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Alexandre Bazin, Miguel Couceiro, Marie-Dominique Devignes, Amedeo Napoli

LORIA, Université de Lorraine — CNRS — Inria, Nancy, France
firstname.name@loria.fr

Abstract. Efficiently discovering causal relations from data and repre-
senting them in a way that facilitates their use is an important problem
in science that has received much attention. In this paper, we propose
an adaptation of the Formal Concept Analysis formalism to the problem
of discovering and representing causal relations. We show that Formal
Concept Analysis structures and algorithms are well-suited to this prob-
lem.

1 Introduction

The study of causal relations is central in applied science [30]. Experimental
protocols are often implemented in order to manipulate a potential cause (an
object, state or process) in such a way that its effects can be inferred. Such
a process produces what is called interventional data. However, when objects
cannot be directly manipulated, one has to rely on purely observational data.
Studying causality from data involves two related tasks:

— discovering the causal structure, i.e., is there a causal relation between two
sets of variables?
— inferring causal effects, i.e., how does the cause lead to the effect?

In this paper, we are interested in the discovery of the causal structure in obser-
vational data.

Inferring causal relations from observational data is a challenging task. Most
of the approaches in the literature are probabilistic [25, 28,37, 39, 43]. Nonethe-
less, recent algorithmic approaches based on approximations of Kolmogorov com-
plexity are becoming quite popular [9,10, 8,34, 36]. The set of causal relations
forms the causal structure. It can be presented to humans to help them under-
stand a situation described by data and support decision making [14] or it can
be used to automatically select important variables in data [49]. Most works
on causality focus on univariate causal inference where the task consists in de-
termining whether a causal relation exists between two variables x and y, and
deciding its direction, i.e., the cause and the effect. The causal structure is then
represented by a directed acyclic graph called the causal diagram.

In practice, however, effects often require the interaction of multiple causes
to appear. We then talk of multivariate causal relations. In the multivariate case,
we allow causal relations between sets X and Y of variables. We will use X 5 Y
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to denote the fact that X causes Y. The corresponding causal diagrams have
yet to be properly formalised and studied. In this paper we propose an approach
based on Formal Concept Analysis to address and tackle this issue.

Formal Concept Analysis (FCA) [17] is a lattice-theoretic mathematical frame-
work that enables the representation of the underlying structure of data. Origi-
nally, FCA is applied to binary data, but several extensions have been proposed
to manage other data types, e.g., numerical [15], fuzzy [5], incomplete [33], mul-
tidimensional [47], relational [41] and sequential [11] data. FCA is particularly
suited to the discovery and representation of rule patterns such as implica-
tions [42,40], association and decision rules [38, 50|, and link keys [1].

In this paper, we propose an FCA-based framework that relies on causal
inference to represent the causal structure of the variables in datasets. In Section
2, we briefly survey existing causal inference methods and recall basic FCA
notions needed throughout the paper. We discuss properties of causal relations
in Section 3, and use them to define a closure operator that will be the key to
the proposed framework. In Section 4, we show how FCA structures can be used
to represent causal structures, and provide algorithms for computing them. In
Section 5, we illustrate our approach on the well-known public dataset Iris. We
end the paper with a discussion on the usefulness of the framework for computing
and representing causal relations in Section 6.

2 Preliminaries

2.1 Notation

Throughout the paper, we use calligraphic letters (A, B, . ..) to denote important
sets and structures, whereas (sub)sets and individual elements are denoted by
upper case letters (A, B, ...) and by lower case letters (a, b, ...), respectively. We
may specify a set extensively, e.g., {a,b,c,d, e}, or in the simplified form abede,
especially to improve readability of figures.

2.2 Causal Inference

A causal relation between a single cause x and a single effect y is called univariate.
The structure of a set of such relations is usually represented by a directed acyclic
graph (DAG), called a causal diagram or causal network, in which the vertices
are variables and the edges denote a causal relation between the cause and its
effect. Recent efforts have been devoted to learning a causal diagram [20] from
observational data, whether it be the complete diagram [44,45] or just parts of
it [18]. Some approaches try to learn the skeleton of the diagram (is there a
causal relation between these two variables?) first, and then to orient the edges
(which of these variables is the cause?).

Inferring the direction of a causal relation between x and y is a difficult
task, and authors usually rely on some assumptions. The most common one is
the absence of confounders [29,46,51], i.e., variables z that cause both = and
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y. Also, many current approaches are based on additive noise models [25, 26],
which assume that, if  causes y, then the value of y is a function of the value
of = plus some additive noise:

y = f(x) 4+ n, for some function f,

and where n is independent of . Under this assumption, state of the art method-
ologies [25, 28, 37, 39, 43] assume that the marginal distribution P(x) of the cause
x and the conditional distribution P(y|z) of the effect y given the cause = are
independent.

In contrast, algorithmic approaches are based on the Markov condition [29]
and the idea that it is algorithmically easier to compute the effect from the
cause than the other way around. The Kolmogorov complexity K(s) of a finite
binary string s is the length of the shortest program for which a universal Turing
machine outputs s and halts. In this setting, « is said to cause y when K (P(z))+
K(P(ylz)) << K(P(y)) + K(P(zly)). As the Kolmogorov complexity is not
computable, approximations are used to infer causal directions in Boolean |9,
10] and numerical [8, 34, 36] settings.

Probabilistic [12,27,52] and algorithmic [48] approaches have been also pro-
posed for the multivariate case, when causal relations are between sets of vari-
ables X and Y. However, this has received much less attention than the univari-
ate case. In the experimental example presented in Section 5, we use ERGO [48],
an algorithmic approach for inferring causal directions in the multivariate case
by approximating the Kolmogorov complexity using cumulative and Shannon
entropies.

2.3 Formal Concept Analysis

Formal Concept Analysis (FCA) is a mathematical framework based on lattice
theory that aims at representing the information lying in binary datasets in terms
of concept hierarchies and rules. Datasets are formalised as formal contexts that
are triples (G, M, R) in which G is a set of objects, M is a set of attributes and
R C G x M is a binary relation between objects and attributes. An object g is
said to be described by an attribute m when (g, m) € R.

Fig. 1. A crosstable representing a formal context with five objects ({1,2,3,4,5}) and
five attributes ({a,b,c,d, e}).
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Given a formal context (G, M, R), we can define the two following derivation
operators:

— /29 5 2M G G'={me M| Vg€ G,(g,m) €R}, and
— oM 29 M M ={ge G |Vme M, (g,m) € R}

This pair of derivation operators forms a Galois connection, and so both
compositions - : 29 — 29 and - : 2M — 2M constitute closure operators on G
and M, respectively. We say that a formal context is object-reduced if, for each
object o, there is no pair of objects p and ¢ such that {o} = {p} N {q}. We
define attribute-reduced contexts analogously.

A pair (G, M) € 29 x 2M is called a formal concept of K if M = G’ and
G = M'. In this case, G is called the extent and M the intent of the formal
concept (G, M). The set of all the formal concepts of a formal context together
with the partial order of extents induced by the inclusion of sets of objects or,
equivalently, by the reversed inclusion of intents, forms a complete lattice called
the concept lattice of the formal context.

(12345, 0)
(14,a) (123,b) (24,¢) (235,d)
X
(1, ab) (4, ac) (23, bd) (35 de)
\\ (2, bed) (3, bde)
(0, abcde

Fig. 2. Concept lattice of the formal context depicted in Fig. 1.

Definition 1. (IMPLICATIONS) Let K = (G, M, R) be a formal context. An
implication is a pair (X,Y) of attribute sets, often written in rule form X — Y.
An implication X — Y holds in K when Y’ C X', i.e., the objects described by
the attributes in X are also described by the attributes in Y. Let I denote the
set of all the implications that hold in K.

Implications capture certain regularities in the description of objects. For
instance, in the formal context depicted in Figure 1, implications {b,c} — {d}
and {e} — {d} hold, whereas {a} — {b} does not. The number of implications
in a formal context (G, M, R) can grow exponentially with |G|, M| and |R].
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Hence, even relatively small formal contexts can give rise to an exponential
number of implications [32]. Whether to present to a human analyst or to use in
a computation, it is advantageous to avoid “redundant” implications. Two main
approaches to reduce implication sets are usually considered, which may or may
not entail loss of information. When loss of information is acceptable, one can use
the many interestingness measures that have been proposed in the literature [19].
When information loss is to be avoided, we can make use of so-called implication
bases.

Definition 2. (IMPLICATION BASES) Let KC be a formal context. A subset I C
Ix is said to be an implication base of K if every implication in I can be
derived from those of I through Armstrong’s azioms:

- IfYCX, then X =Y.
—IfX =Y, then XUZ —>YULZ foradll Z.
—IfX—>YandY — Z, then X — Z.

As every valid implication of a formal context I can be derived from an
implication basis of K, implication bases contain the same information as the
whole implication set Zx. Different implication bases, with different properties,
have been studied [22, 42, 7]. Here, we present the two best-known.

Definition 3. (LOGICAL CLOSURE) Let I be an implication set. The logical
closure I(X) of an attribute set X by I is the smallest superset of X such that
(A= Beland ACI(X)) implies B C I(X).

When 7 is an implication base, (X ) = X" for all X C M. If K is the context
depicted in Figure 1, then I({e}) = Zx({e}) = {d, e}.

Definition 4. (LOGICAL PSEUDO-CLOSURE) Let I be an implication set. The

logical pseudo-closure 5 (X) of an attribute set X by I is the smallest superset
of X such that (A — B €I and A C IP(X)) implies B C I9(X).

Note that the only difference between the logical closure and pseudo-closure
resides in the strictness of the inclusion of premises, and it is not difficult to
verify that the logical pseudo-closure is a closure operator. For instance, if K is
the context depicted in Figure 1, then Zg({e}) = {e} because no implications
in which the premise is a proper subset of {e} holds.

Definition 5. (PSEUDO-INTENT) Let K = (G, M, R) be a formal context. An
attribute set P C M is called a pseudo-intent if P # P and P = T (P).

Note that the attribute sets closed under the logical pseudo-closure are either
intents or pseudo-intents. Thus the set of pseudo-intents can be obtained by
computing the logical pseudo-closure ZZ(.) of attribute sets [2,4,31,13].

Definition 6. (CANONICAL BASE) The canonical base of a formal context is

{P — P" | P is a pseudo-intent}
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The notion of canonical base is also referred to as the Dugquenne-Guigues base [22].
It is the smallest implication base of a formal context in terms of number of impli-
cations, and it constitutes an optimal compression of the information contained
in the implications or, equivalently, in the formal context. The canonical base of
the formal context depicted in Figure 1 is:

—{e} = {d.e}

- {av d} - {aa b7 ¢, da 6}

- {ba C} - {ba c, d}

— {c¢,d} — {b,c,d}

— {b,e,d,e} = {a,b,c,d, e}

Definition 7. (PROPER PREMISE) Let K be a formal context and a an attribute.
An attribute set X is a proper premise of a if X — {a} holds, X # {a}, and,
forallY C X, Y — {a} does not hold.

In words, a proper premise is a minimal attribute set that implies another
attribute.

Definition 8. (PROPER PREMISE BASE) The base of proper premises [/2] of a
formal context is defined by

{X = X" | X is a proper premise}

The base of proper premises is the implication base with the smallest premises,
and it constitutes the optimal compression of the information contained in the
implications when the size of the premises is a concern. For example, the base
of proper premises of Figure 1 is:

—{e} = {d,e}

— {b,c} = {b,c,d}

- {Ca d} — {ba & d}

— {a,d} — {a,b,¢,d, e}
— {c,e} = {a,b,c,d, e}
— {a,e} = {a,b,c,d, e}
— {a,b,c} = {a,b,c,d e}

It should be noticed that minimal pseudo-intents are necessarily proper premises.

3 Causal Closure

Works on modelling or discovering causal relations often make a number of
assumptions on the nature of the causal relation: univariate or multivariate,
absence of confounders, linearity of the function in the Additive Noise Models...
Following the same tracks, we assume that causal relations have some desirable
(and generally accepted) properties that resemble those of implications. In the
remainder of this paper, we assume that all variables belong to a set V.

For every X,Y,Z C V), suppose that the following five properties hold:
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Property 1. A set of variables causes itself:

XS X,

Property 2. Causality is transitive:
XSYANYSZ=X52Z

In words, if X directly causes Y and Y directly causes Z, then X indirectly
causes Z.

Property 3. If X causes a set of variables Y, then it causes all of its subsets:
XS5Yy=X5%527 vZCY.

In particular, X causes {y} for all y in Y.

Property 4. All supersets of X cause its effects:
XS5Y=XUzZS5Y.

Note that this property is not incompatible with possible notions of negation as
5 only denotes the presence of a causal relation and not the causal effect itself,
which can be different between X =Y and X UY S Y.

Property 5. A variable causes the union of its effects:
XS5YANXSZ=XS5YUZ

Properties 1 and 3 imply that if Y C X, then X = Y. Properties 1, 3 and
4 imply that if X = Y, then X UZ = Y U Z. Since Property 2 is transitivity,
these five properties imply Armstrong’s axioms (see Definition 2). Note that
transitivity, despite intuitive, is disputed [35] and counterexamples have been
presented. Halpern [23] identified conditions under which causality is transitive.

Proposition 1. Consider the operator £: 2¥ — 2V defined by
(x)= J v
X5y

Then £ is a closure operator.

Proof. By Property 1, we have that X C £(X) so £(.) is extensive. From Prop-
erties 1, 2 and 3, we have that X C Y = £(X) C £(Y), for every X, Y C V,
and thus &(.) is monotone. Furthermore, by Properties 1 and 2 we also have that
E(E(X)) = &(X), for every X C V, and hence £ is idempotent. This shows that
¢ is indeed a closure operator.
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We refer to £(X) as the causal closure of X. The causal closure of X is
made of X and all of its direct and indirect effects. When all causal relations
are known, the causal closure can be computed by applying & successively until
a fixpoint is reached. However, inferring causal relations from a dataset may be
costly, which prevents us from testing whether X = Y for all possible Y. As
we will now observe, Property 3 ensures that the computation of £(X) can be
simplified.

Proposition 2. Let X be a variable set and y a variable. Then,
EX)={y| X {y}}
Proof. This follows from the fact that X S Y =X 5 Z, VZ CY.

Hence, computing £(X) directly from a dataset requires |V \ X| causal tests.

4 Reconstructing the FCA Trinity with Causality

In the previous section we showed that causal relations give rise to a closure
operator . Let V be the set of variables in a dataset. Suppose that /. is a formal
context whose set of attributes is V', and that an implication X — Y holds if and
only if X < Y. As causal relations respect Armstrong’s axioms, Zx, (X) = £(X),
for all X C V, and any implication base of I, enables the derivation of all the
causal relations. Thus, by using the closure operator £ as if it were the closure
operator induced by the (unknown) formal context K., it is possible to apply the
FCA machinery to compute representations of the causal relations in the dataset.
FCA offers many structures to represent the content of the closure operator and,
thus, of the causal relations: formal contexts, concept lattices, AOC-posets [21],
and implication bases. Each of them provides its unique perspective, but some
are easier to handle when the closure operator is thought of as a black boz.

In this section, we go through these structures and discuss both their use-
fulness as representations of causal relations and their ease of use. We illustrate
the various notions and results that we present on the following set of causal
relations from a dataset with five variables:

— vy causes vo: {v1} = {v2}
— w3 causes vy: {v3} = {v4}
— vy and vy together cause vs: {v1,v4} = {vs}

4.1 The Causal Canonical Base

The canonical base of K. is the smallest implication base of K., that is, it cor-
responds to the smallest set of causal relations that allow the derivation of all
the causal relations in the dataset. We call it the causal canonical base of the
dataset. It is a set of multivariate causal relations of the form X — £(X) (ana-
logue to the implications X — X" in classical FCA) in which X contains all the
variables it causes except for those specified by the rule X — £(X) itself. In our
running example, the causal canonical base is
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= {v1} = {v2}
— {vs} = {va}

- {01,1}27114} — {Us}

As the smallest rule-based representation of causal relations, the causal canon-
ical base is most useful when the number of rules is a concern: when visualising
the structure or when storing it for computer use. This base is also arguably the
easiest representation to compute as existing algorithms for computing pseudo-
closed sets make use of the closure operator as a black box. For instance, the
NEXT CLOSURE [16] algorithm (Algorithm 1) can be used. This algorithm relies
on the fact that the sets of variables closed under 9 are either closed under &
or premises of the causal relations in the causal canonical base. It enumerates
the elements of this closure system and, for each one, checks whether it is closed
under £ or a premise. In order to avoid computing the same element twice, it
enumerates the sets in the lectic order: given an arbitrary ordering of variables,
A < B if and only if the smallest element in (AU B) \ (AN B) is in B.

Algorithm 2 uses the NEXT procedure (Algorithm 2) that takes a set of
variables as input and returns the set immediately succeeding it in the lectic
order. When applied to the running example, Algorithm 1 starts with V' = 0.
Assuming that v; < v < v3 < v4 < vy, the algorithm then enumerates the sets
{vs}, {vs} and {vg,v5}. As all of them are closed under &, no causal relation is
added to I. Then, the algorithm reaches {vsz}. As £({vs}) = {vs,v4}, the causal
relation {vs} — {v4} is added to the implication set I. The algorithm continues
until it reaches {v1, va, v3,v4, 5}, at which point it stops and outputs I, which
contains the three causal relations in the causal canonical base.

Algorithm 1: Causal NEXT CLOSURE for implications

Input: Dataset with variables V

Output: The causal canonical base of the dataset
1 begin
I1=0;
V=0
while V #V do

if V #¢(V) then
| T=TU{V = &)

V = NexT(V);

N o ok W

8 return [

Different algorithms can be chosen to compute the logical closure of a set
(see [3]). The time complexity of Algorithm 2 is at most linear with respect to
the complexity of the chosen algorithm, since Algorithm 2 performs at most |V
logical closures. The naive logical closure algorithm is quadratic in the number
of rules and, in this case, the complexity of Algorithm 2 would be quadratic in
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Algorithm 2: NEXT

Input: Variable set V € V, causal relation set I
Output: The next variable set closed under fD in the lectic order
1 for every variable x € V\'V in decreasing order do
W=I{veV|v<z}U{z}),
if min(W \ V) = z then
L return W;

AW N

the size of the causal canonical base. Algorithm 1 calls Algorithm 2 as many
times as there are sets closed under €5, which is 2!Vl in the worst case.

4.2 Causal Proper Premises

The base of proper premises of K. is the implication base with the smallest
premises. It is made of rules of the form X — £(X) in which X is a minimal
(called a sufficient) cause of the variables y € £(X) \ X. We call this base the
causal sufficiency base. In our running example, the causal sufficiency base is

= {v1} = {v2}
= {vs} = {va}
= {v1,v3} = {vs}
= {v1,v4} = {vs5}

Sufficient causes are particularly important because they allow us to pinpoint
what can be acted on to predict or modify the future. For instance, if the asso-
ciation of high blood pressure and sedentary lifestyle is found to be a sufficient
cause of the development of a disease, correcting either of those will certainly
help preventing the disease. The causal sufficiency base is therefore interesting
as it readily contains all the sufficient causes of all the variables. However, it
is more difficult to compute than the causal canonical base. Indeed, computing
proper premises is usually seen as computing the minimal transversals of hy-
pergraphs constructed from the formal context [42]. In our case, we only have a
closure operator and the formal context is unknown. Thus, computing the proper
premises of the causal relation requires the use of a well-known FCA algorithm
tailor-made for when the underlying formal context is unknown: ATTRIBUTE
EXPLORATION [17].

ATTRIBUTE EXPLORATION is an algorithm for computing an implication base
of a formal context that is only known to an expert. It works by repeatedly asking
the expert whether an implication holds and, if not, to provide a counterexam-
ple in the form of an object whose description invalidates the implication. The
algorithm thus produces an implication base and a formal context that contains
the same information as the underlying, unknown formal context. In our case,
we use the version proposed in [42] for proper premises and the expert is played
by the causal closure operator ¢ in Algorithm 3.
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Algorithm 3: Causal ATTRIBUTE EXPLORATION.

Input: Dataset with variables V
Output: The causal sufficiency base of the dataset

1 begin

2 I1=0;

3 | G={a}

4 R =0;

5 K =(G,V,R);

6 =2

7 for a € V do

8 E= H?a;

9 T={0}

10 while there exists E € £ do

11 T =min(TV {{a} | a € E});
12 E=E\{E}

13 while there exists Q € T with I ¥ {Q — Q"} do
14 if Q" C £(Q) then

15 | I=1TU{Q—Q"};
16 else

17 G=GU{oi};

18 R =RU{(0;,7) | z € {(Q)};
19 if a ¢ o} then

20 | €=EU{V\oi}
21 =1+ 1;
22 return [

Initially, we suppose that we have no information about the unknown formal
context, i.e., the causal relations. So we start with an empty implication set I
and the trivial formal context K = ({01}, V,0) with a single object (lines 2-5).
The algorithm then enumerates implications @ — Q" that hold in K and checks
whether Q 5 Q" by computing £(Q). If @ — Q" does not hold in the underlying
context because ) does not cause )", the counterexample is a new object o such
that o’ = £(Q). The proper premises of an attribute a in the context K are the
minimal transversals of the hypergraph

HE , ={d\{a} |ag o}

where o/ = M \ o’. Thus, the implications are enumerated as follows.

For each attribute @ (line 6), the algorithm computes H}%a (line 7) and
then incrementally computes its set of minimal transversals T using Berge’s
multiplication algorithm [6] (lines 9-11). For each transversal, and thus each
proper premise @ (line 12), the validity of @ — £(Q) is tested (line 13). If the
causal relation holds, @ — Q" is added to the set of implications I (lines 13-14).
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If it does not hold, a new object o; whose description is £(Q) is created (lines
15-19).

When applied on the running example, Algorithm 3 starts with the trivial
context K = ({o1},V,0). Suppose that the first variable to be considered is a =
v1. As the context is empty but still contains an object, the hypergraph H?vl
contains a single hyperedge, {vs, v3,v4,v5} and its set of minimal transversals is
{{v2}, {vs}, {va},{vs}}. We have that {vs}"” = {v1, va,v3,v4,v5} and I ¥ {vs} —
{v1,v9,v3,v4,v5}. Hence, the algorithm enters the second while loop (line 13)
for Q = v3. As {u3}’ € £({vs}) = {v3,v4}, a new counterexample is created and
added to the context. This counterexample o; is such that o = &({vs}). The
algorithm then continues until all five variables have been considered, at which
point it outputs the set I of all causal relations in the causal sufficiency base.

4.3 Causal Intent Lattice and Causal Intent Context

The lattice made of the sets of variables closed under £ and ordered by inclusion,
is another representation of the causal structure. Closed sets C' are the maximal
elements of their equivalence classes C= that contain all the variable sets that
have the same direct and indirect causes as C. We call them causal intents.
The causal intent lattice corresponding to our running example is depicted in
Fig. 3. The set {vs,v4} is a causal intent as it is the maximal element of the
equivalence class that contains {v3} and {vs,v4}. The fact that {v3} belongs
to the same equivalence class as {vs,v4} means that vz causes vy. As such, the
causal relations can be inferred from the causal intent lattice. However, despite
the similarities between the graphical representations of causal intent lattices
and causal diagrams [20], the causal relations do not directly correspond to
edges in the lattice. For instance, the edge between {vy, v5} and {va, vy, v5} does
not mean that {vo,vs} = {vs}. Similarly, the edge between {vy} and {v1,vs}
does not mean that {vo} = {v1}. Instead, the two closed sets {vy} and {vy, v}
together with the fact that {v;} is not closed mean that all the objects described
by vy are also described by vy while some objects are described by ve and not
by v;. Hence, it means that {v;} 5 {vs}.

The formal context induced by the closure operator ¢ (and for which the
causal intent lattice is the intent lattice) is called the causal context. The causal
context whose objects are A-irreducible is called the reduced causal context. The
causal context of our running example is depicted in Fig 4.

5 A Concrete Example

The FCA based framework that we proposed to computing the causal structure
requires the £ operator. In practice, it is hard to infer all the causal relations
from an observational dataset. Thus we have to rely on approximations provided
by the various approaches presented in Subsection 2.2.

In our framework we suppose that a variable set X causes a variable y if
and only if X and {y} are sufficiently correlated and that X % {y} is inferred
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N\
/

{v2} {vs} {va}

O XN

{v1,v2} {v2,vs} {v2, va} {va, vs} {vs, va}

ST S S

{v1,v2,v5} {v2,v4,v5} {v2,v3,v4} {vs,va,v5}

{v1,v2,v4, 05} {v2,v3,v4,v5}

/
N

{v1,v2,v3,v4,05}

Fig. 3. Causal intents lattice of the running example.

V1 V2 U3 V4 Us
X X X X
X X X X
X X X
X X X
X X

X

X X

Fig. 4. The reduced causal context of the running example.

by ERGO, the multivariate causal relation inference approach proposed in [48§].
The correlation between the variable sets X and {y}, denoted by corr(X, {y}),
is measured using Linear Canonical Correlation Analysis [24] and we consider
that two subsets X and Y are sufficiently correlated if corr(X, {y}) > 0.8.

The Iris dataset is well known in pattern recognition and machine learn-
ing. It describes 150 flowers of the 4ris genus with the values of five variables
sepal_length, sepal _width, petal length, petal _width and class. The first four
are numerical variables while the class is nominal with three possible values.

In the Iris dataset, both the causal canonical base and the causal sufficiency
base contain the same rules:

— {petal _width} — {petal length,class}
— {petal _length} — {class}
— {sepal_length} — {petal length,petal width,class}

We observe that the class is caused by petal width, petal length and
sepal _length but not by sepal _width. Additionally, petal length appears to be
a direct cause of class, itself caused by petal _width, itself caused by sepal _length.
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The corresponding reduced causal context is depicted in Fig. 5 and the causal
intent lattice in Fig. 6. The causal relations can be read from the lattice, e.g.,
{petal _length} < {class} can be inferred from the fact that {petal length}
belongs to the equivalence class of {petal length,class}. Hence, from the Iris
dataset, we infer that the classes of irises are directly “caused” by the petal
length, itself caused by both the petal width and the sepal length.

length petal width class
X X
X

‘sepal_length sepal _width petal
X

X X X

X
X
X

X X X X

Fig. 5. The reduced causal context of the Iris dataset.

0

N

{sepal _width} {class}

L

{sepal_width, class} {petal _length, class}

/" N\

{sepal _width, petal _length, class} {petal _length, petal _width, class}

/S _— \

{sepal _width, petal _length, petal _width, class} {sepal _length, petal _length, petal _width, class}

\/

{sepal _length, sepal _width,petal _length, petal _width, class}

Fig. 6. Causal intent lattice of the Iris dataset.

6 Discussion and Conclusion

In this paper, we adapted the FCA framework to compute and represent (multi-
variate) causal relations in datasets. Inference of (multivariate) causal relations
is a challenging problem, for which the current state of the art approaches only
manage to obtain satisfactory results in very specific settings. Our framework
uses causal inference as a black box, and it can integrate by design any existing
(or future) approaches to causal inference. As FCA can be extended to different
data types, causal inference can also be adapted to different data types. This not
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only includes Boolean or numerical data, but also more complex data such as
sequences. However, one must be careful when extending the causal framework
in this paper. The properties of causality discussed in Section 3 are necessary for
defining the underlying closure operator, and some of them, e.g., transitivity, do
not necessarily hold.

Also, our empirical studies used a combination of ERGO and linear canonical
correlation analysis for inferring causal relations. Using different approaches for
measuring correlation and orienting the causal direction [12,27,52] could have
produced different causal relations and thus a different lattice and a different
causal context. The algorithms’ performance for univariate causal inference was
evaluated on real and synthetic datasets [37] for which the true causal relations
are known. In the multivariate case, there are very few datasets with ground
truth, and they only contain single cause and effect examples. This is clearly not
suited to evaluate an approach conceived to representing multiple multivariate
causal relations.

Furthermore, it is not clear how to generate synthetic data according to
multivariate causal relations. Having in mind the comparison of algorithmic
approaches, we think that the next milestone in the study of causal infer-
ence is the development of new approaches for generating synthetic datasets
with multivariate causal relations. In general, structures with cycles such as
{{a} S {b},{b} = {a,c}}, should also be taken into account. However, the
existing causal inference approaches cannot deal with such relations. Being able
to generate datasets containing such structures would thus pave the way to new
(multivariate) causal inference approaches.
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