now all the ingredients to obtain the following theorem.

Theorem 6.12. For every t ≥ 0, and any sequence (ik)k of integers in {0, . . . , n},
1

m
Pαik . . .Pαi0π

m(mt) and
1

m
Pαik . . .Pαi0π

m(dmte),

converge towards Pαik . . .Pαi0B(t).

The theorem proves in particular that the string coordinates associated to the
Littelmann path model converges towards their analogs defined for the Brownian
paths. Actually for any t ≥ 0, if we consider the random sequence (xmk (t))k defined
by

Pαik . . .Pαi0π
m(t) = πm(t) +

k∑
i=0

xmk (t)αik ,

and (xk(t))k defined by

Pαik . . .Pαi0B(t) = B(t) +

k∑
i=0

xk(t)αik ,

then the previous theorem shows that for every k ≥ 0 and t ≥ 0

lim
m→∞

1

m
xmk (mt) = lim

m→∞

1

m
xmk (dmte) = xk(t).

We can prove that this convergence remains true in law for t = ∞ provided that
〈ν̂, α∨i 〉 > 0 for every i ∈ {0, . . . , n}. In that case, one has the following convergence,
which is proved in the appendix.

Proposition 6.13. For all k, limm→∞
1
mx

m
k (∞) = xk(∞).

7. What we do not know

We have proved in [3] that when n = 1,

lim
m→∞

lim
k→∞

Pαik . . .Pαi0
1

m
πm(mt) = lim

k→∞
lim
m→∞

Pαik . . .Pαi0
1

m
πm(mt),

is not true as the righthand side limit in k doesn’t even exist. Nevertheless we have
proved that this identity becomes true if we replace the last Pitman transformation
Pαik by a modified one which is a Lévy transformation Lαik . We would like to show

that a similar result exists for A1
n, with n greater than 1, but we didn’t manage to
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get it for the moment. Before saying what the correction could be, it is with no
doubt interesting to compare graphically the curves obtained applying successively
Pitman transformations to a simulation of a Brownian curve with the ones obtained
when at each stage these transformations are followed with a Lévy transformation.
On the picture 1 the paths of the first sequence of paths are represented in blue,
whereas the ones of the second sequence are represented in yellow. The red curve
is the image of the simulation of the Brownian curve (which is a piecewise linear
curve) by P. We notice that there is an explosion phenomenon for the blue curves
which doesn’t exist for the yellow ones.

8. What we hope

Let us try now to guess what the Lévy transforms could become for n greater
than 1. For an integral path π defined on R+ such that for all i ∈ {0, . . . , n},

lim
t→∞
〈π(t), α∨i 〉 = +∞,

the string coordinates for T =∞ are well defined, and if we denote them by a, one
can let and we let ω(π) = ω(a), where ω is defined in proposition 3.1. Suppose now
that ν̂ in (4) satisfies 〈ν̂, α∨i 〉 > 0 for all i ∈ {0, . . . , n}. In this case, the random
string coordinates xmk (∞), k ≥ 0, and ω(πm) are well defined. Then for any t ∈ N
the law of xmk (t), k ≥ 0 given that Pπm(t) = λ is the law of xmk (∞), k ≥ 0, given
that (xmk (∞))k≥0 belongs to B(λ) i.e.

∀p ≥ 1, 〈ω(πm)−
p−1∑
k=0

xmk (∞)αik −
1

2
xmp (∞)αip , α

∨
ip〉 ≤ 〈λ, α

∨
ip〉.

We can prove that 1
mω(πm) converges almost surely in the quotient space when m

goes to infinity towards a limit that we denote by ω(B). To prove this convergence
it is enough to understand the distribution of the weights in a Verma module, which
is not difficult. Thus the quantities

1

m
〈ω(πm)−

p−1∑
k=0

xmk (∞)− 1

2
xmp (∞), α∨ip〉, p ≥ 1,

converge almost surely towards

〈ω(B)−
p−1∑
k=0

xk(∞)− 1

2
xp(∞), α∨ip〉, p ≥ 1,

when m goes to infinity. For n = 1, because of the inequalities defining B(λ), it is
essential for the proofs that

〈ω(B)−
p−1∑
k=1

xk(∞)αik −
1

2
xp(∞)αip , α

∨
ip〉,

converges to 0 when p goes to infinity. It allows to prove that all the convergences
obtained for the string coordinates in a continuous analog of B(∞) remains true
when string coordinates are conditioned to belong to a continuous analog of B(λ).
So we are going to suppose that this convergence remains true for n ≥ 2.
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Assumptions 8.1. We suppose that

〈ω(B)−
p−1∑
k=1

xk(∞)αik −
1

2
xp(∞)αip , α

∨
ip〉,

converges almost surely towards 0 when p goes to infinity.

Moreover the following assumptions are supposed to be true. They are natural
if we think that a Pitman–Lévy type theorem exists for n ≥ 2, which is for us a
strong hope rather than a strong conviction.

Assumptions 8.2. We suppose from now that the following assertions are true.

(1) It exists a sequence (up) with values in h∗R such that

p−1∑
k=0

xk(∞)αik + up,

converges almost surely in the quotient space ĥ∗R/Rδ towards ω(B) when p
goes to +∞.

(2) The sequence (xp(∞))p converges almost surely towards l ∈ R as p goes to
infinity.

(3)
∑p
k=0(xk(∞)−l)αik , or equivalently (under assumption (2)),

∑p
k=0(xk(∞)−

xp(∞))αik , converges in the quotient space when p goes to infinity.

Remark 8.3. In the case when n = 1, one has limp→∞ xp(∞)p = 2 and one can
take for instance up = 1

2xp(∞)αip , or up = αip , p ≥ 0.

Under assumptions 8.2, it exists u ∈ h∗R such that

lim
p→∞

up + xp(∞)

p−1∑
i=0

αik = lim
p→∞

uxp(∞),

Under assumption 8.1, u must satisfies

∀p ≥ 0, 〈u−
p−1∑
k=0

αik −
1

2
αip , α

∨
ip〉 = 0.

It exists only one such a u in h∗.

The hope is that for all t ≥ 0, almost surely,

B(t)−
p−1∑
k=0

xk(t)αik − xp(t)(u−
p−1∑
i=0

αik),

converges in the quotient space towards A(t) when p goes to infinity.

For n = 1, and i = 0, 1, 0 . . . , one can take u = α0/2, which gives the proper
correction.
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Figure 1. Successive transformations of a Brownian curve for A1
1

9. The case of A
(1)
2

We explicit the expected correction in the case when n = 2, and i = 0, 1, 2, 0, 1, 2, . . . .
In that case one obtains that u = 1

3 (α0 − α2). For η(t) = tΛ0 + f(t), t ≥ 0 where
f : R+ → Rα1 +Rα2 is a continuous fonction starting from 0, we let for i ∈ {0, 1, 2}

Piη(t) = η(t)− inf
s≤t

α̃i(η(s))αi,

Liη(t) = η(t)− 1

3
inf
s≤t

α̃i(η(s))(αi − αi+2),

where α3 = α0.

We hope that in the quotient space, for all t ≥ 0, almost surely,

lim
k
LkPk−1 . . .P0B(t) = A(t),

where the subcripts in the Pitman and the Lévy transformations must be taken
modulo 3.

In figures 2 and 3 we have represented successive transformations of a simulated
brownian curve (evaluating on α∨1 and α∨2 ), with a correction and with no correction,
similarly as in figure 1. We notice that the explosion phenomenon persists when
there is no correction whereas it desapears with the expected needed correction. It
gives some hope that the ”conjecture” is true.
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Figure 2. Successive transformations of a Brownian curve on α∨1

Figure 3. Successive transformations of a Brownian curve on α∨2
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10. Appendix

Lemma 10.1. Let Smk =
∑k
i=1X

m
i , where Xm

i , i ≥ 0, are independent identically
distributed random variables such that the Laplace transform of Xm

1 converges to
the one of X when m goes to infinity. We suppose that E(X) > 0. Then for any
real a such that 0 < a < E(X) it exists θ > 0,m0 ≥ 0 such that for all m ≥ m0,
k ≥ 0,

P(Smk < ka) ≤ e−kθ.

Proof. Let ρ = E(X), c = ρ − a. Choose λ > 0 such that E(e−λ(X−ρ)) ≤ eλc/4.
After that we choose m0 such that for m ≥ m0,

E(e−λ(Xm1 −ρ)) ≤ eλc/4E(e−λ(X−ρ)) ≤ eλc/2.

One has

P(Smk < k(ρ− c)) = P(e−λS
m
k > e−λk(ρ−c)) ≤ (eλ(ρ−c)E(e−λX

m
1 ))k ≤ e−kλc/2.

�

Proof of proposition 6.13. Let us prove that it is true for k = 0. Proposition will
follow by induction. We have seen that for any T ≥ 0, almost surely

lim
m

inf
t≤T

1

m
〈πm(mt), α∨i0〉 = inf

t≤T
〈B(t), α∨i0〉.

Suppose that 〈ν̂, α∨i0〉 > 0. Then inft≥0〈B(t), α∨i0〉 > −∞, and we want to prove
that

lim
m

inf
t≥0

1

m
〈πm(mt), α∨i0〉 = inf

t≥0
〈B(t), α∨i0〉.

It is enough to prove that for any ε > 0 it exists T,m0 ≥ 0 such that for any
m ≥ m0,

P( inf
t≥T

πm(mt) < 0) ≤ ε.

For this let

Smk =

k∑
i=1

1

m+ 1

m∑
j=1

〈ηm(i−1)m+j(1), α∨i0〉.

It satisfies the hypothesis of the previous lemma, with

Xm
i =

1

m+ 1

m∑
j=1

〈ηm(i−1)m+j(1), α∨i0〉,

which converges in law towards 〈B1, α
∨
i0
〉 as m goes to infinity. One has

Smk =
1

m+ 1

mk∑
i=1

〈ηmi (1), α∨i0〉 =
1

m+ 1
πm(mk).

We let ρ = E(〈B1, α
∨
i0
〉) = 〈ν̂, α∨i0〉. Let ε > 0, 0 < a < b < ρ. As ka+ (b− a)

√
k ≤

bk, forall k ≥ 1, we choose θ > 0, m0 ≥ 0, such that for all k ≥ 0, m ≥ m0,

P(Smk < ka+ (b− a)
√
k) ≤ e−kθ,(7)

i.e.

P(〈πm(mk), α∨i0〉 < a(m+ 1)k + (b− a)(m+ 1)
√
k) ≤ e−kθ.
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One has for N ∈ N∗

{ inf
t≥N

1

m
〈πm(dmte), α∨i0〉 < at} ⊂ ∪k≥N ∪0≤p≤m {〈πm(mk + p), α∨i0〉 ≤ a(mk + p)},

and

P( inf
t≥N

1

m
〈πm(dmte), α∨i0〉 < at) ≤ P(∪k≥N{〈πm(mk), α∨i0〉 ≤ a(m+ 1)k + (b− a)(m+ 1)

√
k})

+ P(∪k≥N{ sup
0≤p≤m

|〈πm(mk + p), α∨i0〉 − 〈π
m(mk), α∨i0〉| ≥ (b− a)(m+ 1)

√
k})

Thanks to the lemma 7 we can choose and we choose N such that the first proba-
bility is smaller than ε. Besides

P( sup
0≤p≤m

|〈πm(mk + p), α∨i0〉 − 〈π
m(mk), α∨i0〉| ≥ (b− a)(m+ 1)

√
k)

≤ 1

(b− a)4(m+ 1)4k2
E( sup

0≤p≤m
|〈πm(mk + p), α∨i0〉 − 〈π

m(mk), α∨i0〉|
4)

One has

πm(mk + p) =

mk+p∑
i=1

〈ηmi (1), α∨i0〉 − E〈ηmi (1), α∨i0〉+ (mk + p)E〈ηm1 (1), α∨i0〉

= Y m(mk + p) + (mk + p)E〈ηm1 (1), α∨i0〉,

where Y m(mk + p), p ∈ {0, . . . ,m}, is a martingale. A maximale inequality and
the fact that E〈ηm1 (1), α∨i0〉 ∼ 〈ν̂, α

∨
i0
〉 imply that it exists C such that

P( sup
0≤p≤m

|〈πm(mk + p), α∨i0〉 − 〈π
m(mk), α∨i0〉| ≥ (b− a)(m+ 1)

√
k) ≤ C/k2.

Since proposition 6.8 and lemma 6.9 ensure that πm(mt) − πm(dmte) is bounded
by a random variable ξmdmte satisfying for any u > 0

P(ξmk /m ≥ u
√
k) ≤ C̃

k2m2
,

one obtains the proposition. �
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