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Abstract. We investigate the dynamics of a delay differential equation obtained by perturbing a vector
field f : Rn → Rn, admitting a stable periodic orbit, thanks to a delayed feedback control ηg(x, x(t− τ)) of

same regularity, where η is small and τ large so that ητ be bounded but non small. We prove that trajectories

starting in a neighborhood (of size independent on the parameters η, τ) of this original periodic orbit in the
set of continuous functions from [−τ, 0] to Rn enter asymptotically a periodic regime, which regimes existing

in finite number. Our synchronization result is based on the construction of an invariant manifold via a

process inspired by the Lyapunov-Perron method for integral operators associated to solutions of ordinary
differential equations, and on the persistence of normally hyperbolic invariant manifolds for semi-flows on

Banach spaces. The statement we provide here complements already known results on periodic orbits in the

context of delay differential equations.

1. Introduction

The control of nonlinear dynamical systems is an active research area which has led to many improve-
ments in engineering disciplines, notably for: driving multibody systems, stabilising spacecrafts attitude [25],
controlling blood glucose [33] and neural firing rate means [26], stabilising erratic dynamics of synthetic gene
circuits [39] (or inducing such behaviors [31]).
In this context, among the different methods of control developed, time-delayed feedbacks have now been
used for several decades. Initiated at the end of the 1980s with the seminal work of Ott, Grebogi, and Yorke
on chaos control [27], several delay feedbacks have been proved to be useful to turn an unstable periodic
orbit of a chaotic attractor into a stable one: a particular scheme, efficient and easy to implement in practical
experiments, is the control of Pyragas [32], who introduced a feedback term given by the difference between
the dynamical state of a signal and its value delayed by a time equal to the period of this signal.
Since these two pioneering works, various investigations have been performed successfully in this direction,
for instance to stabilize an unstable equilibrium point ([20], [43]), to control the synchronization of dynam-
ical networks [21], to stabilize unstable periodic orbits emerging from a subcritical Hopf bifurcation ([6],
[13]), or again rotating waves near a fold bifurcation [14]. All these investigations led to new insights and
achievements for various fields of applications, including the control of stochastic neural synchrony in the
brain [34] (suspected to be responsible of disease such as Parkinson or epilepsy) among other therapeutic
approaches, and the stabilization of electrochemical or optoelectronic systems ([10], [40], [14], [15]), in control
engineering. The genericity of stabilization by such delayed feedback controls has also been tackled, showing
that, in principle, there is no restriction for their use (see [37]).

In this paper, we consider the perturbation of a vector field f : Rn → Rn (admitting a stable periodic
orbit Γ in Rn) by a delay feedback control of the form ηg(x(t), x(t− τ)). Compared to the studies mentioned
above, we are not interested in turning Γ into an unstable orbit, but our goal is to describe the dynamical
phenomena induced by the delay τ , and this in a neighborhood of Γ in the infinite-dimensional phase space
corresponding to this type of perturbation. In particular, we are interested in the following questions: how
much of periodicity persists or is enhanced thanks to the delay feedback? Does the delay induce other type of
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phenomena (including chaos or other complicated dynamics which can occur even for scalar delay dynamical
systems [18]) in such a neighborhood?
This idea of looking at the emergence of particular dynamical states from the delay is not at all new. In fact,
Pyragas himself had suggested the existence of a delay-induced multistability in his famous article. Since
then, a work done by Perlikowskwi and Yanchuk in [28] (followed later by Sieber, Wolfrum, Lichtner and
Yanchuk in [38]) has provided some answers to the questions above: they showed that given a smooth delay
equation ẋ = f(x(t), x(t−τ)) admitting a periodic orbit, then the presence of this orbit automatically implies
its reappearance when the delay is increasing: as a consequence, they deduced that more and more periodic
orbits appear when the delay tends to infinity, some of them stable, others, unstable. This is in accordance
with experiments observed in lasers when the delay taken is large ([42], [23]).
In this context, our purpose here is to prove that for our delay equation ẋ = f(x) + ηg(x(t), x(t− τ)) taken
when η > 0 is small and τ > 0 large so that ητ be uniformly bounded but non small, there is nothing else but
periodic orbits in a neighborhood (whose size does not depend on η, τ) of the original orbit Γ: we provide
a Mathematical statement saying that, any trajectory in the phase space C ([−τ, 0],Rn) starting in such a
neighborhood converges asymptotically to a periodic orbit, these periodic orbits existing in finite number.
Hence the trajectories in this neighborhood exhibit a delayed-induced synchronization, and they are split in
clusters of synchronization with distinct frequencies: we give a formula (at first order in η) for these distinct
frequencies. Moreover the larger τ is (at a fixed value of η), the more numerous are the periodic orbits, and
thus the more numerous are the different clusters.

Our work therefore completes the one of Perlikowski and Yanchuk in [28], in the particular case of our
equation with the two parameters η, τ . Our result shows three main assets. The first one is to hold for a
non trivial range of parameters, namely when the delay τ can possibly be very large, compared to classical
perturbations results requiring τ to be fixed and η small enough compared to τ (as a consequence ητ appears
to be usually very small). The second one is to give a full description of the dynamics in a neighborhood
of size fixed with respect to these parameters η, τ (which size depending only on the vector field f), and
therefore in a neighborhood which is not very small. The third one is that this synchronization we obtained
here is provided by a precise Mathematical statement valid for the delay equation ẋ = f(x)+ηg(x(t), x(t−τ))
itself with any (sufficiently smooth) maps f and g, whereas, very often, such a result is established for phase
reduction models deduced from such a delay equation (and, as said above, often in the situation where the
delay is fixed or small: see [22] and very recently [1]). To our knowledge, these three points constitute a new
result.
The approach we adopt to obtain it is based on the use of two classical tools in nonlinear dynamical systems
theory. The first one is the Banach Contraction Mapping Principle [2], which, under the form of the
Lyapunov-Perron method for curves solutions of an ordinary differential equation [29, 30, 9], has permitted
to establish in the past the existence of various types of invariant manifolds on which it is convenient and
usual to reduce such a dynamical system (see [35], [36], [41]): we adapt this method here for our delay system,
and as a result obtain an averaged system for which we manage to prove the desired frequency-locking. The
second tool is the persistence of normally hyperbolic invariant manifolds under perturbation of semi-flows
generated by delay differential equations: this persistence under small perturbations is well known for flows
in finite dimensional spaces (see [12], [19], [24] and as well [11]) and it has been extended at the end of the
1990s by Bates, Lu, Zeng in [3, 4, 5], in the infinite dimensional setting of semi-flows on Banach spaces.1 2

Thanks to this result, we obtain that the desired synchronization exists not only for our averaged system,
but also for our original delay equation.

We now present our result in details (Section 2), before giving its proof in the remaining part of the paper
(in Sections 3, 4, 5, 6, 7 and in the Appendix).

2. Presentation of the Main result

Let ẋ(t) = f(x) be a differential equation defined by a vector field of class C 3 in Rn, for which exists a
stable hyperbolic periodic orbit Γ of period T in Rn. In this paper we consider a perturbation of this vector

1The Lyapunov-Perron method permits as well to obtain all these persistence results, both in finite or infinite dimension.
2We reproduce the precise statement of this result in the Appendix.
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field by a delayed feedback term:

(1) ẋ = f(x) + ηg(x(t), x(t− τ)),

in which g : R2n → Rn is of class C 3 as well, η is taken very small, and the delay τ > 0 is possibly very
large: in particular we allow the product ητ to be bounded but non small, which constitutes a non trivial
case of persistence of periodic behavior under small perturbation.

2.1. Notations. In all the paper, R will denote the set of real numbers taken with the absolute value | · |,
R+ the set [0,+∞[, and R− the set ]−∞, 0]. We will denote by S1 the circle of length 2π.
Rn will be equipped with a fixed norm denoted indistinctly by || · || for any n ≥ 2. For square matrices of
size n− 1, we will also denote by || · || the matrix norm induced by || · || on Rn−1.
(C ([−1, 0],R), || · ||∞) will denote the Banach space of continuous functions from the interval [−1, 0] to R
equipped with the uniform norm defined by the relation ||f||∞ = sups∈[−1,0] |f(s)|, and similarly for other

spaces such as C ([−τ, 0],Rn), or C ([−τ, 0],Rn−1). The notation (Bδ0(R−,Rn−1), || · ||∞) will stand for the
Banach space of continuous functions from R− to Rn−1 uniformly bounded by δ0. We will need to use as
well weighted Banach spaces, mainly the space Cα(R−,R) of functions having an exponential growth of rate
at most given by α > 0:

Cα(R−,R) = {f : R− → R continuous, ||f ||α < +∞}

where the norm || · ||α is defined by the relation ||f ||α = sups≤0 |f(s)|eαs.
For products of two Banach spaces (whether those are spaces of functions or not), the norm taken will be
always the one given by the maximum of the two norms.

For the delay differential equation (1), we denote by x(t, γ) the trajectory of (1) starting at the initial
condition γ ∈ C ([−τ, 0],Rn) and taken at time t. We will also need to consider the semi-flow (Tt,η,τ )t≥0

associated to this differential equation, i.e the map from C ([−τ, 0],Rn) to itself defined by:

∀γ ∈ C ([−τ, 0],Rn), ∀s ∈ [−τ, 0] : Tt,η,τ (γ)(s) = x(t+ s, γ).

These notations x(t, γ) and Tt,η,τ (γ)(s) will be adapted in a straightforward way to other delay differential
equations: for instance for the delay equation (3) written in normal coordinates (see Lemma 2.2), we will
denote by Tt,η,τ (φ0, y0) the semi-flow associated to (3) taken at the initial condition (φ0, y0). When semi-
flows of different equations will be considered in the same context, the reference to the considered equation
will be explicitly mentioned in the notations: in Section 6 for instance, T av

t,η,τ will stand for the semi-flow of
the averaged equation (15), and similarly T(8),t,η,τ will denote the semi-flow of (8).
We refer the reader to [18] for an introduction to these basic notions on delay differential equations.

We will often use the notation f(·) to denote the function x 7→ f(x) when this notation will be convenient.
For instance in Section 6, in Proposition 6.3 with the function ητG(· + θτ ) from R to R, and in Lemma

6.5 with the functions
2πτ

T
· +C1 from R− to R standing for s 7→ 2πτ

T
s + C1, and ω∗i · +C2 standing for

s 7→ ω∗i s + C2. Similarly in other parts of the paper, notably in Corollary 7.1 with the function χi,C from
R− to R written as:

χi,C =
2πτ ·
T

+ ω∗i ·+C + αi(·, η, τ, C) + βi(·, η, τ, C)

and standing for:

s 7→ 2πτ s

T
+ ω∗i s+ C + αi(s, η, τ, C) + βi(s, η, τ, C).

For a map F defined on Rn−1 and of class C r, r ≥ 1, the notation DF(z) will stand for the Jacobian of
F at z in Rn−1, and similarly for semi-flows on Banach spaces with the notation DTt,η,τ (ψ, y) where (ψ, y)
lies in a specific product of Banach spaces of continuous functions.
The classical Landau notation o(||y||) (“little o”) will stand for a term z in Rn−1 whose norm ||z|| can be
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neglected with respect to ||y|| in a neighborhood of a point (often 0) in Rn−1. This notation will be also
used for Banach spaces: for instance o(||h||α), where h is in Cα(R−,R).

2.2. Statement of the main result and sketch of the proof. The main result of this paper unveils a
frequency-locking for trajectories of the infinite-dimensional dynamical system (1) starting (in some sense)
close to the original periodic orbit of f in Rn. This means all trajectories starting in a neighborhood of this
orbit in C ([−τ, 0],Rn) will be proven to asymptotically converge to a periodic orbit, such periodic orbits
being in finite number (depending on η, τ and g). Let’s introduce the following notation:

Notation 2.1. Consider the periodic orbit Γ ⊂ Rn of the vector field f. For any δ > 0, we denote by VΓ,τ (δ)
the neighborhood of Γ in C ([−τ, 0],Rn) of size δ, that is to say the following open set:

VΓ,τ (δ) = {γ0 ∈ C ([−τ, 0],Rn) : sup
s∈[−τ,0]

inf
y∈Γ
||γ0(s)− y|| < δ}.

The frequency-locking we are looking for will be obtained by using normal coordinates. To introduce
these coordinates, we first establish the following result (see the proof in Section 3):

Lemma 2.2. There exist δ0, η0 > 0, an open set Vδ0 of Rn containing Γ and a C 2-diffeomorphism Φ:

Φ : Vδ0 ⊂ Rn → S1 ×Wδ0 ⊂ S1 × Rn−1

x 7−→ (Φ1(x),Φ2(x)) = (ψ, y)

where Wδ0 = {y ∈ Rn−1 : ||y|| ≤ δ0} such that for any 0 < η < η0, and any τ > 0, the diffeomorphism Φ
transforms the solutions (x(t))t≥0 of (1) starting at initial conditions in the neighborhood VΓ,τ (δ0) of Γ in
C ([−τ, 0],Rn) into the curves (ψ(t), y(t))t≥0 solutions of the system:

dψ

dt
=

2π

T
+ ηg1(ψ(t), y(t), ψ(t− τ), y(t− τ))

dy

dt
= Ay + h2(ψ, y) + ηg2(ψ(t), y(t)), ψ(t− τ), y(t− τ))

,(2)

where ψ has values in R, y has values in Rn−1, the C 2 maps g1, g2,h2 are 2π-periodic in the variable ψ, and
there exists a constant K(h2) > 0 such that for any ψ ∈ R and any y ∈ Wδ0 we have: ||h2(ψ, y)|| ≤ K(h2)||y||2.

The proof of this lemma requires to perform a coordinates transformation for Equation (1), similar to the
classical case of a hyperbolic stable periodic orbit for a smooth vector field in Rn (see the book of Hale [17]
or [35]). Compared to other works, this coordinate transformation for Equation (1) is not done in the phase
space (as in [16]), which is infinite dimensional, but at any time t, using the fact that the term x(t) solution
of (1) always belongs to Rn. In this way we can “formally” use the C 2-diffeomorphism Φ giving the normal
coordinates in the non delay situation and obtain a new form of our delay equation (1), more suitable for
the obtention of the frequency-locking we are looking for.

Remark 2.3. This means that the C 2-diffeomorphism Φ of Lemma 2.2 gives a bijective correspondance
between solutions (x(t))t≥0 of Equation (1) starting at initial conditions γ0 close to Γ in C ([−τ, 0],Rn) and
solutions (ψ(t), y(t))t≥0 of Equation (2) starting at initial conditions Φ ◦ γ0.

By rescaling time from t to t′ = t/τ we are thus led to the following equivalent equation:

(3)


dψ

dt
=

2πτ

T
+ ητg1(ψ(t), y(t), ψ(t− 1), y(t− 1))

dy

dt
= τAy + τh2(ψ, y) + ητg2(ψ(t), y(t)), ψ(t− 1), y(t− 1))

,

for which the initial conditions are taken in a neighborhood VΓ,1(δ) close enough to Γ in C ([−1, 0],Rn).
Now, for Equation (3), we observe in Section 3 that after a finite time the value of ||y(t)|| is of order of

magnitude η. Thus, replacing in the equation of the variable ψ, we get a delay equation for ψ that roughly
speaking does not depend on y.

To prove this assertion rigorously, we use an invariant manifold approach similar to the construction
of invariant manifolds for flows in Rn: we perform a method inspired by the Perron-Lyapunov method
[9, 29, 30], which comes to applying the Banach Contraction Mapping principle for an integral operator
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coming from the variation of constants formula (see [35]). Such a method require to work on curves defined
for infinite backward time, but in general solutions of delay differential equations are not unique in the past:
to overcome this problem, we consider the semi-flow of (3) for initial conditions directly defined on the entire
set R−, and not on the finite domain [−1, 0]. A natural choice is the Banach space Cα(R−,R) of functions of
growth exponentially bounded on R− for the variable ψ, and the Banach space Bδ0(R−,Rn−1) of uniformly
bounded functions on R− for the variable y. On Cα(R−,R)×Bδ0(R−,Rn−1), the semi-flow of Equation (3)
is C 2, and we prove in Section 4 (Lemma 4.3) it admits the following C 2 invariant manifold in that space:

Mα = {(φ,Gα(φ)), φ ∈ Cα(R−,R)},

where Gα is of class C 2 with values in Bδ0(R−,Rn−1). A key point in our approach is the existence of an
exponent α1 > 0 (depending on η, τ) for which this manifoldMα1 is in fact globally stable for the semi-flow
of (3) (see Theorem 4.5 ), in the meaning that for any (φ1, y1) in C ([−1, 0],R)× Bδ0/2([−1, 0],Rn−1) there
exists an initial condition (φ0, yφ0

) in Mα1 such that we have:

lim
t→∞

sup
s∈[−1,0]

||Tt,η,τ (φ0, yφ0
)(s)− Tt+1,η,τ (φ1, y1)(s)|| = 0.

This convergence is not as strong as the foliation result obtained by Chen, Hale, and Tan [7], due to the shift
by time t + 1 in this expression (see Figure 1): however, this global attractivity still permits us to reduce
Equation (3) on this manifoldMα1 . This comes to reducing it to an equation in only one variable, but this
time defined by a semi-flow TMα1 ,t,η,τ

of class C 2 on Cα1(R−,R), and not on C ([−1, 0],R). This equation,
obtained at the end of Section 4, has the form:

dψ

dt
=

2πτ

T
+ ητG1(ψt) + η2τHη(ψt)

where Hη : Cα1(R−,R)→ R is uniformly bounded in η (and thus η2τHη(ψt) is a perturbed term of order
η, provided ητ is larger than a constant larger than one). In fact the semi-flow of this equation is not only
C 2 on Cα1(R−,R) but on Cα(R−,R) for any α > 0 (only the global stability mentioned above and given by
Theorem 4.5 of such a manifold Mα is true for α = α1). The obtention of this equation concludes the first
part (composed of Section 3 and Section 4) of this paper.

In the second part (from Section 5) we study this equation in the variable ψ, a priori on any space of the
form Cα(R−,R), with the purpose of describing its solutions in asymptotic time: in that purpose, we first
look at its first order approximation in η (Equation (8)). Using averaging techniques we reduce Equation (8)
to a much simpler averaged system (15). For this averaged system, we prove the existence of an exponent
α2 > 0 for which we can fully describe the asymptotic behavior of any trajectory starting in Cα2(R−,R): this
is done in Lemma 6.5 (using Lemma 6.1, Proposition 6.3). The asymptotic behavior, roughly in ( 2πτ

T +ω∗)t
where ω∗ is a constant depending on η, τ and g, is the desired frequency-locking for System (15). It is there
that we use the persistence result of normally hyperbolic invariant manifolds [3] of Bates, Lu, Zeng (we recall
this theorem in Section 8.1 of the Appendix): it says that if a semi-flow admitting a normally hyperbolic
invariant manifold is of class C 1 on the Banach space considered, and if its linearized semi-flow restricted
to the unstable part associated to this manifold is an isomorphism, then this manifold persists under small
perturbations of the semi-flow (see the Appendix).
Applying this result, we conclude there exists an exponent α2 > 0 such that the asymptotic behavior of any
trajectory (starting in Cα2(R−,R)) of Equation (8) is given approximately by this term ( 2πτ

T + ω∗)t: this is
the statement given by Corollary 6.7, which concludes the second part of this paper.

Finally, in Section 7 we merge the two parts above. The two exponents obtained α1 > 0 and α2 > 0
have no reason to be equal but given any initial condition X0 ∈ Cα1(R−,R) we can always modify it on

]−∞,−1] so that the new initial condition X̃0 belongs to Cα1(R−,R)∩Cα2(R−,R). Since our goal is to deal
with Equation (1) which is defined by a finite time delay (equal to 1 in the rescaled time), we can consider
the asymptotic behavior of (TMα1 ,t,η,τ

(X0)(s))t≥0 for time s ∈ [−1, 0], which therefore comes to considering

the one of (TMα1 ,t,η,τ
(X̃0)(s))t≥0. Using this point, we can use Corollary 6.7 of the second part to describe

trajectories of the semi-flow TMα1
: this gives Corollary 7.1. From this, we can conclude that any trajectory

of Equation (3) starting with an initial condition in C ([−1, 0],R)×Bδ0([−1, 0],Rn−1) converges to a periodic
5



orbit (as stated in Theorem 7.3), which periodic orbits are in finite number and defined by the constants ω∗

mentioned above. Using the diffeomorphism Φ of Lemma 2.2, we finally obtain the same conclusion for our
original Equation (1). This conclusion (see the end of Section 7) constitutes Theorem A, which is the main
result of this paper, and its statement is the following:

Theorem A. There exists δ0 > 0 for which, given any L1, L2 ≥ 1, there exist η0,M0 > 0 such that, for a
generic choice of η, τ in the set {(η, τ) ∈ R2 : 0 < η < η0, τ > 0, L1 ≤ ητ ≤ L2}, there exist p real numbers
ω∗1 , · · · , ω∗p associated to p functions ζ1, · · · , ζp ∈ C ([−τ, 0],Rn) satisfying the following:
for any initial condition γ in the neighborhood VΓ,τ (δ0/2) of Γ in C ([−τ, 0],Rn), there exists an integer
1 ≤ i ≤ p for which the trajectory (Tt,η,τ (γ))t≥0 solution of Equation (1) converges asymptotically to the

orbit (Tt,η,τ (ζi))t≥0. Moreover, (Tt,η,τ (ζi))t≥0 is periodic, and of period Ai satisfying |Ai−
2π

2π

T
+
ω∗i
τ

| ≤M0η
2.

Interpretation of Theorem A. When η is very small and τ > 0 very large such that ητ be bounded but
non small, there are clusters of synchronization in frequency, through which all trajectories of Equation (1)
converge. The number of these clusters is finite and depends on η, τ . Each of them is defined by a frequency

equal (at first order in η) to 2π
T +

ω∗i
τ .

Remark 2.4. (i) In this statement, the real numbers L1, L2 ≥ 1 are just used to ensure ητ is bounded and
larger than one (which imposes τ to tend to infinity when η tends to 0): for simplicity, one can essentially
consider in the first instance that L1 = L2 = 1. Since in this case the delay τ is forced to be equal to 1

η

(which is too restrictive), we take L1, L2 ≥ 1 arbitrarily to avoid this unnecessary restriction on the form of
the delay.
(ii) The case where τ is kept at a fixed value τ0 when η varies (or the case where τ is of order η), is trivial:
indeed, in this case, a direct application of the result of Bates, Lu, Zeng ensures that for any η small enough,
the original periodic orbit Γ persists as a stable periodic orbit (unique, in a small neighborhood of Γ) in
C ([−τ0, 0],Rn).
(iii) We will see (Section 6) that for any 1 ≤ i ≤ p, we have ω∗i = ητG(ω∗i + 2πτ

T ), where the map G is
2π-periodic on R: thus, when η tends to 0, the period Ai converges quadratically to the period T of the
original orbit Γ in Rn.
(iv) Observe that for larger and larger values of ητ , the number of fixed points of the map ητG(· + 2πτ

T )
increases: therefore we recover, as in the paper of Perlikowski and Yanchuk [14] (and as in [1] as well), that
the number of periodic orbits increases with the delay. Moreover, except for some pathological values of η, τ
in {(η, τ) ∈ R2 : 0 < η < η0, τ > 0, L1 ≤ ητ ≤ L2}, we will prove that the stability of these periodic orbits
are given by the slopes of the map ητG(· + 2πτ

T ) at the fixed points ω∗i : namely, if F′(ω∗i ) > 1, then the
associated periodic orbit is unstable and if F′(ω∗i ) < 1 and F′(ω∗i ) 6= 0, it is stable. Thus, again as in [14]
and [1], we recover the fact that roughly speaking, half of the periodic orbits are stable, and the other half
unstable (see Figure 2 in Section 6).

The remaining part of this paper is dedicated to the proof of Theorem A, and contains the steps discussed
above with all the technical proofs in detail.

3. Normal coordinates for Equation (1)

In this section we prove Lemma 2.2 stated in Section 2:

Proof of Lemma 2.2 As the vector field f is C 3 in Rn, then as explained in [17] there exists δ1 > 0,
an open set Vδ1 of Rn containing Γ, and a C 2 map Ψ:

Ψ : R×Wδ1 ⊂ R× Rn−1 → Vδ1 ⊂ Rn

(ψ, y) 7−→ x

where Wδ1 = {y ∈ Rn−1 : ||y|| ≤ δ1}, satisfying the relation Ψ(ψ + 2π, y) = Ψ(ψ, y) and which induces a
diffeomorphism when restricted to [0, 2π[×Wδ1 such that this diffeomorphism Ψ transforms the solutions of
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the equation ẋ = f(x) into the solutions of the following system:ψ̇ =
2π

T
ẏ = Ay + h2(ψ, y)

,

in which ψ takes values in R, the matrix A of size n − 1 have eigenvalues λ1, · · · , λn−1 all strictly nega-
tive, and there exists a constant K(h2) satisfying, for any ψ ∈ R and y ∈ Wδ1 : ||h2(ψ, y)|| ≤ K(h2)||y||2.
Moreover, in this differential system the map h2 is of class C 2 in both variables and satisfies the relation
h2(ψ + 2π, y) = h2(ψ, y).

Under this change of coordinates, the new variables ψ, y, are called the normal coordinates (see [35]).
Let’s denote by Φ the inverse of the restriction of the map Ψ to [0, 2π[×Wδ1 .
Then, given η > 0, τ > 0 there exists a finite time t0 > 0 such that the curves (Φ(x(t)))t∈[0,t0] =
(ψ(t), y(t))t∈[0,t0] (where x(t) denotes a solution of ẋ = f(x) + ηg(x(t), x(t − τ)) having an initial condi-
tion γ in the neighborhood VΓ,τ (δ1) of Γ in C ([−τ, 0],Rn)) satisfy:

∀t ∈ [0, t0], y(t) ∈ Wδ1

and therefore satisfy, formally:
dψ

dt
=

2π

T
+ η

∂Φ1

∂x
(x(t)) g(Φ(ψ(t), y(t)),Φ(ψ(t− τ), y(t− τ)))

dy

dt
= Ay + h2(ψ, y) + η

∂Φ2

∂x
(x(t)) g(Φ(ψ(t), y(t)),Φ(ψ(t− τ), y(t− τ)))

.

In other words, we get that the curves (Φ1(x(t)),Φ2(x(t)))t∈[0,t0] = (ψ(t), y(t))t∈[0,t0] satisfy System (2),
i.e: 

dψ

dt
=

2π

T
+ ηg1(ψ(t), y(t), ψ(t− τ), y(t− τ))

dy

dt
= Ay + h2(ψ, y) + ηg2(ψ(t), y(t), ψ(t− τ), y(t− τ))

,

where g1, g2 are functions of class C 2 from (R× Rn−1)2 to R which are 2π-periodic in the variable ψ.

Now, in accordance with the statement we are proving, we need to justify this correspondance between
System (1) and System (2) is valid for any time t ≥ 0, not only for time t ∈ [0, t0] (i.e that the curves
(Φ(x(t)))t∈[0,t0] = (ψ(t), y(t))t∈[0,t0] satisfy System (2) above for any time t ≥ 0 and not only in [0, t0]). To
do this, we first notice the existence of a constant σ > 0 and of a matrix P ∈ GLn−1(R) (depending only on
the matrix A, and not on g, η, or τ) such that:

∀z ∈ Rn−1 : 〈z,P−1APz〉 ≤ −σ||z||2,

and this since all eigenvalues of A are negative: this classic inequality can be seen by applying the Jordan
normal form to A (see Lemma 8.1 in the Appendix). We now choose 0 < δ0 < δ1 satisfying the condition:

− σ + ||P−1||2 · ||P ||2K(h2) δ0 < 0(4)

and we choose C0 > 0 large enough so that the inequality

[−σ + ||P−1||2 · ||P ||2K(h2) δ0] +
||P−1||K(g2, δ0)

C0
< 0(5)

be satisfied (where K(g2, δ0) = maxψ,ψ′∈[0,2π]2,y,y′∈W2
δ0
||g2[ψ, y, ψ′, y′]||). Moreover, we reduce the value of

η > 0 so that we have ηC0||P || < δ0. Then, given a fixed τ > 0, let’s consider a trajectory (Φ(x(t)))t≥0 =
(ψ(t), y(t))t≥0 starting at an initial condition in the open set VΓ,τ (δ0). Assume, that for a given time t > 0
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we have: ||P−1y(t)|| ≥ ηC0 and ||y(t)|| ≤ δ0. Then it comes, by Lemma 8.1 of the Appendix:

1

2

d

dt
||P−1y(t)||2 = 〈P−1y(t),P−1ẏ(t)〉

≤ −σ||P−1y(t)||2 + ||P−1y(t)||3 · ||P−1|| · ||P ||2K(h2) + ||P−1y(t)||2||P−1||K(g2, δ0)

C0

≤ ||P−1y(t)||2 · [−σ + ||P−1||2 · ||P ||2K(h2)δ0 +
||P−1||K(g2, δ0)

C0
]

≤ η2C2
0 [−σ + ||P−1||2 · ||P ||2K(h2)δ0 +

||P−1||K(g2, δ0)

C0
]

< 0.

This means the function t 7→ ||P−1y(t)|| is locally decreasing at any time t > 0 for which ||P−1y(t)|| ≥ ηC0

and ||y(t)|| ≤ δ0. So for any time t > 0 large enough, we have:

||P−1y(t)|| ≤ ηC0,

which implies:

||y(t)|| ≤ ηC0||P ||.

Setting η0 =
δ0

C0||P ||
, we have proved that for any 0 < η < η0 and any τ > 0, each curve (Φ(x(t)))t≥0 =

(ψ(t), y(t))t≥0, (where x(t) is a solution of ẋ = f(x(t)) + ηg[x, x(t− τ)] starting at an initial condition in the
open set VΓ,τ (δ0)) satisfies:

∀t ≥ 0, y(t) ∈ Wδ0 ,

and thus the curves (Φ(x(t)))t≥0 = (ψ(t), y(t))t≥0 satisfy Equation (2) for any time t ≥ 0. QED.

In fact this proof contains two important informations:

Remark 3.1. (i) According to the proof of Lemma 2.2, the trajectories of System (2) starting in a
neighborhood of size δ0 of Γ, contract to a neighborhood of size of magnitude η after a finite time.

(ii) With the same η0, δ0 > 0 taken in this proof, we have that if 0 < η < η0
2 , any trajectory starting at

an initial condition in a neighborhood of size δ0/2 of Γ remains at any time in this neighborhood.

4. Construction of a globally stable invariant manifold for (3)

Since after a finite time the value of ||y(t)|| in Equation (3) is of order of magnitude η, thus, replacing in the
equation of the variable ψ, we get a delay equation for ψ that roughly speaking does not depend on y at first

order (provided ητ is larger than 1): namely an equation of the form
dψ

dt
=

2πτ

T
+ ητg0(ψ(t), 0, ψ(t− 1), 0).

As said in Section 2, to formalize this idea we prove here the existence of a globally stable invariant manifold
Mα1 for the semi-flow of Equation (3) (see Lemma (4.3) and Theorem 4.5 below) in which the elements
(ψ, y) satisfy that the variable y can be expressed as a function of ψ.

In the rest of this section, that is to say for Propositions 4.1, 4.2, Lemma 4.3, and in the proof of Theorem
4.5 below, we fix (see Lemma 8.1 of the Appendix) a constant C > 0 and σ < 0 such that the following
holds:

∀t ≥ 0 : ||eAt|| ≤ Ceσt,(?)

where A is the matrix of System (2) and System (3). We also fix η0 > 0 and δ0 > 0 satisfying Lemma
2.2, and (as in the proof of this lemma), we reduce their value if necessary so that for any 0 < η < η0, the

8



following holds: 
C · K(h2) δ2

0 + ηK(g2, δ0)

−σ
≤ δ0

4

2C · K(Dh2)δ0 + ηK(Dg2, δ0)

−σ
< 1

(??)

where K(Dh2) = supz∈Wδ0
||Dh2(z)|| and K(Dg2, δ0) = supz∈([0,2π]×Wδ0

)2 ||Dg2(z)||.
The conditions (?) and (??) are mainly used in the proof of Theorem 4.5 and could have slightly been relaxed
for Propositions 4.1, 4.2 and in Lemma 4.3.

Now given α > 0, and 0 < η < η0, τ > 0, consider the following map T defined over the set of curves in
Cα(R−,R)× Bδ0(R−,Rn−1) :

T : (φ, y) 7→ ỹ : t 7→
∫ t

−∞
eτA(t−u)[τh2(φ(u), y(u)) + ητg2(φ(u), y(u), φ(u− 1), y(u− 1))]du.

Cα(R−,R)× Bδ0(R−,Rn−1)→ Bδ0(R−,Rn−1)

Proposition 4.1. For any α > 0, and any 0 < η < η0, τ > 0, the map T is well defined, that is to say we
have:

∀φ, y ∈ Cα(R−,R)× Bδ0(R−,Rn−1) : T (φ, y) ∈ Bδ0(R−,Rn−1).

Proof. By choice of δ0 > 0, for any (φ, y) in Cα(R−,R) × Bδ0(R−,Rn−1), for any τ > 0 and any u ≤ 0 ,we
have:

||[τh2(ψ(u), y(u)) + ητg2(φ(u), y(u), φ(u− 1), y(u− 1))]|| ≤ τK(h2)δ2
0 + ητK(g2, δ0),

and thus, by Conditions (?) and (??):

∀t ≥ 0, ||ỹ(t)|| ≤ C

−σ
(K(h2)δ2

0 + ηK(g2, δ0)) < δ0,

as desired. �

The following lemma is the one that will give us the existence of the desired manifold:

Proposition 4.2. For any α > 0, any 0 < η < η0, τ > 0, and any φ ∈ Cα(R−,R), the map T is a
1
2 -contraction in the second component:

∀(y1, y2) ∈ Bδ0(R−,Rn−1)2, ||T(φ, y1)− T(φ, y2)||∞ ≤
1

2
||y1 − y2||∞.

Proof. Let φ ∈ Cα(R−,R) and (y1, y2) in Bδ0(R−,Rn−1). We have, for any time t in R−:

||T(φ, y1)(t)− T(φ, y2)(t)|| ≤ (τK(Dh2)δ0 + ητK(Dg2, δ)) · ||y1 − y2||∞
∫ t

−∞
||eτA(t−s)||ds

≤ C

−σ
(K(Dh2)δ0 + ηK(Dg2, δ0)) · ||y1 − y2||∞

and therefore, by (?) and (??) we have that T is a 1
2 -contraction in the second component on the Banach

space Bδ0(R−,Rn−1) equipped with the norm || · ||∞. �

From Proposition (4.2), we now have:

Lemma 4.3. For any α > 0 and any 0 < η < η0, τ > 0, there exists a C 2 manifold Mα included in
Cα(R−,R) × Bδ0(R−,Rn−1) , invariant for the semi-flow Tt,η,τ associated to (3). This manifold is defined
by:

Mα = {(φ, yφ), φ ∈ Cα(R−,R)},
where yφ denotes the unique fixed point of the map y 7→ T(φ, y), with y ∈ Bδ0(R−,Rn−1).
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Proof. By Proposition 4.2, given a function φ ∈ Cα(R−,R) the map T is a contraction in the second com-
ponent on the Banach space (Bδ0(R−,Rn−1), || · ||∞): thus by the Contraction Mapping Principle, this map
admits a unique fixed point. Denoting by yφ this unique fixed point, we obtain the desired manifold Mα as
a graph of a function in φ.

Now, let us take (φ0, yφ0) ∈ Mα and a positive time t > 0, and let us prove that Tt,η,τ (φ0, yφ0) belongs to
Mα. Recall that by definition of the semi-flow we have:

Tt,η,τ (φ0, yφ0) :s 7→ [ψ(t+ s, φ0, yφ0), y(t+ s, φ0, yφ0)]

R− → R× Rn−1,

where ψ(t+s, φ0, yφ0
), y(t+s, φ0, yφ0

) denotes the solution of (3) starting at (φ0, yφ0
) and taken at time t+s.

The first coordinate Tt,η,τ (φ0, yφ0
)1 is clearly in Cα(R−,R). Indeed, for any s ∈ [−t, 0], the term Tt,η,τ (φ0, yφ0

)1(s)
at time t+ s ≥ 0 is equal to:

2πτ(t+ s)

T
+ φ0(0) + ητ

∫ t+s

0

g1(ψ(u, φ0, yφ0), y(u, φ0, yφ0), ψ(u− 1, φ0, yφ0), y(u− 1, φ0, yφ0))du

in which the integral is bounded (uniformly in s ∈ [−t, 0]) by a constant Kt < +∞, which gives:

||Tt,η,τ (φ0, yφ0)1||α ≤ max{ sup
s∈]−∞,−t]

|φ0(t+ s)|eαs,
∣∣2πτt
T

∣∣+ |φ0(0)|+ ητKtt} < +∞.

Now let us consider the second coordinate Tt,η,τ (φ0, yφ0
)2.

If s ∈ R− satisfies t+ s ≤ 0, then we have:

Tt,η,τ (φ0, yφ0
)2(s) = yφ0

(t+ s)

=

∫ t+s

−∞
eτA(t+s−u)[τh2(φ0(u), yφ0(u)) + ητg2(φ0(u), yφ0(u), φ0(u− 1), yφ0(u− 1))]du

=

∫ s

−∞
eτA(s−u)[τh2(φ0(t+ u), yφ0

(t+ u))

+ ητg2(φ0(t+ u), yφ0(t+ u), φ0(t+ u− 1), yφ0(t+ u− 1))]du,

from which we get the relation: yφ0
(t+ s) = yψ(t+·,φ0,yφ0 )(s), and therefore:

∀s ∈]−∞,−t], Tt,η,τ (φ0, yφ0)2(s) = yTt,η,τ (φ0,yφ0 )1(s).

If s ∈ R− satisfies t+ s > 0, then performing a simple change of variables like in the previous equalities, we
have:

Tt,η,τ (φ0, yφ0)2(s) = y(t+ ·, φ0, yφ0)(s)

=

∫ s

−∞
eτA(s−u)[τh2(ψ(t+ u, φ0, yφ0), y(t+ u, φ0, yφ0))

+ ητg2(ψ(t+ u, φ0, yφ0
), y(t+ u, φ0, yφ0

), ψ(t+ u− 1, φ0, yφ0
), y(t+ u− 1, φ0, yφ0

))]du,

and therefore:

∀s ∈ [−t, 0], y(t+ ·, φ0, yφ0)(s) = T(ψ(t+ ·, φ0, yφ0), y(t+ ·, φ0, yφ0))(s),

from which comes:

y(t+ ·, φ0, yφ0
)(s) = yψ(t+·,φ0,yφ0 )(s)

and thus:

∀s ∈ [−t, 0], Tt,η,τ (φ0, yφ0)2(s) = yTt,η,τ (φ0,yφ0 )1(s).
10



Lastly, we remark that Tt,η,τ (φ0, yφ0)2 ∈ Bδ0(R−,Rn−1) since:

||Tt,η,τ (φ0, yφ0)2||∞ = max{ sup
s∈]−∞,−t]

||yφ0(t+ s)||, sup
s∈[−t,0]

||yTt,η,τ (φ0,yφ0 )1(s)||}

≤ δ0.

We have proved that Tt,η,τ (φ0, yφ0
) is in Mα, as desired.

�

Notation 4.4. It will be convenient to denote by Gα : Cα(R−,R) → Bδ0(R−,Rn−1) the function of class
C 2 defining the manifold Mα, i.e to set yφ := Gα(φ), in which way the manifold Mα can be written as:

Mα = {(φ,Gα(φ)), φ ∈ Cα(R−,R)}.

The conclusion of this section is the next result, which shows that (for some values of α),Mα is attracting
all initial conditions in C ([−1, 0],R)× Bδ0/2([−1, 0],Rn−1) for the semi-flow of Equation (3) (see Figure 1).
This is a crucial step for the proof of the main result (Theorem A) of this paper:

Theorem 4.5. There exists η0 > 0, δ0 > 0 for which the following holds.
Given 0 < η < η0 and τ > 0, there exists α1 > 0 such that for any (φ1, y1) taken in C ([−1, 0],R) ×
Bδ0/2([−1, 0],Rn−1), there exists an initial condition (φ0, yφ0

) in Mα1 ⊂ Cα1(R−,R)×Bδ0(R−,Rn−1) such
that for the semi-flow Tt,η,τ of (3) we have:

lim
t→∞

sup
s∈[−1,0]

||Tt,η,τ (φ0, yφ0)(s)− Tt+1,η,τ (φ1, y1)(s)|| = 0.

Proof. See Subsection 8.3 of the Appendix. �

t = 0

(φ1, y1)

t = 1

(

φ0, yφ0
)

Mα1

1

Figure 1. Global stability of the manifold Mα1 for the semi-flow of Equation (3).

The manifold Mα1 included in Cα1(R−,R) × Bδ0(R−,Rn−1) being attracting, we can therefore restrict
our delay differential equation (3) toMα1 . SinceMα1 is invariant, then given any initial condition (φ0, yφ0

)
and a positive time t, the trajectory (ψ(t + s, φ0, yφ0

), y(t + s, φ0, yφ0
))s≤0 solution of the delay equation

starting at (φ0, yφ0) satisfies the following relation:

∀s ≤ 0, yt(·, φ0, yφ0)(s) = Gα1(ψt(·, φ0, yφ0))(s).

Moreover, using the fact that after a finite time t > 0, the term y(t, φ0, yφ0
) is of order of magnitude η (as a

consequence of Lemma 2.2), and using a Taylor expansion we can write:

ψ̇ =
2πτ

T
+ ητg1(ψ(t), 0, ψ(t− 1), 0) + η2τDg1(ψ(t), 0, ψ(t− 1), 0)(0,

y(t)

η
, 0,

y(t− 1)

η
)

+ ε1(y(t), y(t− 1)) · ||y(t)||+ ε2(y(t), y(t− 1)) · ||y(t− 1)||
11



where the terms ε1,2(y(t), y(t− 1)) tend to 0 when ||y(t)|| and ||y(t− 1)|| tend to 0. Therefore, Theorem 4.5
tells us that, given any (φ0, yφ0) ∈ Mα1 , the trajectory starting at (φ0, yφ0) satisfies the equation in only
one variable:

(6)
dψ

dt
=

2πτ

T
+ ητG1(ψt) + η2τHη(ψt)

where G1 : Cα1(R−,R) → R is the function of class C 2 defined by G1(φ) = g1[φ(0), 0, φ(−1), 0], and
Hη : Cα1(R−,R)→ R is C 2 as well (since Gα1 is C 2) and uniformly bounded in η.

Therefore, the equation truncated at first order in η reads (provided ητ is larger than a constant L ≥ 1):

(7)
dψ

dt
=

2πτ

T
+ ητh(ψ(t), ψ(t− 1)),

where h : R × R → R defined by the relation h(ψ(t), ψ(t − 1)) = g1[ψ(t), 0, ψ(t − 1), 0] is of class C 2 and is
2π-periodic in both variables.

Remark 4.6. (i) Notice that, we must consider Equation (6) (and Equation (7)) on Banach spaces
defined on R− and not on [−1, 0] since it results from the reduction to the manifold Mα1 .

(ii) Equation (6) is in fact not only a delay equation with a C 2 semi-flow on the Banach space Cα1(R−,R),
but on Cα(R−,R) for any α > 0: it’s the convergence given by Theorem 4.5 which is only valid for
some choices of exponents depending on η and τ .

5. Using Averaging theory to study Equation (7)

Now in Equation (7), the term τ/T is taken large enough: therefore the phase is rotating very quickly.
To take it into account, we set: β(t) :=

2πτ

T
· t

φ(t) := ψ(t)− β(t)

and embed the equation (7) in R2, by considering:

(8)

β̇ =
2πτ

T
φ̇ = ητh(φ(t) + β(t), φ(t− 1) + β(t− 1)).

We can study Equation (7) through this embedding in R2: indeed the equation in φ is the same equation as
the one in ψ. Now, as h is of class C 2, 2π-periodic, therefore we can express h in Fourier series, using the
basis given by functions (s, t) 7→ exp(i(ms+ nt)), for any integers m,n in Z. Doing this, we get that φ has
an equation of the form:

(9)
dφ

dt
= ητ

∑
(m,n)∈Z×Z

am,ne
i(mφ(t)−nφ(t−1)+2πn τT )e2πi τT (m−n)t,

where (am,n)(m,n)∈Z×Z is the family of Fourier coefficients of the function h. Therefore, the reformulation of
Equation (8) in the infinite dimensional setting takes the form:
(10)

dβt
dt

(0) =
2πτ

T
dφt
dt

(0) = ητ
∑
m∈Z am,me

im(φt(0)−φt(−1)+2π τT ) + ητ
∑

(m 6=n) am,ne
i(mφt(0)−nφt(−1)+2πn τT )ei(m−n)βt(0)

.

As τ/T is taken very large, the second sum in the right hand side of the equation in φ̇ is very small, and can
be skipped at first order in η: to formalize this point rigorously, we are now going to use in a hidden way
averaging theory.

For t ≥ 0, let us set φnew
t := φt − ητ <(

∑
(m 6=n)∈Z×Z am,ne

i(mφt−nφt−1+2πn τT )
∫ t

0
ei(m−n)βsds) (which corre-

sponds to defining a Krylov-Bogoliubov-Mitropolsky type of transformation, as in the classical Averaging
12



theory). That is to say we set:

∀s ≤ 0, φnew
t (s) := φt(s)− η<(

∑
(m6=n)∈Z×Z

am,n

2iπ 1
T (m− n)

ei(mφt(s)−nφt−1(s)+2πn τT )(ei(m−n)βt(s) − 1)),(11)

in which way the new coordinate φnew
t is a small perturbation of φt.

To study Equation (10), we want to make use of φnewt as new variables. We thus need to verify that the
definition of φnewt above can be somehow considered as a change of variables (which is the statement of
Proposition 5.2 below). In this purpose we precise the following notation:

Notation 5.1. Given α > 0, we denote by (Cα(R−,R)
2
, ||(·, ·)||α) the product Banach space Cα(R−,R) ×

Cα(R−,R) equipped with the norm ||(·, ·)||α defined by the relation

∀(β, φ) ∈ Cα(R−,R)
2
, ||(β, φ)||α := max(||β||α, ||φ||α).

Proposition 5.2. Given α > 0, let’s consider the maps T1,T2,T[−1] defined by:{
T1 : Cα(R−,R)

2 → Cα(R−,R)
2

(β, φ) 7→ (β, φnew),
,

{
T2 : Cα(R−,R)

2 → C2α(R−,R)
2

(β, φ) 7→ (β, φnew)

and {
T[−1] : Cα(R−,R)

2 → C2α(R−,R)
2

(β, φnew) 7→ (β, φ) = T−1
1 (β, φnew)

where the spaces Cα(R−,R)
2

and C2α(R−,R)
2

are equipped with the norm ||(·, ·)||α and ||(·, ·)||2α. Then, the
following holds:
(i) The map T1 is a bi-Lipschitz homeomorphism.
(ii) The map T2 is of class C 1.
(iii) The map T[−1] is of class C 1.

Proof. See Appendix, Subsection 8.4. �

Remark 5.3. For any given α > 0, the transformation (β, φ) 7→ (β, φnew) is not a diffeomorphism from

Cα(R−,R)
2

to itself, i.e if we consider the same norm || · ||α). However the map T[−1] plays the role of the
inverse of T2, from which we are now going to prove (in Lemma 5.4 below) that it is sufficient to study
Equation (10) through its version with the variable φnew.

As h is of class C 2, the Fourier series of h converges normally. Therefore we can differentiate under the
sign sum in the expression of φnewt in s = 0 to get, for any t ≥ 1:
(12)

dβt
dt

(0) =
2πτ

T

dφnew
t

dt
(0) =ητ<(

∑
m∈Z am,me

im(φt(0)−φt(−1)+2π τT ))−

η<(
∑

(m 6=n)

am,n
2 πT (m− n)

ei(mφt(0)−nφt(−1)+2πn τT ))(mφ̇t(0)− nφ̇t(−1))(ei(m−n)βt(0) − 1)).

It is not restrictive to look at Equation (12) for time t ≥ 1 since we are interested in asymptotic behavior
(i.e for large time t > 0) of trajectories of our initial Equation (1).
Now, by Item (i) of Proposition 5.2, we can replace φ(t) by T−1

1 (βt, φ
new
t )(0), which leads us to the following

crucial Lemma:

Lemma 5.4. The variable φnew given by the equality (11) satisfies, for any time t ≥ 1, a delay equation of
the form: 

β̇(t) =
2πτ

T

φ̇new(t) = Gnew[φnewt , βt]

(13)

13



in which Gnew is a functional from Cα(R−,R)
2

to R, of class C 1 for any α > 0. Moreover, the truncation
of the second equation in (13) at first order in η reads (provided ητ is larger than a constant L ≥ 1):

φ̇new(t) = ητ<(
∑
m∈Z

am,me
im(φnew(t)−φnew(t−1)+2π τT )).(14)

Proof. The second equation in (12) is of the form φ̇new(t) = G0
new[φ(t), φ(t − 1), φ̇(t), φ̇(t − 1), β(t)] with

G0
new defined from R5 to R, and C 1 since the Fourier series of h converges normally. Now, for time t ≥ 1,

the two terms φ(t), φ(t− 1) satisfy Equation (9): thus φ̇(t), φ̇(t− 1) depend smoothly on φ(t), φ(t− 1), φ(t−
2), β(t), β(t− 1).

This yields that the second equation in (12) has the form φ̇new(t) = G0
new[φ(t), φ(t−1), φ(t−2), β(t), β(t−1)]

with G0
new of class C 1 from R5 to R, which can be rewritten in a functional way under the form

φ̇new(t) = Gnew
0 [φt, βt],

in which Gnew
0 : C2α(R−,R)

2 → R inherits the smoothness from G0
new (and this for any fixed α > 0).

Finally by Item (iii) of Proposition 5.2, the map T[−1] is C 1 from Cα(R−,R)
2

to C2α(R−,R)
2
, which means

the variable φnew given by the equality (11) satisfies, for any time t ≥ 1, a delay differential equation of the
form: 

β̇(t) =
2πτ

T

φ̇new(t) = Gnew[φnew
t , βt]

in which Gnew is a C 1 functional from Cα(R−,R)
2

to R. By Item (i) of Proposition 5.2, the variable φ(t)
is a Lipschitz perturbation (in φnew(t)) of the variable φnew(t): therefore the truncation of this equation at
first order in η reads as the formula given by (14). �

Thus, for our study in asymptotic time of the delay equation (7), we have proved this equation can be
seen, for any time t ≥ 1, as a C 1 perturbation of the second equation of the following (averaged) delay
differential system:

(15)


β̇(t) =

2πτ

T

φ̇new(t) = ητG[φnew(t)− φnew(t− 1) + θτ ]

where G is a 2π-periodic function of class C 2 defined in Fourier Series by the coefficients (am,m)m∈Z in
Equation (14) above, and θτ = 2π τT .

6. Study of the dynamics of the averaged equation

In order to analyze System (15), it is useful to introduce the quantity, for time t ≥ 0:

ω(t) = φnew(t)− φnew(t− 1).

Since the two variables in (15) are separate, we can analyse only the equation in φnew in (15). Rewriting it
with the new variable ω, we are led to study:

(16)
dω

dt
= F(ω(t))− F(ω(t− 1)), t ≥ 0

in which the function F is defined on R by the relation F(x) = ητG(x+θτ ). This equation has the remarkable
property that any of its trajectories converges to a constant in R, as stated in the next lemma:

Lemma 6.1. Let α > 0, and η > 0, τ > 0. For any ω0 ∈ Cα(R−,R), there exists a constant Cω0 such that
the solution ω(·, ω0) of the delay equation (16) with initial condition ω0 satisfies: ω(t, ω0) → Cω0 when t
tends to infinity.
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Proof. 1st Step: Let us define ϕ(x) =
∫ x

0
F(s)ds, for any real x. The function ϕ is somehow going to play

the role of a Lyapunov function. Consider an initial condition ω0 ∈ Cα(R−,R), and the solution ω := ω(·, ω0)

starting at ω0. We are going to prove in this first step that |
∫ +∞

0
ω̇(s)2ds| < +∞ using this functional ϕ.

We have, for any time t ≥ 0:

d

dt
ϕ(ω(t)) = F(ω(t))ω̇(t)

= F(ω(t))[F(ω(t))− F(ω(t− 1))]

=
F(ω(t))2

2
− F(ω(t− 1))2

2
+

1

2
[F(ω(t))− F(ω(t− 1))]2

=
F(ω(t))2

2
− F(ω(t− 1))2

2
+

1

2
ω̇(t)2

and therefore by integrating from 0 to t:

ϕ(ω(t))− ϕ(ω(0)) =

∫ t

0

F(ω(s))2

2
ds−

∫ t−1

−1

F(ω(s))2

2
ds+

1

2

∫ t

0

ω̇(s)2ds

=

∫ t

t−1

F(ω(s))2

2
ds−

∫ 0

−1

F(ω(s))2

2
ds+

1

2

∫ t

0

ω̇(s)2ds.

Now, as ω(t) is bounded (since F is bounded) we have :

sup
t∈R
|ϕ(ω(t))− ϕ(ω(0))| < +∞.

Moreover, the triangle inequality clearly gives:

sup
t∈R
|ϕ(ω(t))− ϕ(ω(0))−

∫ t

t−1

F(ω(s))2

2
ds+

∫ 0

−1

F(ω(s))2

2
ds| < +∞,

and thus we get:

|
∫ +∞

0

ω̇(s)2ds| < +∞,

and this whatever be the initial condition ω0.

2nd Step: Now as ω̇(t) is bounded and ω̈(t) is bounded as well (since F′ is bounded), therefore ω̇(t) must
tend to 0. Let’s prove this assertion.
Assume the contrary, that is to say assume we have: ∃ε0 > 0, ∀A > 0, ∃t ≥ A, ω̇(t) ≥ ε0. Thus, fixing such
an ε0 > 0, there exists a strictly increasing sequence of positive numbers (an)n≥1 such that:

∀n ≥ 1 : ω̇|[a2n+1,a2n+2] ≥
ε0
2
.

For such a sequence (an)n≥1 we can assume without restricting the generality that exists a constant ε1 > 0
such that for any n ≥ 1, ω̇(a2n+2) − ω̇(a2n+1) ≥ ε1: otherwise the sequence of general term ω̇(a2n+2) −
ω̇(a2n+1) would be approaching 0 and thus (ω̇(an))n≥1 will be asymptotically bounded from below by a
positive constant. This is absurd by convergence of the integral of ω̇2.
Now let’s apply the mean value equality: ∀n ≥ 1, ω̇(a2n+2)− ω̇(a2n+1) = ω̈(cn)(a2n+2 − a2n+1) ≥ ε1, where
cn is a real number in [a2n+1, a2n+2]. Since ω̈ is bounded the sequence (a2n+2 − a2n+1)n≥1 is therefore
bounded from below by a positive constant. Thus:

+∞∑
n=0

∫ a2n+2

a2n+1

ω̇(s)2ds ≥
+∞∑
n=0

(a2n+2 − a2n+1)
ε20
4
> +∞,
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which is a contradiction. So ω̇(t) tends to 0, as desired.

3rd Step: Finally let’s prove that ω(t) tends to a constant depending only on F when t tends to infinity.
Taking again the expression of ϕ(ω(t))− ϕ(ω(0)) written above, we have, by the mean value equality:

∀t ≥ 0 : ϕ(ω(t)) = ϕ(ω(0)) +
F(ω(ct))

2

2
−
∫ 0

−1

F(ω(s))2

2
ds+

1

2

∫ t

0

ω̇(s)2ds,

where ct ∈ [t− 1, t]. By the 1st Step we thus get the existence of a constant cteω0
(depending on F and on

the initial condition ω0) such that

ϕ(ω(t))− F(ω(ct))
2

2
→ cteω0

when t tends to infinity. Then by the mean value equality again,

ϕ(ω(t))− F(ω(t))2

2
= ϕ(ω(t))− F(ω(ct))

2

2
+ F(ω(dt)) F′(ω(dt)) ω̇(dt)(ct − t)

where dt ∈ [ct, t]. Now as F and F′ are bounded and as dt tends to +∞ with t, it comes:

ϕ(ω(t))− F(ω(t))2

2
→ cteω0

.

Next, by the mean value equality again, there exists dω(t) ∈ [ω(0), ω(t)] such that the following holds:

ϕ(ω(t))− F(ω(t))2

2
= ϕ(ω(0))− F(ω(0))2

2
+ [ϕ′(dω(t))− F(dω(t))F

′(dω(t))] · [ω(t)− ω(0)].

In the last relation, the left part converges, and the term [ϕ′(dω(t))−F(dω(t))F
′(dω(t))] is bounded and does

not tend to 0, since F′ does not tend to 1. Consequently, for any initial condition ω0 ∈ Cα(R−,R), the term
ω(t)− ω(0) must tend to a constant depending on ω0 when t tends to infinity. �

Remark 6.2. In fact, it is easy to see that Equation (16) admits a Lyapunov function, namely the one
defined by the relation:

Lt(ω0) := ϕ(ω(t, ω0))− 1

2

∫ t

t−1

F(ω(u, ω0))2du.

The reader might have noticed that all constant initial conditions on [−1, 0] are solutions of (16). Among
them, we have:

Proposition 6.3. Let η > 0 and τ > 0. Consider c ∈ R such that F′(c) 6= 0, and the characteristic equation
−λ+ F′(ω)[1− e−λ] = 0 (where λ ∈ C), associated to the linearized equation of (16). Then:

(i) There exists only one multiple eigenvalue which is 0, and it is a double eigenvalue, occuring when
F′(c) = 1.

(ii) If F′(c) ∈] −∞, 0[∪]0, 1], the characteristic equation admits a countable infinity of eigenvalues, all
of them of negative real part, except the eigenvalue 0.

(iii) If F′(c) > 1, there exists only one eigenvalue with positive real part, and it is a real solution. All
other eigenvalues (in countable infinity) have negative real part, except the eigenvalue 0.

Proof. (i) If λ is a multiple eigenvalue of the characteristic equation, then taking the first derivative we have
eλ = F′(c) which implies λ = F′(c)−1 and thus λ must be real in this case. This in turn leads to λ = eλ−1,
for which the only real solution is 0: this proves Item (i).

To prove Items (ii) and (iii), let’s write λ = a+ib under real and imaginary parts a, b in R, and reformulate
the characteristic equation as: {

a = F′(c)[1− e−a cos(b)]

b = F′(c)e−a sin(b)
.

(ii) Let’s first assume F′(c) < 0. We remark that any non null solution λ = a+ ib must satisfy a < 0 (since
we always have the relation 1− e−a cos(b) ≥ 0 for any (a, b) in R+ × R.
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Now, the real map b 7→ ln(
− sin(b)

b
) + b cotan(b) is a surjective map (in fact even bijective) in each interval

]kπ, (k+ 1)π[, with k odd in Z (since it tends to +∞ in π+ and −∞ in 2π−) and therefore exists a countable
infinity of values b ∈ R such that

ln(
− sin(b)

b
) + b cotan(b) = F′(c)− ln(−F′(c)).

Then we can set:

a = ln(
− sin(b)

b
) + ln(−F′(c))

from which comes:

a = F′(c)(1− b cos(b)

F′(c) sin(b)
) and ea = F′(c)

sin(b)

b

which means that a + ib is solution. This proves that when F′(c) < 0, there is an infinity of eigenvalues of
the characteristic equation, and all of them have strictly negative real part (except the double eigenvalue 0).

Then let’s assume F′(c) ∈]0, 1]: in this case any non null solution λ = a + ib must satisfy a < 0 as well
(otherwise we would have |b| < | sin(b)| which is absurd). By the exactly same reasoning as above, there
exists an infinity of values b ∈ R such that

ln(
sin(b)

b
) + b cotan(b) = F′(c)− ln(F′(c)),

from which we conclude there exists as well an infinity of eigenvalues of the characteristic equation, all of
them with strictly negative real part (except the eigenvalue 0). This proves Item (ii).

(iii) Lastly, to prove Item (iii) let’s see F′(c) as a parameter varying from a small positive value to in-
finity. By Item (ii), an eigenvalue with positive a can only emerge by intersecting or crossing the plane
{a = 0} from below (i.e from negative values of a). But if a = 0 then b = 0: therefore, as F′(c) is varying,
an eigenvalue with positive a can only emerge from the multiple eigenvalue 0. By Item (i), this means such
a solution emerges at the value F′(c) = 1. Since the multiplicity of 0 is two, it comes there exists a unique
solution with positive real part for any given value F′(c) > 1, and this is actually a real solution. As in (ii),
there exists in addition to this positive solution, an infinity of eigenvalues with negative real part, which
correspond to the ones existing for F′(c) ∈]0, 1[ that do not intersect the plane {a = 0} as F′(c) crosses the
value 1. This proves Item (iii). �

Now, among the constant solutions of Equation (16), those which are relevant for Equation (15) are given
by the fixed points of F (as we will see in Lemma 6.5). Observe that F admits at least one fixed point ω∗ such
that F′(ω∗) < 1 since it is a periodic function from R to R. Moreover, the larger ητ is, the more numerous
these fixed points are, and the more numerous are the fixed points satisfying F′(ω∗) < 1 (see Figure 2). We
have:

Proposition 6.4. For a generic choice of η > 0 and τ > 0, the fixed points (ω∗1 , · · · , ω∗p) of the function
F = ητG(·+ θτ ) satisfy the condition F′(ω∗i ) 6= 0, 1.

Proof. For x ∈ R, we have the equivalence:{
F(x) = x

F′(x) 6= 0, 1
⇐⇒


G(x+ θτ ) =

x

ητ

G′(x+ θτ ) 6= 0,
1

ητ

.

Then, consider a fixed point ω∗i of F: if ω∗i = 0, we clearly have G′(θτ ) 6= 0, 1
ητ for a generic choice of η, τ

in R. If, ω∗i is non null, G(ω∗i + θ) is non null as well, and a sufficient condition ensuring that ω∗i satisfies
F′(ω∗i ) 6= 0, 1 is that ω∗i satisfies:

G′(ω∗i + θτ )

G(ω∗i + θτ )
6= 0,

1

ω∗i
17



Figure 2. Fixed points of the 2π-periodic function F = ητG(· + θτ ): the number of fixed
points increases with ητ .

and so another sufficient condition is that ω∗i satisfies:

d

dx |x=ω∗i

ln

(∣∣G(x+ θτ )

x

∣∣) 6= 0 and
d

dx |x=ω∗i

ln (|G(x+ θτ )|) 6= 0.

In these last expressions, we can vary the parameter η ∈ R in a generic way so that the tangent at the curves

of the maps x 7→ ln

(∣∣G(x+ θτ )

x

∣∣) and x 7→ ln (|G(x+ θτ )|) have a nonzero slope. Hence the result. �

We know have, under this genericity condition of Proposition 6.4 (see the Appendix, Section 8.1, for a
precise definition of normally hyperbolic invariant manifolds):

Lemma 6.5. Let η > 0, τ > 0 and let T av
t,η,τ the semi-flow associated to (15). Denote by (ω∗1 , · · · , ω∗p) the

fixed points of the function F = ητG(· + θτ ). Then, there exists α2 > 0 such that for any 1 ≤ i ≤ p, the
following manifold of dimension two in Cα2(R−,R)2:

N i,av = {(2πτ

T
·+C1, ω

∗
i ·+C2), where (C1, C2) ∈ R2},

is invariant for the semi-flow T av
t,η,τ . Moreover, we have:

(i) If F′(ω∗i ) > 1, the manifold N i,av is unstable and normally hyperbolic in Cα2(R−,R)2, and its
unstable manifold is of dimension 3.

(ii) If F′(ω∗i ) < 1 and F′(ω∗i ) 6= 0, the manifold N i,av is stable and normally hyperbolic in Cα2(R−,R)2.

Proof. Let us fix η, τ > 0 and α > 0 (the choice of α will be specified at the end of the proof).
Consider one of the manifolds N i,av associated to the fixed point ω∗i . Then, N i,av is invariant under T av

t,η,τ .
Indeed, we have, for any t ≥ 0:

d

dt
(ω∗i t+ C2) = ω∗i = F[ω∗i t+ C2 − (ω∗i (t− 1) + C2)]

and thus for any (C1, C2) ∈ R2 and any t ≥ 0 we have:

∀s ≥ −t : T av
t,η,τ (

2πτ

T
·+C1, ω

∗
i ·+C2)(s) = (

2πτ

T
(t+ s) + C1, ω

∗
i (t+ s) + C2),

which proves the invariance of N i,av under T av
t,η,τ .

In order to prove Items (i) and (ii) we need to consider the linear semi-flow DT av
t,η,τ (m) at each point

m = (
2πτ

T
·+C1, ω

∗
i ·+C2) ∈N i,av. A simple writing of a rate of variation gives:

∀β, φ ∈ Cα(R−,R)2, DT av
t,η,τ (m)(β, φ) = (β(0), Tt,ω∗i (φ)),
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where β(0) denotes the constant map of Cα(R−,R) equal to β(0) on R−, and Tt,ω∗i (φ)) denotes the semi-flow

associated to the linearized equation δ̇ = F′(ω∗i )(δ(t)− δ(t− 1)).

(i) To prove Item (i), let’s consider the eigenvalues of the characteristic equation −λ+ F′(ω∗i )[1− e−λ] = 0:
Since F′(ω∗i ) > 1 by assumption, following Proposition 6.3, the eigenvalue λ0 = 0 is simple, and we denote
by λ1 the unique positive eigenvalue, and (λn)n≤−1 all the eigenvalues with negative real part.
Now, it is a well-known fact on delay differential equations that the family of maps {s 7→ eλns, n ≤ 1} forms
a Schauder basis of the set C ([−1, 0],R). This means we have, for any φ ∈ C ([−1, 0],R):

∀s ∈ [−1, 0] : φ(s) =

n=1∑
n=−∞

Cne
λns.

This decomposition is unfortunately not valid in Cα(R−,R), however thanks to it, we can still define the
following projectors:

∀φ ∈ Cα(R−,R)

{
pci (φ) = C0

pui (φ) = C1e
λ1·

where C0 and C1 are the constants associated to the eigenvalues λ0, λ1 in the decomposition of φ|[−1,0] in

the Schauder basis, and where eλ1· denotes the map s 7→ eλ1s from R− to C. Then, we can set:
Ecm = R2

Eum = {(0, C1e
λ1·), C1 ∈ R}

Esm = {(β − β(0), φ− pci (φ)− pui (φ)), (β, φ) ∈ Cα(R−,R)2}

where eλ1· denotes the map s 7→ eλ1s from R− to C. These three sets are closed subspaces of Cα(R−,R)2

(where R is identified as the set of constant functions over R− and is therefore seen as a subspace of
Cα(R−,R)) and we observe:{

∀(C1, C2) ∈ R2, DT av
t,η,τ (m)(C1, C2) = (C1, C2)

∀C1 ∈ R, DT av
t,η,τ (m)(0, C1e

λ1·) = (0, C1e
λ1t eλ1·)

and also that we have, for any s ∈ R−:

DT av
t,η,τ (m)(β − β(0), φ− pci (φ)− pui (φ))(s) =

{
(0, φ(t+ s)− pci (φ)(t+ s)− pui (φ)(t+ s)), if s ≤ −t− 1

(0,
∑−1
n=−∞ Cne

λn(t+s)), if s ≥ −t− 1

= (0, Tt,ω∗i (φ)(s)− pci (Tt,ω∗i (φ))(s)− pui (Tt,ω∗i (φ))(s)).

Therefore the linearized semi-flow satisfies: DT av
t,η,τ (m)|Eαm : Eαm → Eαm1

= Eαm (for α = c, u, s) where

m1 = T av
t,η,τ (m) = (

2πτ

T
(t+ ·) + C1, ω

∗
i (t+ ·) + C2). Using the relation:{

β = β(0) + [β − β(0)]

φ = pci (φ) + pui (φ) + [φ− pci (φ)− pui (φ)],

we thus obtain:

Cα(R−,R)2 = Ecm ⊕ Eum ⊕ Esm,

in which we remark that Ecm = TmN i,av. The unstable space Eum at m is of dimension 1, which automatically
gives us that DT av

t,η,τ (m)|Eum is an isomorphism from Eum to Eum1
. To conclude that N i,av is a normally

hyperbolic invariant manifold, it remains to check (see Definition of Section 8.1 in the Appendix) that
DT av

t,η,τ (m) is expansive on Eum and contractive on Esm, at a rate greater than its behavior on the tangent
space Ecm. In this purpose we easily notice:{

min[1, inf{||DT av
t,η,τ (m)(β, φ)||α, (β, φ) ∈ Ecm, ||(β, φ)||α = 1}] = 1

inf{||DT av
t,η,τ (m)(β, φ)||α, (β, φ) ∈ Eum, ||(β, φ)||α = 1} = eλ1t.

19



The contractivity of DT av
t,η,τ (m)|Esm is more technical to obtain: to do it, let’s fix (β, φ) ∈ Esm with expression

for φ over [−1, 0] given by φ(s) =
∑n=−1
n=−∞ Cne

λns. Then we have, for any m ≤ −1:∫ 0

−1

φ(s)e−λmsds =

n=−1∑
n=−∞

Cn

∫ 0

−1

φ(s)e(λn−λm)sds

= Cm +
∑
n6=m

Cne
λm

[
e−λm − e−λn
λn − λm

]

= Cm +
eλm

F′(ω∗i )

∑
n 6=m

Cn

= Cm

(
1− eλm

F′(ω∗i )

)
+

eλm

F′(ω∗i )
φ(0)

= Cm

(
1− 1

F′(ω∗i )− λm

)
+

1

F′(ω∗i )− λm
φ(0).

For any m ≤ −1, the eigenvalue λm is in C \ R which ensures F′(ω∗i )− λm − 1 6= 0. From this we get:

∀m ≤ −1, Cm =
F′(ω∗i )− λm

F′(ω∗i )− λm − 1

∫ 0

−1

φ(s)e−λmsds− 1

F′(ω∗i )− λm − 1
φ(0).

As seen in the proof of Proposition 6.3, we have |λm| ∼ |m| when m tends to infinity, and so there exists a
constant K > 0 such that:

∀m ≤ −1 : |Cm| ≤ K sup
s∈[−1,0]

|φ(s)|.(17)

Now, for any t ≥ 2, we have DT av
t,η,τ (m)(β − β(0), φ)(s) = (0,

∑n=−1
n=−∞ Cne

λn(t+s)) and since DT av
t,η,τ (m) is

a compact operator on C ([−1, 0],R)2, the map DT av
t,η,τ (m)(β − β(0), φ) is twice differentiable over [−1, 0].

This allows us to write:

∀t ≥ 2,∀s ∈ [−1, 0] :
d2

ds2
DT av

t,η,τ (m)(β − β(0), φ)(s) = (0,

n=−1∑
n=−∞

Cnλ
2
ne
λn(t+s)),

and applying the inequality (17) above, we get:

∃K > 0,∀t ≥ 2,∀s ∈ [−1, 0] :

−1∑
n=−∞

|Cn| ≤ K sup
s∈[−1,0]

|| d
2

ds2
DT av

t,η,τ (m)(β − β(0), φ)(s)||

and by compactness again of DT av
t,η,τ (m) on C ([−1, 0],R)2, we get the estimation:

∃K > 0,∀s ∈ [−1, 0] :

−1∑
n=−∞

|Cm| ≤ K sup
s∈[−1,0]

||DT av
2,η,τ (m)(β − β(0), φ)(s)||

≤ KK2 sup
s∈[−1,0]

|φ(s)|,

where K2 denotes the norm of the operator DT av
2,η,τ (m) on C ([−1, 0],R)2.

From this estimation we finally obtain, for any α2 > 0 satisfying <(λn) +α2 < 0 (for any n ≤ −1):

∀t ≥ 2,∀(β, φ) ∈ Esm, ||DT av
t,η,τ (m)(β − β(0), φ)||α2 ≤ e−α2t max(||φ||α2 ,

n=−1∑
n=−∞

|Cn|)

≤ e−α2t max(||φ||α2 ,KK2e
α2 sup

s∈[−1,0]

|φ(s)|)

≤ e−α2t max(1,KK2e
α2)||φ||α2 .

20



We thus can conclude that exist a time t0 ≥ 2 and a real number µ < 1 such that we have, for any t ≥ t0:

µ inf{||DT av
t,η,τ (m)(β, φ)||α2 , (β, φ) ∈ Eum, ||(β, φ)||α2 = 1} > 1

µ > ||DT av
t,η,τ (m)|Esm ||α2

which ends the proof that N i,av is a normally hyperbolic invariant manifold in Cα2(R−,R)2 (where α2 > 0
satisfies <(λn)+α2 < 0 for any n ≤ −1). N i,av is unstable and since dim(Eum) = 1, therefore the dimension
of the unstable manifold associated to N i,av is: dim(TmN i,av) + dim(Eum) = 3, as desired. We have proved
Item (i).

(ii) The proof of Item (ii) is completely similar. �

Lemma 6.6. Let η > 0, τ > 0 such that the condition F′(ω∗i ) 6= 0, 1 be satisfied for the fixed points ω∗1 , · · · , ω∗p
of F. Then, the union set ∪pi=1N i,av is a globally stable (invariant) manifold in Cα2(R−,R)2 (where α2 is
chosen as in the proof of Lemma 6.5) for the semi-flow T av

t,η,τ of Equation (15), in the following sense:

∀(β, φ) ∈ Cα2(R−,R)2, ∃i ∈ {1, · · · , p}, ∃(C1, C2) ∈ R2 :

sup
s∈[−1,0]

||T av
t,η,τ (β, φ)(s)− T av

t,η,τ (
2πτ

T
·+C1, ω

∗
i ·+C2)(s)|| → 0

when the time t tends to infinity.

This means that the union ∪pi=1N i,av is ”attracting” all initial conditions in Cα2(R−,R)2 for the semi-flow
of Equation (15).
This means also that the only invariant manifolds for the semi-flow of Equation (15), are the N i,av.

Proof. Let us fix (β0, φ0) ∈ Cα2(R−,R)2 and write for any t ≥ 0 and s ≤ 0, T av
t,η,τ (β0, φ0)(s) = (

2πτ

T
(t+ s) +

β0(0), φ(t + s)), that is to say we denote by φ(t + s) the solution of the equation φ̇new(t) = ητG[φnew(t) −
φnew(t− 1) + θτ ] with initial condition φ0, taken at time t+ s. Let’s also set ω(t) = φ(t)− φ(t− 1), for any
t ≥ 0.
Then, ω is differentiable for t ≥ 1, and so ω̇(t) = F(ω(t))−F(ω(t−1)), which means ω is solution of Equation
(16): by Lemma 6.1, it comes that ω(t) converges asymptotically to a constant C. On the other hand, for

any t ≥ 1, there exists ct ∈ [t − 1, t] such that: ω(t) = φ̇(ct) = F(ω(ct)): therefore the constant C must be
one of the fixed points of the map F, say ω∗i .

Now, as in Lemma 6.5, each open interval of the set {c ∈ R : F′(c) 6= 0, 1} is a one-dimensional normally
hyperbolic invariant manifold of Cα2(R−,R) for the semi-flow of (16): this can be shown in an exactly similar
way as the proof of Lemma 6.5 (and this since the linearized semi-flow of (16) at c has a similar expression

as the one of (15) at any point (
2πτ

T
·+C1, c ·+C2)). Therefore, the convergence of the trajectory ω towards

such a component of {c ∈ R : F′(c) 6= 0, 1} containing ω∗i happens exponentially fast (since this trajectory
must enter the stable manifold associated to this normally hyperbolic invariant manifold). This means there
exist two constants K > 0, a > 0, and a time t0 ≥ 1, such that the inequality |ω(t)−ω∗i | ≤ Ke−at holds, for
any t ≥ t0. We have:

∀t ≥ t0 ≥ 1, (φ(t)− ω∗i t)− (φ(t0)− ω∗i t0) =

∫ t

t0

(
dφ

du
(u)− ω∗i ) du

=

∫ t

t0

(F(ω(u))− F(ω∗i )) du.

It comes (since the function F′ is bounded):∫ +∞

t0

|F(ω(s))− F(ω∗i )|ease−as ds ≤ K

a
· sup
t∈R+

|F′(t)| < +∞,
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and therefore the integral
∫ +∞
t0

(F(ω(u))− F(ω∗i )) du is convergent. Setting

C0 = φ(t0)− ω∗i t0 +

∫ +∞

t0

(F(ω(u))− F(ω∗i )) du,

we have obtained that the constant C0 does not depend on the time t0 (but only depends on the initial
condition φ0 in Cα2(R−,R)) and that:

lim
t→∞

φ(t)− ω∗i t = C0.

From this, we conclude we have:

∀(β0, φ0) ∈ Cα2(R−,R)2, ∃i ∈ {1, · · · , p}, ∃C0 ∈ R :

sup
s∈[−1,0]

||T av
t,η,τ (β0, φ0)(s)− T av

t,η,τ (
2πτ ·
T

+ β0(0), ω∗i ·+C0)(s)|| → 0

as desired. �

The result of this Lemma means that any trajectory enters (after a finite time) the stable manifold of
one of the normally hyperbolic invariant manifolds of T av

t,η,τ , say N i,av, whether this is a stable or unstable
manifold.

Corollary 6.7. Let us fix L1, L2 ≥ 1. Then, there exists η0 > 0 such that for a generic choice of η, τ in the
set {(η, τ) ∈ R2 : 0 < η < η0, τ > 0, L1 ≤ ητ ≤ L2}, the C 1 semi-flow T(8),t,η,τ of Equation (8) admits the
following normally hyperbolic invariant manifolds:

N i = {(2πτ ·
T

+ C1, ω
∗
i ·+C2 + αi(·, η, τ, C1, C2)), where (C1, C2) ∈ R2}, i = 1, · · · , p

in Cα2(R−,R)2 (with α2 > 0 taken as in Lemma 6.5), where the perturbation s 7→ αi(s, η, τ, C1, C2) tends
to 0 when η tends to 0 (uniformly in τ, C1, C2), depends smoothly in C1, C2 and satisfy the relations:

αi(·, η, τ, C1, C2) = αi(·, η, τ, 0, C1 + C2)

αi(·, η, τ, 0, C + 2π) = αi(·, η, τ, 0, C),

for any (C1, C2, C) ∈ R3. The union of these manifolds satisfy:

∀(β, φ) ∈ Cα2(R−,R)2, ∃i ∈ {1, · · · , p}, ∃(C1, C2) ∈ R2 :

sup
s∈[−1,0]

||T(8),t,η,τ (β, φ)(s)− T(8),t,η,τ (
2πτ ·
T

+ C1, ω
∗
i ·+C2 + αi(·, η, τ, C1, C2))(s)|| → 0

when the time t tends to infinity.

Proof. Let’s first consider Equation (13). For ητ larger than a constant L ≥ 1, this equation is a C 1

perturbation, of order of magnitude η, of Equation (15): in this perturbation, the variable β is not af-
fected, and this perturbation tends to 0 uniformly in τ , when η tends to 0. Therefore, applying Lemma
6.6 and the result of Bates, Lu, Zeng for C 1 semi-flows on Banach spaces (see the theorem of Section 8.1
in the Appendix), we automatically get the persistence of the manifolds N 1,av, · · · ,N p,av for the semi-
flow of (13). Thus, given L1, L2 ≥ 1, exists η0 > 0 and a function (s, C1, C2) 7→ αi(s, η, τ, C1, C2) ∈ R
which tends to 0 when η tends to 0 (uniformly in τ, C1, C2) such that, for a generic choice of η, τ in
{(η, τ) ∈ R2 : 0 < η < η0, τ > 0, L1 ≤ ητ ≤ L2}, each N i with the form claimed is a normally hyperbolic
invariant manifold for the semi-flow of (13), is of same stability as N i,av, and is unique (in a neighborhood
of size η of N i,av). Similarly for the semi-flow of (8), since the variable φnew is a perturbation of φ which
tends to 0 uniformly in s and τ , when η tends to 0.
Now since the semi-flow of (15) admits no other invariant set than the normally hyperbolic invariant mani-
folds N i,av, it comes (by normal hyperbolicity) that for a generic choice of η, τ in {(η, τ) ∈ R2 : 0 < η <
η0, τ > 0, L1 ≤ ητ ≤ L2}, the semi-flow T(8),t,η,τ of System (8) has no other invariant set than the N i.

So, as for Equation (15), for any initial condition (β0, φ0) ∈ Cα2(R−,R)2 the trajectory (T(8),t,η,τ (β0, φ0))t≥0

enters the stable manifold of one of the manifolds N i (whether it is a stable or unstable manifold) after a
22



finite time. Hence the global stability claim.
Lastly, we observe that Equation (8) is invariant under the transformation K 7→ (β +K,φ−K) where K is
a real variable. This means that given any initial condition (β0, φ0) ∈ Cα2(R−,R)2, the curve (β(t), φ(t))t≥0

solution of (8) with initial condition (β0, φ0) satisfies that (β+K,φ−K) is still a solution of (8). Thus, taking
the limit of (T(8),t,η,τ (β0, φ0))t≥0 when t tends to infinity, we obtain easily that for any (K,C1, C2) ∈ R3,

(
2πτ ·
T

+K + C1, ω
∗
i ·+C2 −K + αi(·, η, τ, C1, C2))

= (
2πτ ·
T

+K + C1, ω
∗
i ·+C2 −K + αi(·, η, τ,K + C1, C2 −K)).

Taking K = −C1 it comes that, for any (C1, C2) ∈ R2:

αi(·, η, τ, 0, C1 + C2) = αi(·, η, τ, C1, C2).

Moreover, since the equation (8) is defined by a function h which is 2π-periodic in the variable ψ, it also
comes:

∀(β0, φ0) ∈ Cα2(R−,R)2, T(8),t,η,τ (β0, φ0 − 2π) = T(8),t,η,τ (β0, φ0)− (0, 2π),

from which we deduce the relation:

αi(·, η, τ, 0, C1 + C2 + 2π) = αi(·, η, τ, 0, C1 + C2),

as desired.
�

7. End of the proof of the main result

From Corollary 6.7 we can now come back to Equation (6) and establish the following result:

Corollary 7.1. Let us fix L1, L2 ≥ 1. Then, there exists η0 > 0 such that for a generic choice of η, τ in the
set {(η, τ) ∈ R2 : 0 < η < η0, τ > 0, L1 ≤ ητ ≤ L2}, there exist p real numbers (ω∗1 , · · · , ω∗p) ∈ Rp and 2p
functions: {

(s , C) 7→ αi(s, η, τ, C)

R− × R → R,
,

{
(s , C) 7→ βi(s, η, τ, C)

R− × R → R,

for which the following holds.
For any initial condition ψ0 ∈ Cα1(R−,R), (where α1 is chosen as in Theorem 4.5) there exist C ∈ R and
1 ≤ i ≤ p such that the trajectory (TMα1 ,t,η,τ

(ψ0))t≥0 solution of Equation (6) starting at ψ0 satisfies:

lim
t→+∞

sup
s∈[−1,0]

|TMα1 ,t,η,τ
(ψ0)(s)− TMα1 ,t,η,τ

(χi,C)(s)| = 0

where χi,C is defined by:

χi,C =
2πτ ·
T

+ ω∗i ·+C + αi(·, η, τ, C) + βi(·, η, τ, C).

The two functions s 7→ αi(s, η, τ, C) and s 7→ βi(s, η, τ, C) tend to 0 when η tends to 0 (uniformly in τ, C),
and satisfy the relation:

αi(·, η, τ, C + 2π) = αi(·, η, τ, C)

βi(·, η, τ, C + 2π) = βi(·, η, τ, C).

Proof. Consider the system:

(18)

β̇ =
2πτ

T
φ̇ = ητG1(φt + βt) + η2τHη(φt + βt)
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which is System (6) extended to R2 by introducing the fast variable β, as we did for System (8). Then
the semi-flow T(18),t,η,τ of System (18) is C 1 on Cα(R−,R) (for any arbitrary given α > 0) and is a C 1

perturbation of System (8) of order of magnitude η2τ . Therefore, applying Corollary 6.7 and applying the
persistence result of Bates, Lu, Zeng (i.e the theorem of Section 8.1 in the Appendix) for C 1 semi-flows on
Banach spaces, we obtain that:

∀(β0, φ0) ∈ Cα2(R−,R)2, ∃i ∈ {1, · · · , p}, ∃(C1, C2) ∈ R2, ∀s ∈ [−1, 0] :

||T(18),t,η,τ (β0, φ0)(s)− T(18),t,η,τ (
2πτ ·
T

+ C1, ω
∗
i ·+C2 + αi(·, η, τ, 0, C1 + C2) + βi(·, η, τ, 0, C1 + C2))(s)||

tends to 0 when the time t tends to infinity, in which the terms αi(·, η, τ, 0, C1 +C2) and βi(·, η, τ, 0, C1 +C2)
are small terms of order η2τ and satisfy the claimed properties of periodicity. Observing that for any
ψ0 ∈ Cα1(R−,R) ∩ Cα2(R−,R), the term TMα1 ,t,η,τ

(ψ0) can be written as the sum of the first and second

component of T(18),t,η,τ (β0, ψ0 − β0), we get the result for elements ψ0 ∈ Cα1(R−,R) ∩ Cα2(R−,R).

Finally, given any ψ0 ∈ Cα1(R−,R), it suffices to consider an element ψ̃0 ∈ Cα1(R−,R) ∩ Cα2(R−,R)
satisfying:

ψ̃0|[−1,0] = ψ0|[−1,0]

and to notice that:

∀t ≥ 0, ∀s ∈ [−1, 0], TMα1 ,t,η,τ
(ψ̃0)(s) = TMα1 ,t,η,τ

(ψ0)(s)

to get the result. �

Remark 7.2. Observe that the persistence of normally hyperbolic invariant manifolds argument that we
applied in this proof gives us, as for Corollary 6.7, the following relation:

∀1 ≤ i ≤ p, ∀C ∈ R,∀t ≥ 0, ∃Ct ∈ R, : TMα1 ,t,η,τ
(χi,C) = χi,C+Ct ,

which is as well an invariance relation.

From Corollary 7.1, we can now use Theorem 4.5 (on the global stability of the manifoldMα1 associated
to the C 2 function Gα1), from which it directly comes the following theorem, which is the main result of
this paper expressed in terms of the variables (ψ, y), i.e for System (2):

Theorem 7.3. There exists δ0 > 0 for which, given L1, L2 ≥ 1, there exists η0 > 0 such that for a generic
choice of η, τ in the set {(η, τ) ∈ R2 : 0 < η < η0, τ > 0, L1 ≤ ητ ≤ L2}, there exist α1 > 0, p real numbers
ω∗1 , · · · , ω∗p ∈ Rp and p functions of class C 1:{

(s , C) 7→ γi(s, η, τ, C)

R− × R → R,

for which the following holds.
For any initial condition (ψ0, y0) ∈ C ([−τ, 0],R) × Bδ0/2([−τ, 0],Rn−1), there exist C ∈ R and 1 ≤ i ≤ p
such that the trajectory (T(2),t,η,τ (ψ0, y0))t≥0 solution of System (2) starting at (ψ0, y0) satisfies:

lim
t→+∞

sup
s∈[−τ,0]

||T(2),t+τ,η,τ (ψ0, y0)(s)− T(2),t,η,τ (χi,C ,Gα1(χi,C))(s)|| = 0

where Gα1 is a C 2 function on (Cα1(R−,R), || · ||α1) and χi,C is defined by:

χi,C =
1

τ
[
2πτ ·
T

+ ω∗i ·] + C + γi(
1

τ
·, η, τ, C).

The function γi(·, η, τ, C) tends to 0 when η tends to 0 (uniformly in τ, C) and for any (C, t) ∈ R × R+,
there exists Ct ∈ R such that:

γi(·, η, τ, C + 2π) = γi(·, η, τ, C)

T(2),t,η,τ (χi,C ,Gα1(χi,C)) = (χi,C+Ct ,Gα1(χi,C+Ct)).
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Proof. Let’s take δ0, η0 > 0 satisfying Theorem 4.5, and fix L1, L2 ≥ 1. Reducing η0 if necessary we can
assume η0 satisfies Corollary 7.1. Let’s take a generic choice of η, τ in {(η, τ) ∈ R2 : 0 < η < η0, τ > 0, L1 ≤
ητ ≤ L2} and α1 > 0 satisfying Theorem 4.5.
Then, given (ψ0, y0) ∈ C ([−1, 0],R)×Bδ0/2([−1, 0],Rn−1), Theorem 4.5 tells us that there exists (ψ1, yψ1

) ∈
Mα1 such that:

lim
t→+∞

sup
s∈[−1,0]

||T(3),t+1,η,τ (ψ0, y0)(s)− T(3),t,η,τ (ψ1, yψ1
)(s)|| = 0,

where T(3),t,η,τ denotes the semi-flow associated to System (3).
Now, setting γi(·, η, τ, C) = αi(·, η, τ, C) + βi(·, η, τ, C) (where the two terms αi(·, η, τ, C) and βi(·, η, τ, C)
are of order η2τ and taken as in Corollary 7.1) and applying Corollary 7.1, there exist 1 ≤ i ≤ p and C ∈ R
such that:

lim
t→+∞

sup
s∈[−1,0]

|TMα1 ,t,η,τ
(ψ1)(s)− TMα1 ,t,η,τ

(χi,C)(s)| = 0.

By construction of the manifold Mα1 , we have:

T(3),t,η,τ (ψ1, yψ1) = (TMα1 ,t,η,τ
(ψ1),Gα1(TMα1 ,t,η,τ

(ψ1)))

T(3),t,η,τ (χi,C ,Gα1(χi,C)) = (TMα1 ,t,η,τ
(χi,C),Gα1(TMα1 ,t,η,τ

(χi,C)))

and so, for any t ≥ 0, for any s ∈ [−1, 0]:

||T(3),t,η,τ (ψ1, yψ1)(s)− T(3),t,η,τ (χi,C ,Gα1(χi,C))(s)||
=||(TMα1 ,t,η,τ

(ψ1)(s)− TMα1 ,t,η,τ
(χi,C)(s),Gα1(TMα1 ,t,η,τ

(ψ1))(s)−Gα1(TMα1 ,t,η,τ
(χi,C))(s))||,

from which we get:

lim
t→+∞

sup
s∈[−1,0]

||T(3),t,η,τ (ψ1, yψ1)(s)− T(3),t,η,τ (χi,C ,Gα1(χi,C))(s)|| = 0,

which gives the result for the semi-flow T(3),t,η,τ of System (3).
Rescaling the time by the factor τ , we get the result for trajectories (T(2),t,η,τ (ψ0, y0))t≥0 of System (2)

starting at initial conditions (ψ0, y0) ∈ C ([−τ, 0],R)× Bδ0/2([−τ, 0],Rn−1). �

Finally, from Theorem 7.3 and Lemma 2.2, we can now deduce the main result of this paper:

Proof of Theorem A. We fix L1, L2 ≥ 1 and take δ0 > 0, η0 > 0 satisfying the claim of Theorem 7.3,
and (reducing their value if necessary) of Lemma 2.2. We also take a generic choice of η, τ in the set
{(η, τ) ∈ R2 : 0 < η < η0, τ > 0, L1 ≤ ητ ≤ L2}.
(i) First, let’s take an integer 1 ≤ i ≤ p, and C ∈ R. By Theorem (7.3) we have:

∀t ≥ 0, ∃Ct ∈ R, T(2),t,η,τ (χi,C ,Gα1(χi,C)) = (χi,C+Ct ,Gα1(χi,C+Ct)).

Since we have:

∀t ≥ 0 : T(2),t,η,τ (χi,C ,Gα1(χi,C))(−t) = T(2),0,η,τ (χi,C ,Gα1(χi,C))(0),

it thus comes for any t ≥ 0:

Ct − (
2π

T
t+

ω∗i
τ
t) = γi(0, η, τ, C)− γi(

−t
τ
, η, τ, C + Ct).

Since γi(·, η, τ, C) is in (Cα1(R−,R), || · ||α1) and of order η2τ , exists a constant K such that :

|Cτ − τ(
2π

T
+ ηG(ω∗i + θτ ))| ≤ K(1 + e1)η2τ,

from which we deduce, since C0 = 0, the existence of a time t = Ai such that CAi = 2π (which time Ai is
actually η-close to T ). Notice that Ai also depends on the value C which has been initially fixed: to avoid
cumbersome notations, we don’t write this dependence on C but we keep it in mind for the end of the proof.
Now, we observe that the map T(2),Ai,η,τ (χi,C ,Gα1(χi,C)) belonging to Cα1(R−,R) is in fact of class C 1
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over [−Ai, 0] (since the semi-flow T(2),Ai,η,τ is of class C 1 over C ([−Ai, 0],R)). This gives that γi(
·
τ
, η, τ, C)

is also C 1 over [−Ai, 0], and then it comes:

|Ai −
2π

2π

T
+
ω∗i
τ

| ≤ K1
Ai
τ

1

2π

T
+
ω∗i
τ

η2τ,

in which K1 > 0 is a constant. Thus exists a constant M0 > 0 such that:

|Ai −
2π

2π

T
+
ω∗i
τ

| ≤M0η
2,

as claimed. By construction of the manifoldMα1 , we have Gα1(ψ+ 2π) = Gα1(ψ) for any ψ ∈ Cα1(R−,R)
(see Lemma 4.3), from which comes, by properties of γi(·, η, τ, C) given by Theorem 7.3:

T(2),Ai,η,τ (χi,C ,Gα1(χi,C)) = (χi,C+2π,Gα1(χi,C+2π))

= (χi,C+2π,Gα1(χi,C))

and so we obtain the equality:

T(2),t+Ai,η,τ (χi,C ,Gα1(χi,C)) = T(2),t,η,τ (χi,C ,Gα1(χi,C)) + (2π, 0)

where here 0 denotes the null point in Rn−1.

(ii) Then, to obtain the desired result from this equality, it remains to apply Lemma 2.2 which makes the
correspondance between curves solutions of System (2) in the variables (ψ, y) and solutions of our original
System (1) in the variable x.
We take an initial condition γ ∈ VΓ,τ (δ0/2). By definition of the diffeomorphism Φ of Lemma 2.2, the curve
(ψ(t), y(t))t≥0 starting at the initial condition Φ ◦ γ0 satisfies:

∀t ≥ 0,∀s ∈ [−1, 0] : Tt,η,τ (γ)(s) = Φ−1(ψ(t+ s), y(t+ s)).

By Theorem 7.3, there exist an integer 1 ≤ i ≤ p and C ∈ R such that:

sup
s∈[−1,0]

||(ψ(t+ s+ 1), y(t+ s+ 1))− T(2),t,η,τ (χi,C ,Gα1(χi,C))(s)|| → 0

when the time t tends to infinity. Therefore we have:

sup
s∈[−1,0]

||Tt+1,η,τ (γ)(s)− Φ−1(T(2),t,η,τ (χi,C ,Gα1(χi,C))(s))|| → 0.

Observing that Φ−1(T(2),t+Ai,η,τ (χi,C ,Gα1(χi,C))(s)) = Φ−1(T(2),t,η,τ (χi,C ,Gα1(χi,C))(s)) for any t ≥ 0

and for any s ∈ [−1, 0] (since Φ maps into S1 × Rn−1), we can finally conclude that the trajectory (Φ−1 ◦
T(2),t,η,τ (χi,C ,Gα1(χi,C)))t≥0 is a periodic orbit (of period Ai = Ai(C) close to

2π

2π

T
+
ω∗i
τ

), towards which the

trajectory (Tt+1,η,τ (γ))t≥0 converges asymptotically. In fact, this orbit (Φ−1 ◦ T(2),t,η,τ (χi,C ,Gα1(χi,C)))t≥0

is the same as the orbit (Φ−1 ◦ T(2),t,η,τ (χi,0,Gα1(χi,0)))t≥0 (again since Φ maps into S1 × Rn−1), which is
a periodic orbit of period Ai(0). Therefore, there are only p distinct such periodic orbits, whose periods Ai
do not depend on C. QED.

�

8. Conclusion

We have rigorously proved a self-induced synchronization result for Equation (1), resulting from the
perturbation of an arbitrary vector field f of class C r, r ≥ 3, in Rn (around a stable periodic orbit of f), by
a delayed feedback term ηg(x, x(t − τ)) of same regularity. The result obtained (Theorem A) showed that
trajectories asymptotically enter into a periodic regime and are split in (a finite number of) clusters defined

by frequencies equal (at first order in η) to 2π
T +

ω∗i
τ . Such a result was proved for a generic choice of the

parameters η, τ , under the assumption that η > 0 be small, τ > 0 be large and ητ be bounded by a constant
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larger than one: it remains to describe the dynamics when there is no more this restriction on ητ (possibly
unbounded).

Our synchronization result often appears in the context of networks (notably coupled phase oscillator
networks), where very often it is stated for averaged systems reduced from the original delay equation, or in
the case where ητ is small ([22], [1]): we will apply the result we presented here to dynamical networks in a
future paper.
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Appendix

8.1. Persistence of Normally Hyperbolic Invariant Manifolds for semi-flows in Banach spaces.
Let us first recall the precise definition of a normally hyperbolic invariant manifold (see [3]):

Definition (Bates, Lu, Zeng, see [3]). Let (X, | · |) be a Banach space, equipped with the linear operator
norm || · ||, and M an invariant manifold for a semi-flow Tt : X → X of class C 1 for any t ≥ 0. Then, M
is a normally hyperbolic invariant manifold for Tt if:
(H1) For each m ∈ M there is a decomposition X = Xc

m ⊕ Xu
m ⊕ Xs

m of closed subspaces with Xc
m the

tangent space to M at m.
(H2) For each m ∈M and t ≥ 0, if m1 = Tt(m):

DTt(m)|Xαm : Xα
m → Xα

m1
, for α = c, u, s

and DTt(m)|Xum is an isomorphism from Xu
m onto Xu

m1
.

(H3) There exists t0 ≥ 0 and λ < 1 such that for all t ≥ t0
λ inf {|DTt(m)(xu)| : xu ∈ Xc

m, |xu| = 1} > max{1, ||DTt(m)|Xcm ||}
λmin{1, inf{|DTt(m)(xc)| : xc ∈ Xc

m, |xc| = 1}} > ||DTt(m)|Xsm ||.

As said in [3], Condition (H3) essentially asks that near m ∈M , the hyperbolic dynamics in the direction
normal to M is much stronger than the dynamics on M itself: i.e, the map Tt is expansive in the direction
of Xu

m, and at a rate greater than that on M , and Tt is contractive in the direction of Xs
m and at a rate

greater than that on M .
With this definition we can now reproduce the persistence result of Bates, Lu, Zeng (first stated in [3] for

C 1 semi-flows on C 2 manifolds, and then improved in [5] by a stronger version for C 1 manifolds) that we
use at several points in this paper:

Theorem (Bates, Lu, Zeng, see [3]). Let X a Banach space, Tt a C 1 semi-flow of X, and M a C 2

compact connected invariant manifold on which Tt is normally hyperbolic for t sufficiently large. Suppose
also that for each m ∈ M , DTt|Xum is an isomorphism. Let t1 > 0 be large enough and be fixed and N be a

fixed neighborhood of M . For any ε > 0, there exists σ > 0 such that if T̃ is a C 1 map on X which satisfies
||T̃ − Tt1 ||C 1(N) < σ, then:

(a) Persistence: T̃ has a unique C 1 compact connected normally hyperbolic invariant manifold M̃ near M .

(b) Convergence: M̃ converges to M in the C 1 topology as ||T̃ − Tt1 ||C 1(N) tends zero.

(c) Existence: T̃ has unique C 1 invariant manifolds W̃ cs(ε) and W̃ cu(ε) in a tubular neighborhood N(ε) of

M , which at M are tangent to the center-stable vector bundle X̃c⊕ X̃s and the center-unstable vector bundle
X̃c ⊕ X̃u, respectively.
(d) Characterization: W̃ cs(ε) = {x0 ∈ N(ε) : T̃ k(x0) ∈ N(ε), for k ≥ 1, T̃ k(x0)→ M̃ as k → +∞}
W̃ cu(ε) = {x0 ∈ N(ε) : ∃ (xk)k≥0 ⊂ N(ε), satisfying T̃ (xk) = xk−1 for k ≥ 1, and xk → M̃ as k → +∞}
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and M̃ = W̃ cu(ε) ∩ W̃ cs(ε).

Furthermore, if T̃t is a C 1 semiflow on X which satisfies ||T̃t1 − Tt1 ||C 1(N) < σ and ||T̃t − Tt||C 0(N) < σ for

0 ≤ t ≤ t1, then M̃ is a normally hyperbolic invariant manifold for T̃t with center-stable manifold W̃ cs(ε)

and center-unstable manifold W̃ cu(ε) respectively.

The reader might have observed that this persistence result is set for compact normally hyperbolic invari-
ant manifolds: however, as said in [4], this compactness assumption can be released provided the quantities
in the estimates above are uniform (which is the case in Lemma 6.5). It is the stronger statement of [5]
(with the C 2 requirement on M relaxed to C 1) together with this uniform estimates assumption (replacing
compactness) that we use all along the paper.

8.2. Basic estimates involving the matrix A.

Lemma 8.1. Let A be a matrix in Mn(R) whose eigenvalues are all strictly negative. Then, there exist
σ > 0, C > 0 and a matrix P ∈ GLn(R) such that the following holds:
(ii) For any z ∈ Rn: 〈z,P−1APz〉 ≤ −σ||z||.
(ii) For any t > 0: ||eAt|| ≤ Ce−σt.

Proof. See [35], or [8]. �

8.3. Proof of Theorem 4.5 (global stability of the manifold Mα1).

Proof. As for the proof of Lemma 4.3, we apply the Perron-Lyapunov method, adapting the construction
done in [35] for non-delay differential equations. In this purpose, we need to use again the following weighted
Banach spaces on R: the space (Cα(R,R), || · ||α) of continuous functions on R bounded in norm || · ||α and
the space

Bαδ0/2(R,Rn−1) = {f : R→ Rn−1 continuous such that: ||f||∞ ≤ δ0/2, and ||f||α < +∞},

where α is a strictly positive number (whose range will be specified later in the proof) and || · ||α stands for
the weighted norm by the exponent α > 0 both for functions with values in R or with values in Rn (to avoid
cumbersome notations).
(Bαδ0/2(R,Rn−1), || · ||α) is a Banach space, and note that the continuous functions over R bounded in norm

|| · ||α are in fact automatically bounded on R+ but not on R−. Lastly, we will equip the product space
Cα(R,R) × Bαδ0/2(R,Rn−1) with the norm given by the maximum of the weighted norms of the two com-

ponents. To avoid useless cumbersome notations again, we will still denote by || · ||α this norm, i.e we will
set:

||(f1, f2)||α := max(||f1||α, ||f2||α).

Keeping the same choice of δ0 > 0 and η0 > 0 as for Lemma (4.2), (4.1), and (4.3), we set η′0 = η0
2

and choose 0 < η < η′0 (η satisfying therefore (??)) and τ > 0, and we consider an initial condition
(φ1, y1) ∈ C ([−1, 0],R)× Bδ0/2([−1, 0],Rn−1). For simplicity of notations again, we denote by (ψ1(t), y1(t))
the solution of (3) starting at the initial condition (φ1, y1), and taken at time t ≥ 0, i.e defined by:

ψ1(t) := ψ(φ1, y1, t)

y1(t) := y(φ1, y1, t).

In order to rewrite Equation (3) in a more concise way, we will also set:

p(ψ1, y1, ψ2, y2) =
2πτ

T
+ ητg1(ψ1, y1, ψ2, y2)

q(ψ1, y1, ψ2, y2) = τh2(ψ1, y1) + ητg2(ψ1, y1, ψ2, y2).

(i) By choice of η and (φ1, y1), we know (see Item (ii) of Remark (3.1)) that we have ||y1(t)|| ≤ δ0/2 for any
t ≥ 0. It thus comes, by (??):

∀t ≥ 0, ||ẏ1(t)− τAy1(t)|| ≤ τK(h2)

(
δ0
2

)2

+ ητK(g2,
δ0
2

).
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(ii) Now we pullback the trajectory (ψ1(t), y1(t))t≥0 by setting:

ψ̃1(t) = ψ1(t+ 1)

ỹ1(t) = y1(t+ 1),

so that the inequality stated in (i) be valid for any t ≥ −1. Notice the curve (ψ̃1(t), ỹ1(t))t≥−1 is still a
trajectory solution of Equation (3), and therefore is continuously differentiable.

Then, we extend this trajectory to a C 1 curve (ψ̃1(t), ỹ1(t))t∈R over the entire real line by imposing the
following conditions:

(i) (ψ̃1(t), ỹ1(t))t∈R satisfies sups≤0 |ψ̃1(s)| < +∞
(ii) (ψ̃1(t), ỹ1(t))t∈R satisfies sups≤0 ||ỹ1(s)|| < δ0/2

(iii) For any s ≤ 0, || ˙̃y1(s)− τAỹ1(s)|| ≤ τK(h2)

(
δ0
2

)2

+ ητK(g2,
δ0
2

)

Now, as in the construction of the manifold Mα (see Proposition 4.2 and Lemma 4.3) let us consider the

operator T1(·, ·, ψ̃1, ỹ1) defined by :

T1(·, ·, ψ̃1, ỹ1) : (γ, ξ) 7→ (γ̃, ξ̃)

Cα(R,R)× Bαδ0/2(R,Rn−1) → Cα(R,R)× Bαδ0/2(R,Rn−1)

where for any time t ∈ R:
γ̃(t) = −

∫ +∞
t
{p[ψ̃1(s) + γ(s), ỹ1(s) + ξ(s), ψ̃1(s− 1) + γ(s− 1), ỹ1(s− 1) + ξ(s− 1)]− ˙̃

ψ1(s)}ds
ξ̃(t) =

∫ t
−∞ eτA(t−s){q[ψ̃1(s) + γ(s), ỹ1(s) + ξ(s), ψ̃1(s− 1) + γ(s− 1), ỹ1(s− 1) + ξ(s− 1)]

− ˙̃y1(s) + τAỹ1(s)}ds

Let us verify this map is well defined, i.e (γ̃, ξ̃) actually belongs to Cα(R,R)× Bαδ0/2(R,Rn−1). We verify it

for γ̃, the similar argument working for ξ̃.
By definition the curve (ψ̃1(t), ỹ1(t))t≥0 satisfies Equation (3) and so for any time t ≥ 0:

γ̃(t) = −
∫ +∞

t

{p[ψ̃1(s) + γ(s), ỹ1(s) + ξ(s), ψ̃1(s− 1) + γ(s− 1), ỹ1(s− 1) + ξ(s− 1)]

− p[ψ̃1(s), ỹ1(s), ψ̃1(s− 1), ỹ1(s− 1)]}ds.
Thus, we have, for any time t ≥ 0:

|γ̃(t)| ≤ ητK(Dg1, δ0)

∫ +∞

t

max[ |γ(s)|, ||ξ(s)||, |γ(s− 1)|, ||ξ(s− 1)|| ]ds,

≤ ητ

α
K(Dg1, δ0) · ||(γ, ξ)||α e−αt,

where K(Dg1, δ0) = supz∈([0,2π]×Wδ0
)2 ||Dg1(z)||. This implies (since K(Dg1, δ0) is bounded independently

on (φ1, y1)): supt≥0 |γ̃(t)|eαt < +∞. Then, for any t ≤ 0 the quantity:

|
∫ 0

t

{p[ψ̃1(s) + γ(s), ỹ1(s) + ξ(s), ψ̃1(s− 1) + γ(s− 1), ỹ1(s− 1) + ξ(s− 1)]− ˙̃
ψ1(s)}ds| · eαt

is smaller than:

{|ψ̃1(0)|+ |ψ̃1(t)|+ sup
s∈[t,0]

|p[ψ̃1(s) + γ(s), ỹ1(s) + ξ(s), ψ̃1(s− 1) + γ(s− 1), ỹ1(s− 1) + ξ(s− 1)]| · |t|} · eαt.

Since (ξ(s))s≤0 is bounded and (ỹ1(s))s≤0 as well (by condition (ii)), we get that the superior bound in the

last inequality is bounded uniformly in t: thus (as (ψ̃1(t))t≤0 is bounded by condition (i)), we obtained

sup
t≤0
|γ̃(t)|eαt < +∞,

and so γ̃ ∈ Cα(R,R). Using (?) and (??), the similar argument works to prove that ξ̃ ∈ Bαδ0/2(R,Rn−1),

using this time condition (iii).
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Furthermore, for a good choice of α (that we state below), the map T1(·, ·, ψ̃1, ỹ1) is a contraction. Indeed,
let us take two couples (γ1, ξ1) and (γ2, ξ2) in Cα(R,R)× Bαδ0/2(R,Rn−1) and consider the term:

||T1(γ1, ξ1, ψ̃1, ỹ1)− T1(γ2, ξ2, ψ̃1, ỹ1)||α = max(sup
t∈R
|γ̃1(t)− γ̃2(t)|eαt, sup

t∈R
||ξ̃1(t)− ξ̃2(t)||eαt).

We have, for any time t in R:

|γ̃1(t)− γ̃2(t)| ≤
∫ +∞

t

| p[ψ̃1(s) + γ1(s), ỹ1(s) + ξ1(s), ψ̃1(s− 1) + γ1(s− 1), ỹ1(s− 1) + ξ1(s− 1)]

− p[ψ̃1(s) + γ2(s), ỹ1(s) + ξ2(s), ψ̃1(s− 1) + γ2(s− 1), ỹ1(s− 1) + ξ2(s− 1)] | ds

which as above yields:

||γ̃1 − γ̃2||α ≤
ητ

α
K(Dg1, δ0) ||(γ1 − γ2, ξ1 − ξ2)||α.

A similar inequality is obtained by the same reasoning for ||ξ̃1 − ξ̃2||α. Namely:

||ξ̃1 − ξ̃2||α ≤ C ·
τK(Dh2)δ0 + ητK(Dg2, δ0)

−τσ − α
||(γ1 − γ2, ξ1 − ξ2)||α.

Thus, choosing α1 such that:

ητK(Dg1, δ0) < α1 < 2α1 < −τσ

(in this way α1 depends only on η and τ , since K(Dg1, δ0) does not depend on (φ1, y1)) we obtain:

||ξ̃1 − ξ̃2||α1
≤ 2C · K(Dh2)δ0 + ηK(Dg2, δ0)

−σ
||(γ1 − γ2, ξ1 − ξ2)||α1

,

which proves, by condition (??), that T1(·, ·, ψ̃1, ỹ1) is a contraction.

(iii) Finally, by the Banach contractive mapping theorem, there exists a unique fixed point (γ1, ξ1) of the

map T1(·, ·, ψ̃1, ỹ1). We then set:

ψ0 := ψ̃1 + γ1

y0 := ỹ1 + ξ1,

which are curves defined and continuously differentiable over the entire real line R.
By construction, ||y0(s)|| ≤ δ0 for any time s ≤ 0, and we have, for any t ∈ R:

ψ̇0(t) = p[ψ0(t), y0(t), ψ0(t− 1), y0(t− 1)]

ẏ0(t) = τAy0 + q[ψ0(t), y0(t), ψ0(t− 1), y0(t− 1)],

and thus, at any given time s ∈ [−1, 0] :

∀t ≥ −s, Tt,η,τ (ψ0|R− , y0|R−)(s) = (ψ0(t+ s), y0(t+ s)).

This means that (ψ0|R+
, y0|R+

) is the solution of the delay equation starting at the initial condition ψ0|R− , y0|R−
(and even starting at ψ0|[−1,0], y0|[−1,0]). Now, at any fixed time s ∈ [−1, 0] we have, for any t ≥ −s:

||Tt,η,τ (ψ0|R− , y0|R−)(s)− Tt+1,η,τ (φ1, y1)(s)|| = (|ψ0(t+ s)− ψ1(t+ s+ 1)|, ||y0(t+ s)− y1(t+ s+ 1)||)

= (|ψ0(t+ s)− ψ̃1(t+ s)|, ||y0(t+ s)− ỹ1(t+ s)||)
= (|γ1(t+ s)|, ||ξ1(t+ s)||)

and so:

lim
t→∞

sup
s∈[−1,0]

||Tt,η,τ (ψ0|R− , y0|R−)(s)− Tt+1,η,τ (φ1, y1)(s)|| = 0,

this pointwise convergence being exponentially fast.
To conclude, since the curve (y0(t))t≤0 is the solution of the equation:

ż(t) = τAz + q[ψ0|R−(t), z(t), ψ0|R−(t− 1), z(t− 1)], t ≤ 0
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we have that (ψ0|R− , y0|R−) belongs to the manifold Mα, as desired. �

8.4. Proof of Proposition 5.2 (a coordinate transformation for Equation (9)).

Proof. (i) The map T1 is of the form: T1(β, φ) = (β, φ)− η · (0,Q[β, φ, φ−1]), with:

∀s ≤ 0, Q[β, φ, φ(s− 1)] := <(
∑

(m 6=n)∈Z×Z

am,n

2iπ 1
T (m− n)

ei(mφ(s)−nφ(s−1)+2πn τT )(ei(m−n)β(s) − 1)),

(where we recall that the notation φ−1 stands for the function φ−1 : s 7→ φ(s − 1), with s ∈ R−). Given

(β1, φ1) and (β2, φ2) in Cα(R−,R)
2
, we have, for any s ≤ 0:

|Q[β1, φ1, φ1(s− 1)]−Q[β2, φ2, φ2(s− 1)]| ≤
∑

(m 6=n)∈Z×Z

|<(am,n)|+ |=(am,n)|
|2π 1

T (m− n)|
(2|X1 −X2|+ |Y1 − Y2|),

where: {
X1 = mφ1(s)− nφ1(s− 1) + 2π nτT
Y1 = (m− n)β1(s)

and similarly for X2, Y2.
Since the function h is C 2, therefore the following series:∑

(m 6=n)∈Z×Z

|<(am,n)|+ |=(am,n)|
|2π 1

T (m− n)|
(|m|+ |n|)

converges. This gives that the map (β, φ) 7→ (0,Q[β, φ, φ−1]) is a Lipschitz map from Cα(R−,R)
2

to

Cα(R−,R)
2
. As a Lipschitz perturbation of the identity map on a Banach space, the map T1 is there-

fore a bi-Lipschitz homeomorphism.

(ii) Let (β, φ) and (h, k) in Cα(R−,R)
2
. Given s ≤ 0, the difference:

−(T2(β + h, φ+ k)(s)− T2(β, φ)(s)− (h(s), k(s))

is equal to

η(0,
∑

(m 6=n)∈Z×Z

<(am,n)

2π 1
T (m− n)

[sin(Xφ +Xk + Yβ + Yh)− sin(Xφ +Xk)− sin(Xφ + Yβ) + sin(Xφ)])

+η(0,
∑

(m 6=n)∈Z×Z

=(am,n)

2π 1
T (m− n)

[cos(Xφ +Xk + Yβ + Yh)− cos(Xφ +Xk)− cos(Xφ + Yβ) + cos(Xφ)])

where we have set: 
Xφ = mφ(s)− nφ(s− 1) + 2πn τT
Xk = mk(s)− nk(s− 1)

Yβ = (m− n)β(s)

Yh = (m− n)h(s)

.

Let’s look at the first sum of this term, expressed by the function sin and <(am,n). We have:

[sin(Xφ +Xk + Yβ + Yh)− sin(Xφ +Xk)− sin(Xφ + Yβ) + sin(Xφ)]

= sin(Xφ + Yβ)[cos(Xk + Yh)− 1]− sin(Xφ)[cos(Xk)− 1] + sin(Xk + Yh) cos(Xφ + Yβ)− sin(Xk) cos(Xφ)

=(Xk + Yh) cos(Xφ + Yβ)−Xk cos(Xφ) +Z1,k,h

where Z1,k,h satisfies: sups≥0 |Z1,k,h|e2αs = o(||(h, k)||α) when ||(h, k)||α tends to 0. Similarly we have:

[cos(Xφ +Xk + Yβ + Yh)− cos(Xφ +Xk)− cos(Xφ + Yβ) + cos(Xφ)]

=− (Xk + Yh) sin(Xφ + Yβ) +Xk sin(Xφ) +Z2,k,h

where Z2,k,h satisfies: sups≥0 |Z2,k,h|e2αs = o(||(h, k)||α) when ||(h, k)||α tends to 0. This gives Item (ii).
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(iii) Let us fix (β, φnew) ∈ Cα(R−,R)
2
. As said in Item (i), the map T1 is a Lipschitz perturbation of

the identity map on Cα(R−,R)
2
: thus T1

−1(β, φnew) can be obtained as the limit of the sequence (Zn)n≥0

defined by the relations: {
Z0 = (β0, φ

new
0 )

Zn+1 = F(Zn),
n ≥ 0

where the point (β0, φ
new
0 ) is taken arbitrarily in Cα(R−,R)

2
, and the map F is defined by the relation

F(X,Y ) = ηQ(X,Y, Y−1) + (β, φnew), for any (X,Y ) ∈ Cα(R−,R)
2
. Since T2 is C 1, this gives:

DT[−1](β, φ
new)(h, k) = (h, k) + ηDQ(T[−1](β, φ

new),T[−1](β, φ
new)2(·− 1))(h, k) + o(||(h, k)||α)

when ||(h, k)||α tends to 0, where we have denoted by T[−1](β, φ
new)2 the second coordinate of T[−1](β, φ

new)
(and where, as before, T[−1](β, φ

new)2(· − 1) stands for the map s 7→ T[−1](β, φ
new)2(s − 1)). By Item (ii),

the linear map DQ(T[−1](β, φ
new),T[−1](β, φ

new)2(·− 1)) is continuous. Hence the result.
�
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