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LORIA, Université de Lorraine – CNRS – Inria, Nancy, France
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Abstract. Efficiently discovering causal relations from data and repre-
senting them in a way that facilitates their use is an important problem
in science that has received much attention. In this paper, we propose an
adaptation of the formal concept analysis formalism to the discovery and
representation of causal relations. We show that formal concept analysis
structures and algorithms are well-suited to this problem.

1 Introduction

Studying causal relations is at the heart of science [24]. Sometimes, experimental
protocols are thought of in order to manipulate a potential cause (an object, state
or process) in such a way that its effects can be inferred. This produces what
we call interventional data. Often, the objects cannot be manipulated directly
so we have to rely on purely observational data. Studying causality from data
involves two related tasks:

– discovering the causal structure (is there a causal relation between these two
sets of variables?)

– inferring causal effects (how does the cause causes the effect?)

In this paper, we are interested in the discovery of the causal structure in obser-
vational data.

Inferring causal relations from observational data is a difficult problem that
has attracted much attention. Most approaches are based on probability the-
ory [19, 22, 30, 31, 33] but algorithmic approaches based on approximations of
Kolmogorov complexity are gaining traction [6, 7, 5, 27, 29]. The set of causal re-
lations forms the causal structure. It can be presented to humans to help them
understand the situation described by the data and make decisions [10] or it
can be used to automatically select important variables in the data [38]. Most of
the works on the topic focus on univariate causal inference, in which the causal
relations are between two variables x and y. The causal structure is then usually
represented by a directed acyclic graph called the causal diagram. In practice,
effects often require the interaction of multiple causes to appear. We then talk of
multivariate causal relations. In the multivariate case, in which causal relations
can be between sets X and Y of variables, the equivalent of causal diagrams
have yet to be properly studied.
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Formal concept analysis [12] is a lattice-theoric mathematical framework that
allows for the representation of the underlying structure of data. In its original
form, it can only be applied on binary data. Extensions of the framework have
been proposed to apply formal concept analysis to more complex data such as
numerical data [11]. In this paper, we propose a new variation of the formal
concept analysis framework that uses causal inference in order to

– represent the causal structure of the variables in a dataset with formal con-
cept analysis structures

– have formal concept analysis work on different kinds of data, such as numer-
ical data, without explicit or implicit binarisation

In Section 2, we provide a brief overview of existing causal inference methods
and present the notions of formal concept analysis that are important for this
work. In Section 3, we discuss properties of causal relations and use them to build
a closure operator. In Section 4, we discuss the use of formal concept analysis
structures for the representation of causal relations and provide algorithms for
computing them. In Section 5, we present an example of our proposed approach
applied to the well-known public dataset Iris. Finally, in Section 6, we discuss
the usefulness of our approach for computing and representing causal relations.

2 Preliminaries

2.1 Notation

In this paper, as a rule of thumb, important sets and structures are denoted
by calligraphed letters (A), (sub)sets are denoted by upper case letters (A) and
individual elements are denoted by lower case letters (a). Sets of elements are
mostly written in the usual form ({a, b, c, d, e}) but can sometimes be written in
a simplified form (abcde) in figures for legibility’s sake.

We use X c−→ Y to denote the fact that X causes Y .

2.2 Causal Inference

In the univariate case, the structure of the causal relation is represented by a
directed acyclic graph (DAG), called the causal diagram or causal network, in
which the vertices are variables and the edges denote a causal relation between a
cause and its effect. Learning a causal diagram [15] from observational data has
been the object of much interest, whether it be to learn a whole diagram [34,
35] or just parts of it [13]. Many approaches first try to learn the skeleton of the
diagram (is there a causal relation between these two variables?) then to orient
the edges (which of these variables is the cause?).

Inferring the direction of a causal relation between x and y is a difficult
task and assumptions are usually made. The most common one is the absence
of confounders [23, 36, 39], i.e. variables z that cause both x and y. Traditional



Steps Towards Causal Formal Concept Analysis 3

approaches are based on additive noise models [19, 20]. They assume that, if x
causes y, the value of y is a function of the value of x plus some additive noise,
i.e.

y = f(x) + n

where n is independent of x. Under this assumption, state of the art approaches [19,
22, 30, 31, 33] make use of the idea that the marginal distribution of the cause,
P (x), and the conditional distribution of the effect given the cause, P (y|x),
should be independent.

In contrast, algorithmic approaches are based on the algorithmic Markov
condition [23] and the idea that it is algorithmically easier to compute the effect
from the cause than the other way around. The Kolmogorov complexityK(s) of a
finite binary string s is the length of the shortest program for which a universal
Turing machine outputs s and halts. In this setting, it is said that x causes
y when K(P (x)) + K(P (y|x)) << K(P (y)) + K(P (x|y)). As the Kolmogorov
complexity is not computable, approximations of it are used to infer causal
directions in Boolean [6, 7] and numerical [5, 27, 29] data.

Probabilistic [8, 21, 40] and algorithmic [37] approaches have also been pro-
posed for the multivariate case, when causal relations are between sets of vari-
ables X and Y . However, this has received much less attention than the univari-
ate case. In the experimental example presented in Section 5, we use ergo [37],
an algorithmic approach for inferring causal directions in the multivariate case
by approximating the Kolmogorov complexity using cumulative and Shannon
entropy.

2.3 Formal Concept Analysis

Definition 1. (Formal context)
A formal context is a triple (G,M,R) in which G is a set of objects, M

is a set of attributes and R ⊆ G × M is a binary relation between objects
and attributes. We say that an object g is described by an attribute m when
(g,m) ∈ R.

a b c d e

1 × ×
2 × × ×
3 × × ×
4 × ×
5 × ×

Fig. 1. Crosstable representing a formal context with five objects ({1, 2, 3, 4, 5}) and
five attributes {a, b, c, d, e}).
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Associated to a formal context (G,M,R) are two derivation operators ·′ such
that

·′ : 2G 7→ 2M

O′ = {a ∈M | ∀o ∈ O, (o, a) ∈ R}
·′ : 2M 7→ 2G

A′ = {o ∈ G | ∀a ∈ A, (o, a) ∈ R}
The derivation operators form a Galois connection and so both compositions

·′′ are closure operators on, respectively, G andM. We say that a formal context
is object-reduced when, for all objects o, there are no other objects p and q such
that {o}′ = {p}′ ∩ {q}′. We define attribute-reduced contexts analogously.

Definition 2. (Formal concept)
Let K = (G,M,R) be a formal context. A pair (G,M) ∈ 2G × 2M is called

a formal concept of K if and only if M = G′ and G = M ′. In this case, G is
called the extent and M the intent of the concept.

Formal concepts represent classes of objects or, equivalently, of attributes
that are in the data. The set of all the formal concepts of a formal context
together with the partial order induced by the inclusion relation on either the
extents or intents forms a complete lattice called the concept lattice of the formal
context.

(12345, ∅)

(14, a) (123, b) (24, c) (235, d)

(1, ab) (4, ac) (23, bd) (35, de)

(2, bcd) (3, bde)

(∅, abcde)

Fig. 2. Concept lattice of the formal context depicted in Fig. 1.

Definition 3. ( Implications) Let K = (G,M,R) be a formal context. An
implication is a pair (A,B) of attribute sets, often written in rule form A→ B.
An implication A → B holds in K when B′ ⊆ A′, i.e. all the objects described
by the attributes in A are also described by the attributes in B. Let IK denote
the set of all the implications that hold in K.
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Implications represent regularities in the descriptions of the objects. For in-
stance, in the formal context depicted in Figure 1, the implications {b, c} → {d}
and {e} → {d} hold while {a} → {b} does not. The number of implications in a
formal context (G,M,R) can grow exponentially with |G|, |M| and |R|. Hence,
even relatively small formal contexts can give rise to an intractable number of
implications [26]. Whether it be to present to a human analyst or to use in a
computation, two approaches to reduce the implication set have been explored:
with or without loss of information. When loss of information is acceptable,
one can use the many interestingness measures that have been developed over
the years [14]. When all the information has to be preserved, one has to use
implication bases.

Definition 4. ( Implications bases) Let K be a formal context. An implica-
tion set I ⊆ IK is an implication base of K of all the implications in IK can be
derived from those of I through Armstrong’s axioms:

– If Y ⊆ X, then X → Y
– If X → Y , then X ∪ Z → Y ∪ Z for all Z
– If X → Y and Y → Z, then X → Z

As implication bases allow for the derivation of all the implications that
hold, they contain the same information as the whole implication set. Different
implication bases, with different properties, have been studied [16, 32, 4]. Here,
we present the two best-known.

Definition 5. (Logical closure) Let I be an implication set. The logical
closure I(X) of an attribute set X by I is the smallest superset of X such that
(A→ B ∈ I and A ⊆ I(X)) implies B ⊆ I(X).

When I is an implication base, I(A) = A′′ for all A ⊆M. If K is the context
depicted in Figure 1, then IK({e}) = {d, e}.

Definition 6. (Logical pseudo-closure) Let I be an implication set. The
logical pseudo-closure I�(X) of an attribute set X by I is the smallest superset
of X such that (A→ B ∈ I and A ⊂ I�(X)) implies B ⊆ I�(X).

Note that the only difference between the logical closure and pseudo-closure
is the strictness of the inclusion of premises. The logical pseudo-closure is a
closure operator. If K is the context depicted in Figure 1, then I�K ({e}) = {e}
because no implications in which the premise is a proper subset of {e} holds.

Definition 7. (Pseudo-intent) Let K be a formal context. An attribute set
P is a pseudo-intent if P 6= P ′′ and P = I�K (P ).

The attribute sets closed under the logical pseudo-closure by the set of impli-
cations are either intents or pseudo-intents. For this reason, computing the set
of pseudo-intents can be done by computing all the sets that are closed under
I�K (.) [1, 2, 25, 9].
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Definition 8. (Canonical base) The canonical base (or Duquenne-Guigues
base [16]) of a formal context is

{P → P ′′ | P is a pseudo-intent}

The canonical base is the smallest implication base of a formal context in
terms of number of implications. As such, when the number of implications is a
concern, the canonical base constitutes the optimal compression of the informa-
tion contained in the implications. In the formal context depicted in Figure 1,
the canonical base is

– {e} → {d, e}
– {a, d} → {a, b, c, d, e}
– {b, c} → {b, c, d}
– {c, d} → {b, c, d}
– {b, c, d, e} → {a, b, c, d, e}

Definition 9. (Proper premise) Let K be a formal context and a an attribute.
An attribute set X is a proper premise of a if X → {a} holds, X 6= {a}, and,
for all Y ⊂ X, Y → {a} does not hold.

A proper premise is a minimal attribute set that implies another attribute.

Definition 10. (Proper premises base) The base of proper premises [32] of
a formal context is

{X → X ′′ | X is a proper premise}

The base of proper premises is the implication base with the smallest premises.
As such, it constitutes the optimal compression of the information contained in
the implications when the size of the premises is a concern. In the formal context
depicted in Figure 1, the base of proper premises is

– {e} → {d, e}
– {b, c} → {b, c, d}
– {c, d} → {b, c, d}
– {a, d} → {a, b, c, d, e}
– {c, e} → {a, b, c, d, e}
– {a, e} → {a, b, c, d, e}
– {a, b, c} → {a, b, c, d, e}

Note that minimal pseudo-intents are also necessarily proper premises.

3 Causal Closure

Works on modelling or discovering causal relations usually make a number of
assumptions on the nature of the relation: univariate or multivariate, absence of
confounders, linearity of the function in the Additive Noise Models... The present
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work is no exception. In this section, we present the different properties that we
suppose the causal relations have. These properties are intuitively acceptable
and make the causal relations behave like implications.

In the remainder of this paper, we shall use the following set of causal rela-
tions, supposedly existing in a dataset with five variables, as a running example:

– v1 causes v2: {v1}
c−→ {v2}

– v3 causes v4: {v3}
c−→ {v4}

– v1 and v4 together cause v5: {v1, v4}
c−→ {v5}

Let X, Y and Z be sets of variables. Then, the following five properties hold:

X
c−→ X (1)

A set of variables causes itself.

X
c−→ Y ∧ Y

c−→ Z ⇒ X
c−→ Z (2)

Causality is transitive. Indeed, if X directly causes Y and Y directly causes
Z, one can say that X indirectly causes Z.

X
c−→ Y ⇒ X

c−→ Z, ∀Z ⊆ Y (3)

If X causes a set of variables Y , it causes its subsets. Most importantly, this
implies that X causes {y} for all y in Y .

X
c−→ Y ⇒ X ∪ Z c−→ Y (4)

All supersets of X cause its effects. Note that this is not incompatible with
possible notions of negation as c−→ only denotes the presence of a causal relation
and not the causal effect itself, which can be different between X

c−→ Y and
X ∪ Y c−→ Y .

X
c−→ Y ∧ X

c−→ Z ⇒ X
c−→ Y ∪ Z (5)

Causing two sets of variables means causing them together.

Properties 1 and 3 imply that if Y ⊆ X, then X c−→ Y . Properties 1, 3 and
4 imply that if X c−→ Y , then X ∪ Z c−→ Y ∪ Z. As such, and since property 2 is
the transitivity, these five properties imply Armstrong’s axioms (see Definition
4). Note that the transitivity of causality, while intuitive, is disputed [28] and
counterexamples have been presented. Halpern [17] identified conditions under
which causality is transitive.

Proposition 1. Let X be a variable set. The operator

ξ(X) =
⋃

X
c−→Y

Y

is a closure operator.
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Proof. Because of property 1, we have that X ⊆ ξ(X) so ξ(.) is extensive.
Because of properties 1, 2 and 3, we have that X ⊆ Y ⇒ ξ(X) ⊆ ξ(Y ) so ξ(.) is
monotone. Because of properties 1 and 2, we have that ξ(ξ(X)) = ξ(X) so ξ is
idempotent. As such, ξ is a closure operator.

We call ξ(X) the causal closure of X. The causal closure of X is X plus all its
direct and indirect effects. When all the causal relations are known, computing
the causal closure can be done by starting from X and adding the effects until
a fixpoint is reached. However, when faced with a dataset from which the causal
relations have to be inferred at great cost, one cannot test whether X c−→ Y for
all possible Y . Fortunately, property 3 ensures that the computation of ξ(X) can
be simplified.

Proposition 2. Let X be a variable set and y a variable. Then,

ξ(X) = {y | X c−→ {y}}

Proof. This follows from the fact that X c−→ Y ⇒ X
c−→ Z, ∀Z ⊆ Y .

Hence, computing ξ(X) directly from a dataset requires |V \X| causal tests.

4 Reconstructing the FCA Trinity with Causality

As we have shown in the previous section, causal relations give rise to a closure
operator ξ. Let V be the set of variables in a dataset. Now, let us suppose that Kc

is a formal concept which set of attributes is V and in which the implication X →
Y holds if and only if X c−→ Y . Clearly, as causal relations respect Armstrong’s
axioms, IKc

(X) = ξ(X) for all X and any implication base of Kc allows for the
derivation of all the causal relations. Thus, by using the closure operator ξ as if
it were the closure operator induced by the (unknown) formal context Kc, it is
possible to apply existing formal concept analysis algorithms to the computation
of various representations of the causal relations in a dataset.

Formal concept analysis offers many structures to represent the content of
the closure operator and, thus, of the causal relations: the formal context, the
concept lattice, the AOC-poset, the implication bases... All of them provide their
unique perspective but some are easier to handle or compute given only the
closure operator as a black box. In this section, we go through these structures
and discuss both their usefulness as representations of causal relations and their
ease of use.

4.1 The Causal Canonical Base

The canonical base of Kc is the cardinality-wise smallest implication base of Kc.
As such, it corresponds to the cardinality-wise smallest set of causal relations
that allow for the derivation of all the causal relations in the dataset. We call it
the causal canonical base of the dataset. It is a set of multivariate causal relations
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of the form X → ξ(X) (analog to the implications X → X ′′ in classical FCA)
in which X contains all the variables it causes except for those specified by the
rule X → ξ(X) itself. In our running example, the causal canonical base is

– {v1} → {v2}
– {v3} → {v4}
– {v1, v2, v4} → {v5}

As the smallest rule-based representation of causal relations, the causal canon-
ical base is most useful when the number of rules is a concern: when visualising
the structure or when storing it for computer use. This base is also arguably the
easiest representation to compute as existing algorithms for computing pseudo-
closed sets make use of the closure operator as a black box. For instance, the
next closure (Algorithm 1) can be used.

Algorithm 1: Causal next closure for implications
Input: Dataset with variables V
Output: The causal canonical base of the dataset

1 begin
2 I = ∅;
3 V = ∅;
4 while V 6= V do
5 if V 6= ξ(V ) then
6 I = I ∪ {V c−→ ξ(V )}
7 V = Next(V)

8 return I

4.2 Causal Proper Premises

The base of proper premises of Kc is the implication base with the smallest
premises. As such, it is made of rules of the form X → ξ(X) in which X is a
minimal, or sufficient, cause of the variables y ∈ ξ(X) \X. We call this base the
causal sufficiency base. In our running example, the causal sufficiency base is

– {v1} → {v2}
– {v3} → {v4}
– {v1, v3} → {v5}
– {v1, v4} → {v5}

Sufficient causes are particularly important because they allow us to pinpoint
what can be acted on to predict or modify the future. For instance, if the asso-
ciation of high blood pressure and sedentary lifestyle is found to be a sufficient
cause of the development of a disease, we know that correcting either of those
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will certainly help prevent the disease. The causal sufficiency base is therefore
interesting as it readily contains all the sufficient causes of all the variables.
However, it is more difficult to compute than the causal canonical base. Indeed,
computing proper premises is usually seen as computing the minimal transver-
sals of hypergraphs constructed from the formal context [32]. In our case, we
only have a closure operator and the formal context is unknown. Thus, comput-
ing the proper premises of the causal relation requires the use of a well-known
FCA algorithm tailor-made for when the underlying formal context is unknown:
attribute exploration [12].

Attribute exploration is an algorithm for computing an implication base
of a formal context that is only known to an expert. It works by repeatedly asking
the expert whether an implication holds and, if not, to provide a counterexam-
ple in the form of an object which description invalidates the implication. The
algorithm thus produces an implication base and a formal context that contains
the same information as the unknown one. In our case, we use the version pro-
posed in [32] for proper premises and the expert is played by the causal closure
operator ξ as illustrated in Algorithm 2.

Algorithm 2: Causal attribute exploration.
Input: Dataset with variables V
Output: The causal sufficiency base of the dataset

1 begin
2 I = ∅;
3 G = ∅;
4 R = ∅;
5 K = (G,V,R);
6 for a ∈ V do
7 E = H 6∈

K,a;
8 T = {∅};
9 while there exists E ∈ E do

10 T = min(T ∨ {{a} | a ∈ E);
11 E = E \ {E};
12 while there exists Q ∈ T with L 2 {Q→ Q′′} do
13 if Q′′ ⊆ ξ(Q) then
14 I = I ∪ {Q→ Q′′};
15 else
16 G = G ∪ {o};
17 R = R∪ {(o, x) | x ∈ ξ(Q)};
18 if a 6∈ o′ then
19 E = E ∪ {M \ o′};

20 return I
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We suppose that we initially have no information about the unknown formal
context, i.e. the causal relations, so we start with an empty implication set I
and an empty formal context K = (∅,V, ∅) (lines 2–5). The algorithm then
enumerates implications Q → Q′′ that hold in K and checks whether Q c−→ Q′′

through computing ξ(Q). If Q → Q′′ does not hold in the underlying context
because Q does not cause Q′′, the counterexample is a new object o such that
o′ = Q′′ \ {q} with q ∈ Q′′ \ I(Q) such that Q does not cause {q} in the
dataset. The proper premises of an attribute a in the context K are the minimal
transversals of the hypergraph

H 6∈K,a = {o′ \ {a} | a 6∈ o′}.

where o′ =M\ o′. Thus, the implications are enumerated as follows. For each
attribute a (line 6), the algorithm computes H 6∈K,a (line 7) and then incremen-
tally computes its set of minimal transversals T using Berge’s multiplication
algorithm [3] (lines 9–11). For each transversal, and thus each proper premise
Q (line 12), the validity of Q → ξ(Q) is tested (line 13). If the causal relation
holds, Q→ Q′′ is added to the set of implications I (lines 13–14). If it does not
hold, a new object o is created, which description is ξ(Q) (lines 15–19).

4.3 Causal Intents Lattice and Context

The lattice formed by the sets of variables closed under ξ ordered by the in-
clusion relation is another representation of the causal structure. Closed sets C
are the maximal elements of their equivalence classes C≡ that contain all the
variable sets that have the same direct and indirect causes as C. We call them
causal intents. The causal intents lattice corresponding to our running example
is depicted in Fig. 3. The set {v3, v4} is a causal intent as it is the maximal ele-
ment of the equivalence class that contains {v3} and {v3, v4}. The fact that {v3}
belongs to the same equivalence class as {v3, v4} means that v3 causes v4. As
such, the causal relations can be read from the causal intents lattice. However,
despite the similarities between the graphical representations of causal intents
lattices and causal diagrams [15], the causal relations do not correspond to edges
in the lattice.

The formal contexts underlying the closure operator ξ and of which the causal
intents lattice is the intents lattice are called the the causal contexts. The causal
context which objects correspond exactly to the ∧-irreducible elements of the
causal intents lattice is called the reduced causal context. The causal context of
our running example is depicted in Fig 4.

5 Experimental Example

Computing the causal structure representations discussed in this paper requires
the ξ operator. In practice, it is impossible to correctly infer all the causal re-
lations from an observational dataset so we have to rely on approximations
provided by the various approaches presented in Section 2.2.
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∅

{v2} {v4}{v5}

{v1, v2} {v2, v4}{v2, v5} {v3, v4}{v4, v5}

{v2, v4, v5} {v2, v3, v4} {v3, v4, v5}{v1, v2, v5}

{v2, v3, v4, v5}{v1, v2, v4, v5}

{v1, v2, v3, v4, v5}

Fig. 3. Causal intents lattice of the running example.

v1 v2 v3 v4 v5
× × × ×
× × × ×

× × ×
× × ×
× × ×

× ×

Fig. 4. The reduced causal context of the running example.

In our experiments, we considered that a variable set X causes a variable
y if and only if X and {y} are sufficiently correlated and X c−→ {y} is inferred
by ergo, the multivariate causal relation inference approach proposed in [37].
The correlation between the variable sets X and {y}, denoted by corr(X, {y}),
is measured using Linear Canonical Correlation Analysis [18] and both sets are
deemed sufficiently correlated when corr(X, {y}) > 0.8.

The Iris dataset is one of the best-known datasets for pattern recognition
and machine learning. It describes 150 flowers of the iris genus by the values
of five variables sepal_length, sepal_width, petal_length, petal_width and
class. The first four are numerical variables while the class is nominal with
three possible values.

In the Iris dataset, both the causal canonical base and the causal sufficiency
base contain the same rules:

– {petal_width} → {petal_length, class}
– {petal_length} → {class}



Steps Towards Causal Formal Concept Analysis 13

– {sepal_length} → {petal_length, petal_width, class}
We observe that class is caused by petal_width, petal_length and sepal_length

but not by sepal_width. Additionally, petal_length appears to be a direct cause
of class, itself caused by petal_width, itself caused by sepal_length.

The corresponding reduced causal context is depicted in Fig. 5 and the causal
intents lattice in Fig. 6. The causal relations can be read from the lattice, e.g.
{petal_length} c−→ {class} can be inferred from the fact that {petal_length}
belongs to the same equivalence class as {petal_length, class}.

sepal_length sepal_width petal_length petal_width class
× × × ×

× × × ×
× × ×
× ×
×

Fig. 5. The reduced causal context of the Iris dataset.

∅

{sepal_width} {class}

{sepal_width, class} {petal_length, class}

{sepal_width, petal_length, class} {petal_length, petal_width, class}

{sepal_width, petal_length, petal_width, class} {sepal_length, petal_length, petal_width, class}

{sepal_length, sepal_width, petal_length, petal_width, class}

Fig. 6. Causal intents lattice of the Iris dataset.

6 Discussion and Conclusion

In this paper, we proposed a method to adapt the formal concept analysis frame-
work to the computation and representation of causal relations between the
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variables in datasets. Multivariate causal inference is a very difficult problem for
which the current state of the art approaches only manage to obtain satisfactory
results in specific settings. As our proposed method uses causal inference as a
black box, any existing or future approaches for this problem can be plugged in.
This allows it to work on any type of data for which causal inference is or will
be studied, such as Boolean or numerical data. This, once again, highlights the
flexibility of formal concept analysis.

A number of choices have been made in this work. The properties of causal-
ity discussed in Section 3 are necessary for us to obtain a closure operator but
some of them, such as the transitivity, do not necessarily hold. Without a closure
operator, the approach is not usable. For the experimental example, we chose to
use a combination of ergo and linear canonical correlation analysis for infer-
ring causal relations. Using different approaches for measuring correlation and
orienting the causal direction could have produced different causal relations and
thus a different lattice and a different causal context.

The performances of approaches for univariate causal inference are evalu-
ated on real or synthetic datasets [30] for which the true causal relations are
known. In the multivariate case, there are very few datasets with ground truths
and they only contain a single cause and a single effect. This is clearly not
enough evaluate an approach made for representing multiple multivariate causal
relations. Furthermore, it is not clear how to generate synthetic data according
to multivariate causal relations. In the general case, loop-like structures such
as {{a} c−→ {b}, {b} c−→ {a, c}} are admissible and existing causal inference ap-
proaches are not made with such relations in mind. Simplifying the causal struc-
ture is also risking removing the need for multivariate causal relations.
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