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ABSTRACT

A novel algorithm named PerturbedProx-Preconditioned

SPIDER (3P-SPIDER) is introduced. It is a stochastic variance-

reduced proximal-gradient type algorithm built on Stochastic

Path Integral Differential EstimatoR (SPIDER),

an algorithm known to achieve near-optimal first-order oracle in-

equality for nonconvex and nonsmooth optimization. Compared to

the vanilla prox-SPIDER, 3P-SPIDER uses preconditioned gradi-

ent estimators. Preconditioning can either be applied ”explicitly”

to a gradient estimator or be introduced ”implicitly” as in appli-

cations to the EM algorithm. 3P-SPIDER also assumes that the

preconditioned gradients may (possibly) be not known in closed

analytical form and therefore must be approximated which adds an

additional degree of perturbation. Studying the convergence in ex-

pectation, we show that 3P-SPIDER achieves a near-optimal oracle

inequality O(n1/2/ǫ) where n is the number of observations and ǫ
the target precision even when the gradient is estimated by Monte

Carlo methods. We illustrate the algorithm on an application to the

minimization of a penalized empirical loss.

Index Terms— Statistical Learning, Large Scale Learning,

Variance reduced Stochastic gradient, Finite sum optimization, Con-

trol Variates.

1. INTRODUCTION

Consider the following composite, nonconvex, and possibly nons-

mooth optimization problem

Argmins∈S{W(s) + g(s)} , (1)

where S is a closed convex subset of Rq , W : V → R is a smooth

function defined on a neighborhood V of S and g : S → (−∞,+∞]
is a proper lower semi-continuous convex function (with an easy to

compute proximal term). This paper addresses the case when W has

a finite-sum structure

W(s) =
1

n

n∑

i=1

Wi(s) , (2)

and the optimization problem (1) is solved by a preconditioned-

gradient based algorithm. Optimization problems (1)-(2) often arise

in machine learning. In such case, n is the number of examples

which is typically very large, Wi is the loss function associated to

example #i, and g is a non-smooth regularization term, e.g. ℓ1
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norm, Elastic net, etc. The preconditioning setting may naturally

arise ”implicitly”, for example in the stochastic finite-sum version

of the Expectation-Maximization (EM) algorithm in the exponential

family, which was the main motivation for this work; see Section 4

and the companion paper [1].

Minimization problems (1) and (2) cover a broad range of appli-

cations in machine learning, statistics, and signal processing; see [2].

State-of-the art methods to solve these problems rely on stochastic

optimization approaches [3, 4]. In the nonconvex case, while numer-

ical algorithms for solving the noncomposite setting (i.e. g = 0),

are well-developed and have received significant attention [5, 6],

methods for composite optimization remain scarce [7, 8]. The au-

thors in [7] proposes and studies a non-composite finite-sum prob-

lem using SVRG estimator from [9]. This method is extended to the

composite setting by applying the proximal operator of g as in the

proximal-gradient scheme (see [10, 11, 12] for literature review on

the proximal-gradient algorithm). This technique is based on gradi-

ents and does not use preconditioning. This scheme has been later

improved with SPIDER, where the gradient control variate is se-

quentially updated to improve the estimation accuracy: SPIDER is

known to achieve near optimal oracle complexity in nonconvex op-

timization [13, 14, 8].

This paper analyzes the 3P-SPIDER algorithm designed to

solve

s ∈ S : 0 ∈ ∇W (s) + ∂g(s) , (3)

by combining (i) a variance-reduced preconditioned-gradient algo-

rithm designed for the finite sum setting, and (ii) a proximal step

to take into account the (non smooth) regularizer g. Furthermore

3P-SPIDER covers the case when the preconditioned gradient -

of the form n−1∑n
i=1 hi(s), see A2 below - is not computable in

a closed-form and is approximated: both the cases of an approxi-

mation of the full sum over n terms by a sum over a random sub-

sample, and an approximation of the functions hi’s are considered.

3P-SPIDERwas introduced in [1] for a specific application to large

scale learning solved by a Expectation Maximization-based opti-

mization method. The main contribution of this paper is to provide

explicit control of the convergence in expectation of 3P-SPIDER

and deduce complexity bounds in terms of the design parameters

of this algorithm. A comparison to the state of the art gradient-

based methods in terms of complexity bounds, is also provided in

the case the quantities hi are expectations and are approximated by a

Monte Carlo integration: it is established that the number of Monte

Carlo samples can be chosen so that 3P-SPIDER reaches the oracle

complexity bounds corresponding to the case where the hi(s)’s are

known in closed form.

Notations. R
⋆
+ and N

⋆ denote respectively (resp.) the posi-

tive real line and the positive integers. For n ∈ N
⋆, set [n]⋆

def
=

{1, · · · , n} and [n]
def
= {0, · · · , n}. For x ∈ R, ⌈x⌉ is the near-



est integer greater than or equal to x. Vectors are column-vectors;

for a, b in R
ℓ, 〈a, b〉 denotes the Euclidean scalar product, and ‖a‖

the associated norm. For a matrix A, we denote by AT and A−1

resp. its transpose and its inverse. Id is the d × d identity matrix.

The random variables are defined on a probability space (Ω,A, P);
E denotes the associated expectation. For random variables U and

a sigma-field F , E[U |F ] is the conditional expectation of U given

F . For a smooth function f , ∇f is the gradient of f . For a proper

lower semi-continuous convex function g and x in its (assumed) non-

empty domain, ∂g(x) is the subdifferential of g at x.

2. THE 3P-SPIDER ALGORITHM

The optimization problem at hand is the problem (3) in the case when

A1 S is a closed convex subset of Rq.

W : V → R is a continuously differentiable function on V , an

open neighborhood of S . Its gradient ∇W is globally Lipschitz-

continuous on S with Lipschitz constant LẆ.

g : S → (−∞,+∞] is a proper lower semi-continuous convex

function.

We consider a gradient approach for solving (3) and allow the use

of a preconditioning matrix B(s) which may depend on the current

value of the parameter s. We assume that

A2 For any s ∈ S , B(s) is a q× q positive definite matrix and there

exist 0 < vmin ≤ vmax such that for any s ∈ S , the spectrum of

B(s) is in [vmin, vmax].
For all i ∈ [n]⋆, there exists a globally Lipschitz function hi : S →
R

q, with constant Li, such that

−B−1(s)∇W(s) =
1

n

n∑

i=1

hi(s) .

We introduce a weighted proximal operator: for a q × q positive

definite matrix B, define for any s ∈ R
q and γ > 0,

ProxB,γg(s)
def
= Argmins′∈S

{
γg(s′) +

1

2
(s′ − s)TB(s′ − s)

}
.

Set h(s)
def
= n−1∑n

i=1 hi(s). Under A1 and A2, for any s, s′ ∈ S
and γ > 0, ProxB(s),γg(s

′) exists and is unique and, since s′ =
ProxB(s),γg(s+ γh(s)) if and only if 0 ∈ ∂g(s) +B(s)(s′ − s−
γh(s)), we obtain

{s ∈ S : ProxB(s),γg(s+ γh(s)) = s}
= {s ∈ S : 0 ∈ ∇W(s) + ∂g(s)} . (4)

This property implies that the solutions of (3) are the roots of the

function s 7→ ProxB(s),γg(s+ γh(s))− s restricted to S , whatever

γ > 0.

For any minibatch B of size b, sampled at random from [n⋆] -

with or without replacement, we have (see e.g. [15, Lemma 4])

h(s) =
1

b
E

[
∑

i∈B

hi(s)

]

,

thus implying that in the finite-sum setting, the preconditioned

gradient −B−1(s)∇W(s) can be approximated by a sum with b

terms where the indexes of summation i are sampled randomly:

b
−1∑

i∈B hi(s). Therefore, a natural extension of the Proximal-

Gradient algorithm to the finite-sum setting would define a sequence

{Ŝk, k ≥ 0} by

Ŝk+1 = ProxB(Ŝk),γk+1g



Ŝk +
γk+1

b

∑

i∈Bk+1

hi(Ŝk)





where {γk, k ≥ 0} is a positive deterministic sequence and

{Bk+1, k ≥ 0} is a sequence of minibatches of size b sampled

at random from [n]⋆. 3P-SPIDER reduces the variance of this

stochastic perturbation by the construction of a control variate,

which is defined as an approximation of h(Ŝk) correlated with the

random variable b
−1
∑

i∈Bk+1
hi(Ŝk). This control variate is re-

freshed at each so-called outer loop, indexed by t in Algorithm 1;

and then evolves along the inner loops, indexed by k. Finally, 3P

SPIDER allows approximations on the computation of hi(Ŝt,k),

approximations denoted by ĥ
t,k
i .

The algorithm is given in Algorithm 1. At the start of each outer

loop #t, the control variate St,0 is initialized (see Lines 2 and 10) in

order to approximate h(Ŝt,−1); a natural idea is to choose Et = 0.

Nevertheless, the computational cost is important since it involves a

sum over n terms, and this full sum can be substituted with a sum

having b
′ ≪ n indices defined by a minibatch B′

t,0 sampled at ran-

dom from [n]⋆; in that case, Et 6= 0. The control variate is modified

at each inner loop #k (see Line 6): since St,0 ≈ h(Ŝt,−1), we have

St,k+1 ≈ h(Ŝt,k) upon noting that St,k+1 − St,k ≈ h(Ŝt,k) −
h(Ŝt,k−1). The key property is the choice of the same minibatch

Bt,k+1 when approximating h(Ŝt,k) and h(Ŝt,k−1): the correlation

of these quantities is the essence of the control variate mechanism.

Data: kout, kin ∈ N
⋆; Ŝinit ∈ S ; γt,0 ≥ 0, γt,k > 0 for

t ∈ [kout]
⋆, k ∈ [kin]

⋆.

Result: The 3P-SPIDER sequence

{Ŝt,k, t ∈ [kin]
⋆, k ∈ [kin]}

1 Ŝ1,0 = Ŝ1,−1 = Ŝinit ;

2 S1,0 = n−1∑n
i=1 ĥ

1,−1
i + E1 ;

3 for t = 1, · · · , kout do

4 for k = 0, . . . , kin − 1 do

5 Sample a mini batch Bt,k+1 of size b in [n]⋆ ;

6 St,k+1 = St,k + b
−1
∑

i∈Bt,k+1

(
ĥ
t,k
i − ĥ

t,k−1
i

)

;

7 Ŝt,k+1/2 = Ŝt,k + γt,k+1St,k+1 ;

8 Ŝt,k+1 = ProxB(Ŝt,k),γt,k+1g

(
Ŝt,k+1/2

)
;

9 Ŝt+1,−1 = Ŝt,kin
;

10 St+1,0 = n−1∑n
i=1 ĥ

t+1,−1
i + Et+1 ;

11 Ŝt+1,−1/2 = Ŝt+1,−1 + γt+1,0St+1,0 ;

12 Ŝt+1,0 = ProxB(Ŝt+1,−1),γt+1,0
(Ŝt+1,−1/2)

Algorithm 1: The Perturbed Prox-Preconditioned SPIDER

(3P-SPIDER) algorithm.

The SPIDER algorithm ([13, 14, 8]) corresponds to the case

g = 0, S = R
q , B(s) = Iq and ĥ

t,k
i = hi(Ŝt,k) for any i ∈ [n]⋆,

t ∈ [kout]
⋆ and k ∈ [kin − 1]. In the case B(s) = Iq, 3P-SPIDER

is a perturbed proximal-gradient algorithm (see e.g. [16]); the con-



vergence analysis below addresses the non convex case (W is not as-

sumed to be convex). In the case g = 0 and S = R
q, 3P-SPIDER

is a Stochastic Approximation algorithm designed to find the roots

of the preconditioned gradient s 7→ h(s) = −B−1(s)∇W(s). Ap-

plied with g = 0 or g = χK - the characteristic function of a closed

convex set K, 3P-SPIDER is a variance reduced incremental EM

algorithm (see [17, 1], see also section 4 for an application to the

minimization of a penalized empirical loss).

3. CONVERGENCE IN EXPECTATION AND

COMPLEXITY BOUNDS

For ease of exposition (see [18] for the general case), it is assumed

hereafter that

A3 γt+1,0 = 0 and Et+1 = 0 for any t ∈ [kout]
⋆.

The intractable functions s 7→ hi(s) are defined as an integral with

respect to (w.r.t.) a distribution πi,s

hi(s)
def
=

∫

Z

Hi(z) πi,s(dz) .

They are approximated by a Monte Carlo sum:

hi(Ŝt,k−ℓ) ≈ ĥ
t,k−ℓ
i

def
=

1

mt,k+1

mt,k+1∑

r=1

Hi(Z
i,t,k−ℓ
r ), ℓ ∈ {0, 1}

where conditionally to the past of the algorithm Ft,k, the random

variables {Zi,t,k−ℓ
r , r ≥ 0} are independent and identically dis-

tributed (i.i.d.) with distribution πi,Ŝt,k−ℓ
.

Section 4 provides an example of this setting. More precisely, Ft,k

is the filtration associated to the history of the algorithm up to the

outer loop #t and the inner loop #k,

Ft,−1
def
= Ft−1,kin

, Ft,0
def
= Ft,−1

∨
σ(ĥt,−1

i , i ∈ [n]⋆) ,

Ft,k
def
= Ft,k−1

∨
σ
(
Bt,k; ĥ

t,k−1
i , ĥt,k−2

i , i ∈ Bt,k

)
.

For any t ∈ [kout]
⋆ and k ∈ [kin − 1], define

ηt,k+1
def
=

1

b

∑

i∈Bt,k+1

(
ĥ
t,k
i − ĥ

t,k−1
i − hi(Ŝt,k) + hi(Ŝt,k−1)

)
;

ηt,k+1 corresponds to the errors when approximating the quantities

hi(Ŝt,k−ℓ) for ℓ ∈ {0, 1} at outer loop #t and inner loop #(k+1).
From standard computations on i.i.d. random variables (the random-

ness being the selection of the mini-batch Bt,k+1), we have

E [ηt,k+1|Ft,k] = 0 , (5)

E
[
‖ηt,k+1 − E [ηt,k+1|Ft,k] ‖2|Ft,k

]
≤ Cv

bmt,k+1
, (6)

where

Cv
def
= 2 sup

s∈S
n−1

n∑

i=1

∫

Z

‖Hi(z)− hi(s)‖2πi,s(dz) .

The result (5) claims that the errors ηt,k+1 are unbiased, while (6) is

the control of its conditional variance - which is a decreasing func-

tion of the batch size and the number of points in the Monte Carlo

sum. In (6), the control is uniform with respect to the past (the right

hand side is deterministic while the left hand side is random): this

assumption can be difficult to check when the optimization problem

is not constrained in order to ensure that the points Ŝt,k remain in a

bounded subset of Rq .

Theorem 1 provides an upper bound on a control in expectation

of the convergence of the algorithm. First, it controls the difference

of two successive values Ŝt,k − Ŝt,k−1; then it controls the quantity

∆t,k
def
=

‖ProxB(Ŝt,k),γt,kg

(
Ŝt,k−1 + γt,kh(Ŝt,k−1)

)
− Ŝt,k−1‖2

γ2
t,k

which is a kind of distance to the set of the solutions to (3) (see (4)).

When B(s) = Id and g = 0, ∆t,k = ‖h(Ŝt,k)‖2 = ‖∇W(Ŝt,k)‖2.

The proof of Theorem 1 is given in [18].

Theorem 1 Assume A1, A2 and A3. For any t ∈ [kout]
⋆ and k ∈

[kin − 1], set

γt,k = γ⋆
def
=

vmin

LẆ + 2Lvmax

√
kin/

√
b
.

Denote by (τ,K) a uniform random variable on [kout]
⋆ × [kin],

independent of the path {Ŝt,k, t ∈ [kout]
⋆, k ∈ [kin]}. Then,

v2min

2
(
LẆ + 2Lvmax

√
kin/

√
b

)E

[
‖Ŝτ,K − Ŝτ,K−1‖2

γ2
τ,K

]

≤ 1

kout(1 + kin)

(
W(Ŝinit) + g(Ŝinit)−min(W+g)

)

+Cv
vmax

2L

1√
kinb

E

[
kin −K

mτ,K+1

]
.

In addition

(
2

vmin

{

LẆ + 2Lvmax

√
kin
b

}

+ L

√
kin
b

)−1

E [∆τ,K ]

≤
{

LẆ

Lvmin
+ 2

vmax

vmin

√
kin
b

}−1(
1

L
+

(
vmax

vmin

)2

γ⋆

√
kin
b

)

· · ·

× E

[
‖Ŝτ,K − Ŝτ,K−1‖2

γ2
τ,K

]

+

(
vmax

vmin

)2
Cv

L

1√
bkin

E

[
kin −K

mτ,K

]
.

In Theorem 1, the expectations are w.r.t. the stochastic path of the al-

gorithm {Ŝt,k} and to the randomness of the times (τ,K). This the-

orem provides a control of the errors when the algorithm is stopped

at some random time (τ,K). Such a control is classical in the non-

convex case to show non-asymptotic convergence of stochastic gra-

dient methods to a stationary point [19]: it consists in fixing a max-

imal number of iterations (here set to kout × kin) of the algorithm,

and draw at random, prior the run of the algorithm, a stopping time

(τ,K) .

Let us discuss the complexity bounds in the case mt,k = m
for any t ∈ [kout]

⋆ and k ∈ [kin]
⋆. The total number of proximal

calls is equal to NP
def
= kout(kin + 1). The total number of approx-

imations of the functions hi is equal to NA
def
= kout(n + 2bkin).

The total number of Monte Carlo draws is NMC
def
= mNA. Let

us fix ǫ > 0. Among the values K(n, ǫ) of the positive integers



(kout, kin, b,m) ∈ N
4 which guarantee that ǫ-stationarity is reached

i.e.

E [∆τ,K ] ≤ ǫ ,

the complexity bounds in terms of proximal calls are defined as

KP
def
= minK(n,ǫ) NP ; similarly, we define the complexity in terms

of h
′
is approximations, and in terms of Monte Carlo draws. By

choosing b = kin =
√
n, kout = 1/(

√
nǫ) and m = 1/ǫ , it is

easily seen from Theorem 1 that E [∆τ,K ] = O(ǫ) and

KP = O(ǫ−1) , KA = O(
√
nǫ−1) , KMC = O(

√
nǫ−2) .

When B(s) = Iq , g = 0 and the gradient functions hi’s can be

computed exactly, the state of the art complexity of variance-reduced

gradient algorithm in terms of total number of computations of these

gradient functions is O(
√
nǫ−1) [8]. This bound is also reached by

the variance reduced incremental EM named SPIDER-EM, which

corresponds to the case g = 0, B(s) 6= Id, and the preconditioned

gradient functions hi’s are explicit (see [15]). Our complexity KA

reaches this optimal value: in that sense, 3P-SPIDER is optimal

since the bound O(
√
nǫ−1) is reached despite the introduction of

a proximal operator and the approximations of the preconditioned

gradient functions hi’. To reach this optimal bound, the Monte Carlo

complexity is O(
√
nǫ−2).

4. APPLICATION: INFERENCE IN THE LOGISTIC

REGRESSION MODEL

We illustrate the convergence of 3P-SPIDER applied to inference

in the following logistic regression model. Given n covariate vec-

tors {Xi, i ∈ [n]⋆} in R
d and θ ∈ R

d, the {−1, 1}-valued binary

observations {Yi, i ∈ [n]⋆} are assumed independent with success

probability Pθ(Yi = 1) equal to

1

σd
√
2π

d

∫

Rd

(1 + exp(−〈Xi, zi〉))−1 exp

(
−‖zi − θ‖2

2σ2

)
dzi .

This model corresponds to a predictor Zi for each individual #i
and these predictors Zj , j ∈ [n]⋆, are independent with distribution

Nd(θ, σ
2Id). It is assumed that σ2 is known; the unknown parameter

θ is learnt by minimization of the penalized normalized negative log-

likelihood θ 7→ F (θ), with penalty term pen(θ)
def
= τ‖θ‖2 for some

τ > 0. F is equal to (see [1])

θ 7→ − 1

n

n∑

i=1

log

∫

R

(1 + exp (−Yi‖Xi‖z))−1 exp (〈si(z), θ〉)

× exp(−z2/(2σ2))dz + R(θ)

where si(z)
def
= zXi/(‖Xi‖σ2), R(θ)

def
= (1/2)θTΩ−1θ and Ω

def
=(

1
σ2n

∑n
i=1

XiX
T
i

‖Xi‖
2 + 2τ Id

)−1

. The minimization of this criterion

by a EM algorithm can be solved equivalently in the expectation

space in order to minimize W : s 7→ F (Ωs) (see e.g. [20, 1]). In

that case, EM finds the roots on R
d of

s 7→ h(s)
def
=

1

n

n∑

i=1

∫

R

si(z)pi(z; Ωs)dz − s ;

z 7→ pi(z; θ) is the probability density function proportional to

z 7→ (1 + exp (−Yi‖Xi‖z))−1 exp
(
〈si(z), θ〉 − z2/(2σ2)

)
.

We have ∇W(s)
def
= −Ωh(s) for any s ∈ R

d (see [1]). Further-

more, upon noting that Pθ(Yi = yi) ≤ 1, it can be shown that

the minima of F are in the set {θ ∈ R
d : τ‖θ‖2 ≤ ln 4}, which

implies that EM in the expectation space will find the roots of h in

K def
= {s ∈ R

d : sTΩs ≤ ln 4/(τλmin)} where λmin is the positive

minimal eigenvalue of Ω. Therefore, we set g equal to the charac-

teristic function of K; with such a definition of K, the associated

weighted proximal is explicit.

The data set is built from the MNIST data set, as described in [1,

Section 3]: n = 24 989 and d = 51. SPIDER-EM is run with

σ2 = 0.1, τ = 1, kout = 20, kin = ⌈√n/10⌉ = 16, b = ⌈10√n⌉,

Et = 0, γt,0 = 0, γt,k = 0.1 and mt,k = 2⌈√n⌉ until the outer

loop #9 and then mt,k = 10⌈√n⌉.

On Figure 1(a), the 51 components of the sequence {Ŝt,kin
, t ∈

[kout]
⋆} are displayed vs the index of the outer loop t. The conver-

gence can be observed.

On Figure 1(b), we display the quantiles 0.25, 0.5 and 0.75 of

the squared norm ‖Ŝt,k‖2 as a function of the cumulated number of

inner loops; these quantiles are computed over 25 independent runs

of 3P-SPIDER. Here again, the convergence and the stability of the

path over the independent runs can be observed.

Finally, Figures 1(c,d) display the quantiles 0.25 and 0.75 of

∆̂t,k
def
= ‖Ŝt,k − Ŝt,k−1‖2/γ2

t,k as a function of the cumulated

number of inner loops; these quantiles are estimated over 25 inde-

pendent runs of 3P-SPIDER. We observe the gain when increasing

the number of Monte Carlo points in order to reduce the fluctua-

tions of the approximations of the hi’s; see [1, Section 3] for a de-

tailed study of the design parameters of 3P-SPIDER. To illustrate

the benefit of the variance-reduction step in 3P-SPIDER, we also

run Prox-Online-EM with b = ⌈10√n⌉ and mt,k = 2⌈√n⌉.

Prox-Online-EM corresponds to Online-EM combined with

a proximal step i.e. a proximal-preconditioned gradient algorithm.

The quantiles 0.25 and 0.75 of ‖Ŝt − Ŝt−1‖2/γ2
t are displayed on

Figures 1(c,d) as a function of the number of iterations t. It illus-

trates that 3P-SPIDER, as a proximal variance-reduced precondi-

tioned gradient method, clearly improves on Online-EM.
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Fig. 1. [(a) top left] Sequence {Ŝt,kin
, t ∈ [kout]

⋆} [(b) top right]

Quantiles of ‖Ŝt,k‖2 [(c) bottom left] Quantile 0.25 of ∆̂t,k [(d)

bottom right] Quantile 0.75 of ∆̂t,k
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