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ABSTRACT

Incremental Expectation Maximization (EM) algorithms were in-

troduced to design EM for the large scale learning framework by

avoiding the full data set to be processed at each iteration. Neverthe-

less, these algorithms all assume that the conditional expectations

of the sufficient statistics are explicit. In this paper, we propose a

novel algorithm named Perturbed Prox-Preconditioned

SPIDER (3P-SPIDER), which builds on the Stochastic Path

Integral Differential EstimatoR EM (SPIDER-EM)

algorithm. The 3P-SPIDER algorithm addresses many intractabil-

ities of the E-step of EM; it also deals with non-smooth regular-

ization and convex constraint set. Numerical experiments show

that 3P-SPIDER outperforms other incremental EM methods and

discuss the role of some design parameters.

Index Terms— Statistical Learning, Large Scale Learning, Ex-

pectation Maximization algorithm, Finite-sum Optimization, Accel-

erated Stochastic Approximation, Control Variates.

1. INTRODUCTION

EM [1, 2] is a very popular computational tool, designed to

solve non convex minimization problems on R
d when the objec-

tive function is not explicit but defined by an integral F (θ) =
− log

∫
Z
G(z; θ)dµ(z). EM is a Majorize-Minimization algorithm

which, based on the current value of the parameter θcurr, defines a

majorizing function θ 7→ Q(θ; θcurr) through a Kullback-Leibler

argument; then, the new point is chosen as the/a minimum of

Q(·; θcurr). The computation of Q is straightforward when there

exist (known and explicit) functions R, φ, s such that Q(·; θcurr) =
R(·) − 〈s̄(θcurr), φ(·)〉 and s̄(τ ) ∝

∫
Z
s(z)G(z; τ )dµ(z) is the ex-

pectation of the function s with respect to (w.r.t.) the probability

measure G(·; τ ) exp(−F (τ ))dµ. In these cases, the vector s̄(θcurr)
defines the function Q.

It may happen that the vector s̄(θcurr) is not explicit (see e.g.

[3, section 6]); a natural idea is to substitute s̄ for an approximation,

possibly random. A first level of intractability occurs when the in-

tegral s̄(θcurr) is not explicit. Many stochastic EM versions were

proposed and studied to overcome this intractability: among them,

let us cite Monte Carlo EM [4, 5] where s̄ is approximated by a

Monte Carlo integration; and SA EM [6, 7] where s̄ is approximated

by a Stochastic Approximation (SA) scheme [8]. With the Big Data

era, a second level of intractability occurred: EM applied to statis-

tical learning evolved into online versions and large scale versions
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in order to minimize a loss function associated to a set of observa-

tions (also called examples). In large scale versions, the number of

training data n is too large to be processed at each iteration of EM:

for example, when the majorizing function Q of EM is of the form

Q(θ; θcurr) = R(θ)− 〈s̄(θcurr), φ(θ)〉, the vector s̄(θcurr) often has

the form n−1
∑n

i=1 s̄i(θcurr) and the sum over n terms can not be

allowed at each iteration of EM. To overcome this intractability in

this so-called finite-sum setting, incremental EM-based algorithms

were proposed: let us cite incremental EM [9], Online-EM

[10], sEM-VR [11], FIEM [12] (see also [13] for opt-FIEM) and

SPIDER-EM [14, 15]. The three algorithms sEM-vr, FIEM and

SPIDER-EM can be seen as a Online-EM algorithm combined

with a variance reduction technique through the construction of a

control variate; they all improve on Online-EM (see e.g. [15]).

However, these EM-based algorithms designed for the finite-sum

framework all consider that the functions θ 7→ s̄i(θ) can be explic-

itly evaluated for any θ and i = 1, · · · , n, while being defined as an

expectation.

This paper introduces a novel EM-based procedure, named

Perturbed Prox-Preconditioned SPIDER which tack-

les the two difficulties: ; (i) the finite-sum setting; (ii) the in-

tractability of the quantities s̄i(θcurr). It is proved in [14] that the

complexity bounds of SPIDER-EM, expressed as the number of

optimization steps and as the number of evaluations of the quan-

tities s̄i(θcurr) required to reach an ǫ-approximate stationary point

of F , improves over the state-of-the art. Therefore, our algorithm

builds on SPIDER-EM. It is also designed to address a composite

problem with a non-smooth term. 3P-SPIDER is introduced in

Section 2, with an emphasis on the case the quantities s̄i(θcurr)
are approximated by a Monte Carlo sum. In Section 3, the algo-

rithm is applied to the logistic regression problem; insights on the

choice of some design parameters are also given. It is shown that

this perturbed version of SPIDER-EM improves on the perturbed

version of Online-EM thus illustrating that the variance reduction

technique is still perceptible. This benefit is all the more visible

that the error when approximating the s̄i(θcurr)’s is small. Finally,

since 3P-SPIDER combines two approximations to address the

intractability of the s̄i(θcurr)’s and the finite-sum setting, it is advo-

cated to regularly refresh the control-variate approximation with a

full screening of the data set.

The complexity analysis of this algorithm is provided in [16]:

under conditions on the approximations of the s̄i(θcurr)
′s, which are

satisfied for example for a Monte Carlo approximation, it is shown

that 3P-SPIDER has the same complexity bounds as SPIDER-EM.

In that sense, it remains optimal among the (perturbed) incremental

EM algorithms.

Notations R
⋆
+ and N

⋆ denote respectively (resp.) the positive

real line and the set of the positive integers. For n ∈ N
⋆, set



[n]⋆
def
= {1, · · · , n} and [n]

def
= {0, · · · , n}. For x ∈ R, ⌈x⌉ is

the nearest integer greater than or equal to x. Vectors are column-

vectors; for a, b in R
ℓ, 〈a, b〉 denotes the Euclidean scalar product,

and ‖a‖ the associated norm. For a matrix A, AT and A−1 are

resp. its transpose and its inverse. Id is the d × d identity matrix.

The random variables are defined on a probability space (Ω,A, P);
E denotes the associated expectation. For random variables U, V ,

E[U |V ] is the conditional expectation of U given V . For a smooth

function f , ∇xf (or simply ∇f when clear enough) is the gradient

of f with respect to the variable x; ∇2f is its hessian. For a proper

lower semi-continuous convex function g and x in its (assumed) non-

empty domain, ∂g(x) is the subdifferential of g at x.

2. THE PERTURBED PROX-PRECONDITIONED SPIDER

ALGORITHM

2.1. The optimization problem

We address the minimization of an objective function F : Θ → R:

θ 7→ −1

n

n∑

i=1

log

∫

Z

hi(z) exp(〈si(z), φ(θ)〉)dµ(z) + R(θ) (1)

where Θ is an open subset of Rd, (Z,Z) is a measurable space, Z
denoting a σ-algebra over Z; the functions φ : Θ → R

q, R : Θ → R

and for all i ∈ [n]⋆, si : Z → R
q and hi : Z → R

⋆
+ are measur-

able; and µ is a dominating measure on (Z,Z). The minimization of

the negative log-likelihood in latent variable models provides exam-

ples of such a problem. As a first example, consider the maximum

likelihood estimate of a mixture of densities from the curved expo-

nential family (see e.g. [15, supp. material] for the Gaussian mixture

model). As a second example, consider the following logistic regres-

sion model: given R
d-valued covariate vectors {Xi, i ∈ [n]⋆}, for

any θ ∈ Θ
def
= R

d, the binary observations {Yi, i ∈ [n]⋆} are inde-

pendent with distribution

pθ(yi) ∝
∫

Rd

(1 + exp(−yi 〈Xi, zi〉))−1

× exp
(
−(2σ2)−1‖zi − θ‖2

)
dzi ,

for any i ∈ [n]⋆, yi ∈ {−1, 1}. In words, each individual #i in

the training set has an individual predictor Zi. Given Zi, the success

probability P(Yi = 1 | Zi) is (1 + exp(−〈Xi, Zi〉))−1. The indi-

vidual predictors Z1, · · · , Zn are assumed to have a Gaussian distri-

bution with expectation θ, assumed to be unknown, and (known) di-

agonal covariance matrix σ2Id. The ridge-regularized negative log-

likelihood, given by −n−1∑n
i=1 log pθ(Yi)+τ‖θ‖2 may be written

as (1) with Z
def
= R, φ(θ)

def
= θ, dµ(z)

def
= exp(−z2/(2σ2))dz,

hi(z)
def
= (1 + exp (−Yi‖Xi‖z))−1 , si(z)

def
= z

Xi

σ2‖Xi‖
,

R(θ)
def
=

1

2
θT
(

1

σ2n

n∑

i=1

XiX
T
i

‖Xi‖2
+ 2τ Id

)
θ .

2.2. EM in the expectation space

For solving this optimization problem, EM defines a sequence

{θk, k ≥ 0} taking values in Θ, by repeating (i) E-step: compute

Q(θ; θk)
def
= − 1

n

n∑

i=1

∫

Z

〈s(z), φ(θ)〉 pi(z; θk)dµ(z) + R(θ)

where for any z ∈ Z, θ ∈ Θ, i ∈ [n]⋆,

pi(z; θ) ∝ hi(z) exp(〈si(z), φ(θ)〉) (2)

is a probability density; (ii) M-step: compute the minimum

θk+1
def
= argminθ∈ΘQ(θ; θk), Q(θ; θk) = R(θ)−〈̄s(θk), φ(θ)〉 ,

with

s̄(θ)
def
=

1

n

n∑

i=1

s̄i(θ), s̄i(θ)
def
=

∫

Z

si(z) pi(z; θ)dµ(z) .

Hereafter, we assume that for any θcurr ∈ Θ, θ 7→ Q(θ; θcurr)
possesses an unique minimum and we define for any s in a closed

convex set S ⊇ s̄(Θ),

T(s)
def
= argminθ∈Θ (R(θ)− 〈s, φ(θ)〉) .

With these notations, it holds: θk+1 = T ◦ s̄(θk).
In the logistic regression example, pi(z; θ)dµ(z) is the a poste-

riori distribution of the hidden variable Zi given the observation Yi;

q = d; θ 7→ R(θ) − 〈s, φ(θ)〉 possesses an unique minimum; for

any s ∈ S def
= R

d, T(s) = Ωs where

Ω
def
=

(
1

σ2n

n∑

i=1

XiX
T
i

‖Xi‖2
+ 2τ Id

)−1

. (3)

When such a map T exists, it is well known that EM can be

equivalently defined in the expectation step: the computation of the

Θ-valued sequence {θk, k ≥ 0} through θk+1 = T ◦ s̄(θk) is equiv-

alent to the computation of the s̄(Θ)-valued sequence {sk, k ≥ 0}
through sk+1 = s̄ ◦ T(sk). The limiting points of these sequences

are resp. the roots of θ 7→ T◦ s̄(θ)−θ and s 7→ s̄◦T(s)−s (see e.g.

[7]). Hereafter, we will see EM as an algorithm in the expectation

space: EM is an iterative procedure designed to find the roots of the

mean field h: S → R
q

h(s)
def
= s̄ ◦ T(s)− s =

1

n

n∑

i=1

s̄i ◦ T(s)− s .

In the large scale learning setting, s̄ has a prohibitive computational

cost since it involves a sum over the full data set of size n: EM can

not be applied exactly. A popular alternative in the literature is to

replace EM iterations with SA iterations, where the SA algorithm is

designed to find the roots of h [7]. 3P-SPIDER is in the same vein.

2.3. The Perturbed Prox-Preconditioned SPIDER algorithm

Given a sequence of positive step sizes {γk, k ≥ 0}, SA defines a

sequence {Ŝk, k ≥ 0} such that

Ŝk+1 = Ŝk + γk+1Hk+1 (4)

where Hk+1 is an approximation of h(Ŝk). Observing that s̄(θ) =
E [̄sI(θ)] for some [n]⋆-valued uniform random variable I , a natural

idea to mimic the asymptotic behavior of EM is the definition

Hk+1
def
=

1

b

∑

i∈Bk+1

s̄i(Ŝk)− Ŝk

where Bk+1 is a batch of size b sampled uniformly from [n]⋆ (with

or without replacement) and independently of Ŝk. Such a strategy

corresponds to the Online-EM algorithm. The incremental EM-

based algorithms with variance reduction techniques use the prop-

erty h(Ŝk) = E

[
Hk+1 + V |Ŝk

]
for any (conditionally) centered



random variable V . This implies that, thanks to an adequate con-

struction of the control variate V , the variance of the approximation

of h(Ŝk) can be reduced (see e.g. [17] for an introduction to variance

reduction methods in Monte Carlo sampling). This is the essence of

sEM-vr, FIEM and SPIDER-EM which essentially differ in the

definition of V .

3P-SPIDER is described in Algorithm 1. As in SPIDER-EM,

the control variate is refreshed regularly, let us say at the beginning

of each outer loop #t (see lines 2 and 10). In SPIDER-EM, it is

defined as s̄ ◦ T(Ŝt,−1) = n−1∑n
i=1 s̄i(Ŝt,−1). Here, two pertur-

bations are allowed: the approximation of s̄i(Ŝt,−1) with a quantity

denoted by ŝ
t,−1
i , and an error Et which may include for example

the situation when a sub-sample of the n examples is used when

computing the sum instead of the full data set. At each inner loop

#(k + 1), the control variate is modified in order to track the ideal

quantity s̄ ◦T(Ŝt,k): note indeed that St,0 ≈ s̄ ◦T(Ŝt,−1) and, from

line 6, St,k+1 − St,k ≈ s̄ ◦ T(Ŝt,k)− s̄ ◦ T(Ŝt,k−1).

The sequence of interest {Ŝt,k, t ∈ [kout]
⋆, k ∈ [kin]} is up-

dated first by a SA step (see Line 7) followed with a proximal step

(see Line 8). In the SA step, the mean field h(Ŝt,k) = s̄ ◦T(Ŝt,k)−
Ŝt,k is approximated with (see Lines 6 and 7)

Hk+1
def
=

1

b

∑

i∈Bt,k+1

ŝ
t,k
i + Vk+1 − Ŝt,k

where Vk+1
def
= St,k − b

−1∑
i∈Bt,k+1

ŝ
t,k−1
i is a control variate.

Here again, Bt,k+1 is a batch of size b sampled from [n]⋆, with or

without replacement and independently of the past of the algorithm.

The proximal step in lines 8 and 12 is a novelty (with respect

to SPIDER-EM) introduced to force the path of the algorithm

{Ŝt,k, t ∈ [kout]
⋆, k ∈ [kin]} to remain in the set S and possibly

to inherit other properties from an adequate definition of g (see sec-

tion 3 for an example). The proof of the convergence in expectation

of the algorithm (see [16]) relies on the observation that the algo-

rithm (4) is a perturbed preconditioned-gradient method: by setting

W(s)
def
= F ◦ T(s), we have under regularity assumptions on the

functions φ, s,R that ∇W(s) = −B(s)h(s) for any s ∈ S , where

(see e.g. [13, Proposition 1])

B(s)
def
= (∇T(s))T ∇2

θ (R(θ)− 〈s, φ(θ)〉) |θ=T(s) (∇T(s)) ,

is a positive-definite matrix. Therefore, given a lower semi-

continuous proper convex function g : S → R ∪ {+∞}, we

use a weighted proximal operator defined by

ProxB,γg(s
′)

def
= argmins∈S

(
γg(s) +

1

2
(s− s′)TB(s− s′)

)

for any γ > 0 and any q × q positive-definite matrix B.

3P-SPIDER extends SPIDER-EM in the following directions.

First, in the definition of the control variates St,k, it allows to substi-

tute the intractable s̄i ◦T(Ŝt,k) with an approximation ŝ
t,k
i . Second,

it adds a proximal step in order to force the sequence {Ŝt,k, t ∈
[kout]

⋆, k ∈ [kin]} to have some properties (see [18, 19] for a simi-

lar idea applied to the SPIDER algorithm, with B(s) = Id). Finally,

it allows a perturbation Et when initializing the control variate St,0.

In [20] (see also [16]), the convergence in expectation of the

sequence {Ŝt,k, t ∈ [kout]
⋆, k ∈ [kin]} towards the set

L def
= {s : ProxB(s),γg(s+ γh(s)) = s} ∀γ > 0 ,

= {s : 0 ∈ ∂g(s)−B(s)h(s)} = {s : 0 ∈ ∂g(s) +∇W(s)}

Data: kout, kin ∈ N
⋆; Ŝinit ∈ S ; γt,0 ≥ 0, γt,k > 0 for

t ∈ [kout]
⋆, k ∈ [kin]

⋆, a lower semi-continuous

proper convex function g
Result: The 3P-SPIDER sequence

{Ŝt,k, t ∈ [kin]
⋆, k ∈ [kin]}

1 Ŝ1,0 = Ŝ1,−1 = Ŝinit ;

2 S1,0 = n−1
∑n

i=1 ŝ
1,−1
i + E1 ;

3 for t = 1, · · · , kout do

4 for k = 0, . . . , kin − 1 do

5 Sample a mini batch Bt,k+1 of size b in [n]⋆ ;

6 St,k+1 = St,k + b
−1∑

i∈Bt,k+1

(
ŝ
t,k
i − ŝ

t,k−1
i

)
;

7 Ŝt,k+1/2 = Ŝt,k + γt,k+1

(
St,k+1 − Ŝt,k

)
;

8 Ŝt,k+1 = ProxB(Ŝt,k),γt,k+1g

(
Ŝt,k+1/2

)
;

9 Ŝt+1,−1 = Ŝt,kin
;

10 St+1,0 = n−1∑n
i=1 ŝ

t+1,−1
i + Et+1 ;

11 Ŝt+1,−1/2 = Ŝt+1,−1 + γt+1,0

(
St+1,0 − Ŝt+1,−1

)
;

12 Ŝt+1,0 = ProxB(Ŝt+1,−1),γt+1,0g
(Ŝt+1,−1/2)

Algorithm 1: The Perturbed Prox-Preconditioned SPIDER

(3P-SPIDER) algorithm.

is proved. In the case g is the indicator function of a closed convex

set K and B(s) is invertible for any s ∈ K ∩ S , the limiting points

are the roots of ∇W which are in K, that is the roots of h(s) in K:

3P-SPIDER has the same asymptotic behavior as EM.

2.4. Case of a Monte Carlo approximation

The intractable quantity s̄i ◦ T(s) is defined by

s̄i ◦ T(s) def
=

∫

Z

si(z)pi(z;T(s))dµ(z) ,

where pi(z;T(s)) dµ(z) is the distribution defined by (2). When

this integral is not explicit, a natural idea is to approximate it by a

Monte Carlo (MC) sum. For example,

ŝ
t,k
i

def
=

1

mt,k+1

mt,k+1∑

r=1

si

(
Zi,t,k

r

)
,

where for t ∈ [kout]
⋆, k ∈ [kin] and i ∈ [n]⋆, {Zi,t,k

r , r ≥ 1} is

a Markov chain designed to be ergodic with unique invariant dis-

tribution pi(z;T(Ŝt,k))dµ(z). Such a chain can be obtained by

running a Markov chain Monte Carlo sampler (see e.g. [21, 22]);

note that the independent and identically distributed (i.i.d) setting is

a special case of the Markovian setting. When the random variables

{Zi,t,k
r , r ≥ 1} are i.i.d., we have E

[
ŝ
t,k
i |Ŝt,k

]
= s̄i ◦ T(Ŝt,k);

when the random variables {Zi,t,k
r , r ≥ 1} are a Markov chain, the

approximation is biased: E
[
ŝ
t,k
i |Ŝt,k

]
6= s̄i ◦T(Ŝt,k). In this biased

case, the algorithm still converges to L but its theoretical analysis is

more technical (see [20]).



3. APPLICATION: INFERENCE IN THE LOGISTIC

REGRESSION MODEL

Let us consider the logistic regression model described in Sec-

tion 2.1. Since P(Yi = yi) ≤ 1, it can be proved that the

minima of F are in the set {θ ∈ R
d : τ‖θ‖2 ≤ ln 4}. There-

fore, in the expectation space, the minima of W = F ◦ T are

in the set {s ∈ R
d : τsTΩ2s ≤ ln 4} which is included in

K def
= {s ∈ R

d : τsTΩs ≤ ln 4/λmin} where λmin is the positive

minimal eigenvalue of Ω (see (3)). 3P-SPIDER is applied with

g
def
= χK, the characteristic function of the compact convex set K.

With this definition of K and since B(s) = Ω for any s ∈ S def
= R

d,

the computation of the operator ProxB(s),γg is explicit. s̄i(Ωs) is

equal to

Xi

σ2‖Xi‖
1

Z(s)

∫

R

z
exp(z 〈Xi,Ωs〉 /(σ2‖Xi‖))

1 + exp(−Yi‖Xi‖z)
exp(

−z2

2σ2
)dz

where the normalizing constant Z(s) is given by

Z(s)
def
=

∫

R

exp(z 〈Xi,Ωs〉 /(σ2‖Xi‖))
1 + exp(−Yi‖Xi‖z)

exp(−z2/(2σ2))dz .

These integrals are not explicit; we consider the approximation ŝ
t,k
i

of s̄i(ΩŜt,k) given by a MC sum as described in Section 2.4; the

samples Zi,t,k
r are obtained by the Gibbs sampler given in [23].

The numerical illustrations use the MNIST data set: the class

”1” contains the 12 873 images in the training set labeled 1 and 3
and the class ”−1” contains the 12 116 images in the training set

labeled 7 and 8; hence n = 24 989. The 787 pixels are compressed

in 50 features through PCA (see [13, section 5] for the details). An

intercept is included in the covariates so d = 51. 3P-SPIDER is

run with σ2 = 0.1, τ = 1, kout = 20, kin = ⌈√n/10⌉ = 16 and

b = ⌈10√n⌉ = 1581. Note that kin×b = n so that each outer loop

requires n examples; it corresponds to an epoch.

We study the quantity

Dt,k
def
= E

[
‖Ŝt,k+1 − Ŝt,k‖2

γ2
t,k+1

]

, t ∈ [kout]
⋆, k ∈ [kin − 1],

which quantifies how far 3P-SPIDER is from its limiting set (see

the definition of L); this expectation is estimated by a MC sum over

25 independent runs. All the runs start from the same value Ŝinit.

For the computation of the quantity St,0 at each outer loop #t, all

the examples are used and the expectations s̄i◦T(Ŝt,−1) are approx-

imated by a MC sum with m′ = 10⌈√n⌉ = 1590 points. Hence,

Et = 0 except when specified (see the second analysis below); the

computation of St,0 requires n examples: it corresponds to an epoch.

First, 3P-SPIDER is run with mt,k = 2⌈√n⌉ and γt,k =
γt,0 = 0.1; Online-EM is run with a step size equal to γt = 0.1,

a batch size b = ⌈10√n⌉ (case ”sqr”) and b = n (case ”full”),

and a MC approximation for s̄i computed with 2⌈√n⌉ points. Fig-

ure 1(a) displays Dt,0 for 3P-SPIDER and ‖Ŝt+1 − Ŝt‖2/γ2
t for

Online-EM. The x-axis scales as the number of epoch, that is the

use of n examples. The plot shows that, even when the expectations

s̄i have to be replaced with approximations, 3P-SPIDER is far more

efficient than Online-EM (in which the exact expectations are also

replaced with MC approximations).

Second, we analyze the role of Et when initializing the control

variate St,0. We run 3P-SPIDER with γt,k = γt,0 = 0.1 and

a number of MC points mt,k = 2⌈√n⌉; the quantity Dt,k is dis-

played on Figure 1(b) vs the cumulated number of inner loops; the

squares, circles and diamonds indicate Dt,kin
for every outer loop.

The case ”full” corresponds to Et = 0, the case ”half” (resp. ”quar-

ter”) corresponds to St,0 computed with a batch of size ⌈n/2⌉ ex-

amples (resp. ⌈n/4⌉). The control variate is too poor in the case

”half” and ”quarter” and, after the transient phase when the possibly

bad initialization is forgotten, it weakens the benefit of its use: we

definitely advice Et = 0.

Third, we analyze how the variability of the MC approximation

and the choice of the step sizes affect the rate of convergence of

3P-SPIDER. In ”Case 1”, the values are the same as in Figure 1(a).

In ”Case 2”, γt,k = γt,0 = 0.1 during the first three outer loops and

then γt,k = γt,0 = 10−3; mt,k is as in ”Case 1” until the outer loop

#10 and then mt,k is multiplied by 5. In ”Case 3”, the step sizes and

the number of MC points are as in ”Case 2”, except that the step size

decreases later, at outer loop #6. On Figure 1(c), we display Dt,k vs

the cumulated number of inner loops, starting from the number #32
(that is, at the end of the second outer loop); the diamonds, circles

and squares indicate Dt,kin
. First, 3P-SPIDER is improved when

the number of MC points increases; when the fluctuations of the

algorithm is of the same order as the fluctuations of the MC errors,

3P-SPIDER can not go forward anymore in order to reach a more

precise estimation of the parameter (compare ”Case 1” and ”Case

3”). Small step sizes penalize the algorithm (compare ”Case 1” and

”Case 2”).

Finally, we discuss the strategies γt,0 = 0 and γt,0 6= 0.

3P-SPIDER run as in Figure 1(a) corresponds to ”Case 1”. In

”Case 2” and ”Case 3”, the number of MC points is multiplied by

5 from the outer loop #11, and γt,k = 0.1 for any k > 0. In

”Case 1” and ”Case 2”, γt,0 = 0.1 and in ”Case 3”, γt,0 = 0.

On Figure 1(d), we display Dt,k vs the cumulated number of inner

loops, starting from the loop #32; the diamonds, circles and squares

indicate Dt,kin
. Here again, we observe the benefit of reducing the

MC variability by increasing the number of MC points (compare

”Case 1” to the other cases); ”Case 2” and ”Case 3” are almost

similar, maybe with a slightly better behavior for ”Case 2”.
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Fig. 1. [(a) top left] Comparison of algorithms; [(b) top right] Role

of the size of the batch when computing St,0; [(c) bottom left] Role

of the step sizes γt,k and the number of Monte Carlo points when

computing ŝ
i
t,k; [(d) bottom right] Role of γt,0
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