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Abstract—In this paper, we derive the analytical expression of
the Bayesian Cramer-Rao Bound (BCRB) for the joint estimation
of random time delay and channel gains. The BCRB is evaluated
for the Rayleigh fading channel for both Data-Aided (DA) and
Non-Data-Aided (NDA) processing modes. Simulation results
make a comparison, over various channels, between several
synchronization modes. In particular, we show that a better
performance can be achieved by using DA and off-line estimation
techniques, where all the received signal samples are used at any
time of the estimation process.

Index Terms—Time delay recovery, Channel Estimation,
Bayesian Cramer-Rao Bound

I. INTRODUCTION

Time synchronization is the first function performed by
the demodulator. It is critical to the reception quality of the
transmitted symbols. Indeed, it allows the receiver to minimize
the InterSymbol Interference (ISI) by sampling the received
signal at near-optimal sampling instants, which considerably
impacts the overall system performance.

In a wireless multipath context, a conventional equalizer can
restore, up to some theoretical limits, the offset between the
samples when this offset is constant; however, this operation
becomes very difficult at low Signal to Noise Ratio (SNR).
Furthermore, when the time delay changes over consecutive
samples, time synchronization becomes the only alternative to
avoid inter-symbol interference. NDA timing recovery tech-
niques seems to be interesting especially for low complexity
wireless communication systems, in particular those deployed
in IoT networks. This is why, it is necessary to further
develop unsupervised time synchronization algorithms in order
to decrease the network overhead, while trying to minimize the
implementation complexity.

Synchronization error estimators are generally evaluated in
terms of bias and Mean Square Error (MSE). However, it
can be difficult to analytically derive these two parameters
expressions. For instance, the authors in [1] propose semi-
analytic expressions of the bias and variance of the estimators,
as a function of time delay, for a Mueller&Müller detector in
a Code-Aided (CA) context, but the performance evaluation
is only limited to the case of low SNR BPSK signals, and it
is based on the assumption that the ISI can be approximated
by a white Gaussian noise [2]. This illustrates that even for
many classical cases, the performances of the estimators must
be compared to some theoretical estimation error bounds.

Several theoretical bounds have been proposed in the litera-
ture, such as the Bhattacharyya bound [3], Chapman-Robbins
bound [4], Barankin bound [5], [6], [7], [8], Abel bound [9]
and the Cramer-Rao Bound (CRB) [10]. The CRB is more
often used because it is easier to derive. Analytical expressions
of the CRB have been obtained in [11] for a CA frequency
and phase recovery for turbo-coded QAM-square signals. For
the timing recovery problem, the CRB was evaluated for a
DA scenario [12], NDA [13] and CA [14], [15] in the case of
a constant delay for Gaussian fading channels; however most
publications, such as [12], [13], [14], [15] do not consider the
interesting but difficult case of a wireless link for which the
amplitude is time-varying.

The standard CRB is poorly suited for the evaluation of
random parameters or the joint estimation of random and
deterministic parameters. The Modified CRB (MCRB) pre-
sented in [16], [17] is easier to obtain. Nevertheless, it fails
significantly to approach the true CRB, especially at low SNR
values. In this case, other theoretical bounds can be used,
namely the Bayesian CRB and the Hybrid CRB (HCRB).
Analytical expressions of the theoretical bounds were obtained
for the phase and frequency estimation error. The BCRB was
evaluated in [18] for a random time delay estimation in the
case of a Gaussian channel. In [19], [20], [21], the authors
evaluated the HCRB and the BCRB for the dynamical phase
offset estimation for QAM signals for the CA, DA and NDA
modes and theoretically showed the improvement provided
by the use of a CA technique [22]. When the channel gain
cannot be assumed constant over the received samples block,
generally time synchronization is directly integrated into the
channel estimation process. An evaluation of the HCRB has
been presented in [23] for the joint channel gains and a
constant time delay estimation which can be useful for VANET
applications [24], [25]. However, explicit consideration of time
synchronization is particularly important when the time offset
cannot be assumed constant over the observation window, as
in the case of a burst transmission over a fading channel [16].
In this paper, the BCRB is evaluated for the joint estimation of
a random time delay and Rayleigh distributed fading channel
gains. It is also used to prove the enhancement brought by the
use of NDA timing recovery technique in an off-line context.

This paper is organized as follows: In section II, the system
model is presented. In section III, the BCRB for the joint



channel gains and time delay estimation is derived. Simulation
results are provided in section IV. The last section concludes
our work.

II. SYSTEM MODEL

Let us consider the following transmitted signal s(t):

s(t) =
∑
i

aih(t− iT ), (1)

where ai are linearly modulated transmitted symbols which
are assumed to be statistically independent and equally likely,
with normalized energy, h(t) is the impulse response of the
root Nyquist transmission filter and T is the symbol period.

At the receiver side, let us consider rk the kth matched
filtered signal sample during the observation period T0 which
is given:

rk = αksk(τk) + nk, (2)

where αk is the Rayleigh distributed channel gain, τk is the
time delay, sk(τk) = s(kTs − τk), Ts is the sampling period
and nk the kth noise sample. The channel gain is assumed
to be wide-sense stationary (WSS), a narrow-band zero-mean
complex Gaussian process of variance σ2

α with the so-called
Jakes’ power spectrum of maximum Doppler frequency fd
[26]. Considering that fd is very low with respect to the
symbol rate 1/T , thus the channel gains are supposed to be
constant during a symbol period. We also assume that the delay
τk follows a Wiener evolution model [27], [28] according to:

τk = τk−1 + wk, (3)

where wk is a stationary white Gaussian noise with zero mean
and variance σ2

w. Let us consider r = [r1, . . . , rN ]T , a =
[a1, . . . , aN ]T , τ = [τ1, . . . , τN ]T and α = [α1, . . . , αN ]T .

The channel gain follows a Rayleigh distribution, therefore,
α is a complex Gaussian random variable of zero mean and
covariance matrix Rα. The a priori information on α is thus
given by:

P (α) =
1

|πRα|
exp

(
−αHRα−1α

)
. (4)

The element of the nth row mth column of the covariance
matrix is given by [29]:

[Rα]n,m = σ2
αJ0 (2πfdT (n−m)) , (5)

where J0(.) is the Bessel function of the first kind.

III. BAYESIAN CRAMER-RAO BOUND ON JOINT CHANNEL
GAINS AND TIME DELAY ESTIMATION

Let us consider the random vector µ = [α, τ ]. Let P (µ)
be the a priori probability of the vector µ. The BCRB on
the estimation of the random vector µ is therefore obtained
by inverting the following Bayesian Information Matrix (BIM)
[30]:

Bµ = Eµ[F (µ)] + Eµ[−∆µ
µ log (P (µ))], (6)

where Eµ and ∆µ
µ are respectively the expectation and the

Laplacian operator with respect to the vector µ; F (µ) is

similar to the conventional Fisher Information Matrix (FIM)
[10]:

F (µ) = Er|µ[−∆µ
µ log (P (r|µ))]. (7)

The first term in (6) is the expectation with respect to µ of
the information provided by the observation vector r. The
second term depends on the a priori information on µ. The
diagonal elements of the inverse of Bµ represent the BCRB
expression for the estimation of µ. Thus, the BCRB consists
of four blocks of sub-matrices:

BCRB(µ) =

(
BCRB11(α) BCRB12(α, τ )
BCRB21(α, τ ) BCRB22(τ )

)
(8)

The first term in (6) is the expectation with respect to µ of
the FIM F (µ) given by the following sub-matrices:

F (µ) =

(
F 11(α) F 12(α, τ )

F 21(α, τ ) F 22(τ )

)
, (9)

where:

F 11(α) = Er|α,τ [−4αα log (P (r|α, τ))] , (10)

F 12(α, τ ) = Er|α,τ [−4τα log (P (r|α, τ ))] , (11)

F 21(α, τ ) = Er|α,τ [−4ατ log (P (r|α, τ ))] , (12)

F22(τ ) = Er|α,τ [−4ττ log (P (r|α, τ ))] . (13)

Given that α and τ are two independent random variables,
thus F 12(α, τ ) = F 21(α, τ ) = 0N,N and therefore:

Eµ[F (µ)] =

(
Eα
[
F 11(α)

]
0N,N

0N,N Eτ
[
F 22(τ )

]) . (14)

In the following, we distinguish two types of BCRB, namely,
the BCRB for the on-line estimation mode where only the
current and previous observations are used for the estimation
of the current time delay and the BCRB for the off-line
estimation mode where the entire observation block is used
for the estimation of the current time delay. The off-line
BCRB expression is given at each sample k of a block of
N observations by the kth diagonal element of the inverse of
the BIM (6). However, the on-line BCRB is given by the last
diagonal element N of the inverse of the BIM for a block of
N observations.

A. Off-line Bayesian Cramer-Rao Bound

Let us start with the derivation of the second term in (6).
Given that α and τ are two independent parameters, we
obtain:

Eµ
[
−4µµ log (P (µ))

]
=

(
Eα [−4αα log (P (α))] 0N,N

0N,N [−4ττ log (P (τ ))]

)
(15)

From (4), we have:

Eα [−4αα log (P (α))] = Rα
−1. (16)



Based on (3), the second term of the diagonal sub-matrices
in (15) is given by:

Eτ [4ττ log (P (τ ))]

=
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,(17)

where G = Eτ1 [
∂2 log (P (τ1))

∂τ21
]. In practice, the receiver has

no a priori information on τ1, thus G = 0.
Let us move on now to the derivation of the first term of

(6) given by the expectation with respect to µ of (9).
According to (13), the expression of F22(τ ) depends on

P (r|τ ,α).
In order to derive the expression of P (r|τ ,α), we need to

evaluate the expression of P (r|u,α) for an estimated time
delay vector u which is equal to the real time delay τ . For a
given u, α and a, we have that:

P (r|u, a,α) =

N∏
i=1

P (ri|ui, a, αi). (18)

The expression of (18) can be easily obtained based on the
likelihood probability derivation that we presented in [23] and
in [18], we obtain:

P (r|u, a,α) =

(
C

2πσ2
n

)N
exp

(
N∑
i=1

(
<{α∗i a∗i xi(ui)}

σ2
n

− |αiai|
2

2σ2
n

))
,

(19)
where C is a constant term with respect to u and,

xi(ui) = yi(ui) + vi(ui), (20)

yi(ui) =
∑
l

αlalg ((i− l)T − (τi − ui)) , (21)

vi(ui) =

∫
T0

h(t− iT − ui)n(t)dt, (22)

g(t) = h(t)⊗ h∗(−t). (23)

By choosing h(.) as a square root raised cosine filter then g(.)
given by (23) is a Nyquist filter.

Based on (19), we can deduce that F 22(τ ) is a diagonal
matrix. Thus, the first term of (6) can be written as:

Eτ [F (τ )] = D, (24)

where D is a diagonal matrix and the diagonal kth element
is given by:

[D]k,k = E

[
−∂

2 log (P (rk|τk, αk))

∂τ2k

]
. (25)

Since the expression of [D]k,k is independent of the index k,
the matrix D can rewritten as. The diagonal elements of the
matrix D are then equal and therefore it can be written as:

D = JDIN (26)

where IN is the identity matrix N ×N .
On the other hand, according to the expression of P (r|τ ,α)

given by (19):

F (α)11 = diag(J1, · · · , JN ), (27)

where diag(v) refers to a diagonal matrix where the diagonal
elements are given by the vector v and Jk is given by:

Jk =
|ak|2

σ2
n

. (28)

As a result, we get:

Eα
[
F (α)11

]
= diag(J1, · · · , JN ). (29)

Consequently, based on (6), we obtain:

Bµ =

(
Eα
(
F 11(α)

)
+Rα

−1 0N,N
0N,N GN

)
, (30)

with:

GN = β



A+ 1 1 0 · · · 0
1 A 1 0 · · · 0

0
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . . 0
...

. . . 0 1 A 1
0 · · · 0 0 1 A+ 1


, (31)

where A = −σ2
wJD − 2 and β = − 1

σ2
w

.

The matrix Bµ is a block diagonal matrix. Using the block
matrices inversion formula [10], its inverse is given by:

Bµ
−1 =

((
Eα
[
F 11(α)

]
+Rα

−1)−1 0N,N
0N,N GN

−1

)
. (32)

The expression of [GN
−1]k,k, which leads directly to the

expression of the off-line BCRB given by [18]:

[GN
−1]k,k =

1

|GN |

[
ρ21(β + ν1)2νN−31 + ρ22(β + ν2)2νN−32

− β2

A− 2
(νk−21 νN−k−12 + νN−k−11 νk−22 )

]
, (33)

where |GN | is the determinant of GN given by:

|GN | = (A+ 2)β
(
ρ1ν

N−1
1 + ρ2ν

N−1
2

)
, (34)

and for m = 1, 2:

νm =
1

σ2
w

+
JD
2

(
1 + (−1)m ×

√
1 +

4

JDσ2
w

)
, (35)

ρm =

√
1 +

4

σ2
wJD

+ (−1)m × (1 +
2

σ2
wJD

)

2

√
1 +

4

σ2
wJD

. (36)

We hereafter present the derivation of the JD expression in
the DA context, where the transmitted symbols are known by
the receiver.



1) JD derivation in the DA context: In the DA context and
based on (19), we obtain:

∂2 log (P (rk|τk, αk))

∂τ2k
= −|αk|

2|ak|2

σ2
n

g̈(0) ≈ − ρ

N
g̈(0),

(37)

with ρ =

∑N
k=1 |αk|2|ak|2

σ2
n

is the SNR.

Thus:

E

[
−∂

2 log (P (rk|τk, αk))

∂τ2k

]
=

ρ̄

N
g̈(0), (38)

where ρ̄ is the mean SNR per symbol.
2) JD derivation in the NDA context: In the NDA context,

the expression of JD is given by:

JD = E

[
−∂

2 log (P (rk|τk))

∂τ2k

]
. (39)

In this paragraph, we provide the expression of the JD
components in the NDA mode for square-QAM modulated
signals. The authors in [13] have computed the likelihood
function expression for a block of N received square-QAM
samples through an AWGN channel. Similarly, we can derive
the expressions of the second derivative of the likelihood prob-
ability in (39) averaged only with respect to the observation
noise for BPSK and Square-QAM modulated signals L0 and
Lp respectively where:

L0=−4ρ

[(
e−ρβ(ρ)√

2π

)(
ρ

N∑
n=1

ġ2(nT )− g̈(0)

2

)
− g̈(0)

2

]
,(40)

β(ρ) =

∫ +∞

−∞

e−
x2

2

cosh
(√

2ρx
)dx, (41)

and

Lp=
2
(

2ρ2
∑N
n=1 ġ

2(nT )− 2ρg̈(0)
)

√
Mπ

∫ +∞

−∞

gρ(x)2

Gρ(x)
e−

x2

2 dx(42)

where:

gρ(x)=

2p−1∑
k=1

exp
(
−ρ(2k − 1)2d2p

)√
(2)(2k − 1)dp

×sinh
(√

(2ρ)(2k − 1)dpx
)
, (43)

and:

Gρ(x)=

2p−1∑
k=1

exp
(
−ρ(2k − 1)2d2p

)
cosh

(√
(2ρ)(2k − 1)dpx

)
,

(44)

M = 22p is the constellation size and dp is the inter-symbol
distance which has the following expression for symbols with
normalized energy:

dp =
2p−1√

2p
∑2p−1

k=1 (2k − 1)2
. (45)

For Rayleigh distributed channel gains, the SNR ρ follows an
exponential distribution. Its probability distribution function ρ
is given by:

P (ρ) =
1

ρ̄
exp

(
−ρ
ρ̄

)
, for ρ ≥ 0. (46)

In order to obtain the final expression of JD, we need to
average the analytical expressions of Lp for square-QAM
modulated samples over the Probability Dstribution Function
(PDF) of ρ for ρ ≥ 0. Since it is hard to obtain analytically
a closed form expression of the integrals given by (42) and
average the obtained result with respect the SNR, a numerical
integration can be used. We note that the integral in (42)
decreases rapidly with respect to x. Thus, the integrand
function can be approximated by a finite Riemann integration
over an interval [−C,+C] instead of ] − ∞,+∞[ with an
integration step δ. The same technique can be used to average
the obtained result with respect to the SNR on an interval
[0, C] instead of [0,+∞[.

B. On-line Bayesian Cramer-Rao Bound

In the on-line mode. Only past and current observations are
available to the receiver for the estimation of the time delay
τk. The on-line BCRB expression can be given by the value
of the sequential bound [31] at the index k, Ck. According to
[18], Ck is equal to the inverse of the Bayesian information
matrix at the index (k, k). In other words, the value of the on-
line bound at the sample k is the same as that of the off-line
bound at the end of a samples block of size k. So, we get:

Ck = [Bµ
−1]k,k. (47)

it is worth mentioning that, at the last sample of the observa-
tion block, the same amount of information is provided with
both the on-line and off-line techniques.

From (8) and (30), we note that BCRB11(α) has the
same expression as the one obtained for a constant time
delay in [23]. For a time varying delay, only the expression
of BCRB22(τ ), the BCRB with respect to τ , changes.
Therefore, in the following section, simulation results only
concern the case of a random time delay.

IV. SIMULATION RESULTS

In this paragraph, some simulation results are provided to
evaluate the proposed expression of the BCRB for BPSK and
16QAM constellations. The evaluation of this bound gives an
indication about the performance limit that can be achieved by
a time synchronizer in the case of a Rayleigh fading channel.
The global transmission filter is a raised cosine filter with
roll-off factor equal to 0.3. The time delay varies according
to the Wiener model with standard deviation σw = 10−3.
Figure 1 depicts the on-line and the off-line bounds for the
joint estimation of the time delay and the channel gains at a
SNR = 5 dB in the case a Gaussian channel and a Rayleigh
channel with a Doppler shift characterized by fdT = 0.001.
The observation block length N is equal to 90.

It can be observed that the Bayesian bounds in the case
of the Rayleigh fading channel have the same shape as those
obtained for a Gaussian channel but translated upwards. As
expected, an improvement in the estimation is seen with the
off-line technique. This is due to the fact that an off-line
algorithm explores all the observed samples for the estimation
of the time delay at time instant k, whereas for the on-line



process, the estimator only uses the observed value at time
instant k − 1 to update the estimated value at time instant
k. We also note that the BCRB in the DA estimation mode
is lower than that obtained for the NDA estimation mode.
This enhancement is due to the use of the exact value of the
transmitted symbols in the DA estimation process instead of
an estimated value as in the NDA case. It is remarkable to note
that an off-line NDA technique can outperform a DA on-line
technique especially in the case of a Rayleigh fading channel.
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Fig. 1. BCRBτ versus Observation block sample, BPSK modulation,
N = 90, fdT = 0.001, SNR=5 dB.

In Figure 2, we evaluate the BCRB on τ for various
observation block lengths in the case of a Rayleigh channel
characterized by fdT = 0.001 which means that the channel
varies relatively slowly within the observation block. In the
same figure, we also provide the mean square error (MSE)
evaluation of two timing error detectors (TED): the Gardner
[32] (GD) as a NDA scheme and the Zero Crossing Detector
(ZCD) [32] as a DA scheme. The TEDs are evaluated for
a Wireless Personal Area Network (WPAN) frame according
to the standard IEEE 802.15.4 [33]. For that purpose, we
consider a Physical Protocol Data Unit (PPDU) composed
of a 40-samples BPSK modulated preamble, followed by a
BPSK modulated PHY header and a Physical Service Data
Unit (PSDU). The preambule sequence is known by the
receiver, whereas, the PHY header and the PSDU are unknown
sequences. The block of symbols is passed through a square
root raised cosine transmission filter with a roll-off factor equal
to 0.3. Then the signal is transmitted through a Rayleigh
channel which introduces a random random time delay. At
the receiver, the signal is matched filtered. For the preamble
sequence, the timing recovery algorithm operates in the DA
mode. For the next received data sequence, the TED switches
to the NDA mode. The MSE is evaluated for both on-line
and an off-line context. It is clearly shown that the MSE
of the TED decreases when increasing the observation block
size. It is worth mentioning that a supplemental performance
enhancement can be achieved by an off-line technique when
increasing the observation block length N , such that an even
shorter DA preamble could be imagined so as to save both

energy and bandwidth.
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Fig. 2. MSEτ and data-aided BCRBτ versus Observation block sample,
BPSK modulation, fdT = 0.001, SNR=5 dB.

These results are confirmed in Figure 3 which shows the
value of the on-line and the off-line BCRB on τ in the center
of the observation block for different SNR values. This figure
highlights the degradation due to the Rayleigh channel when
compared to the AWGN channel. One also notes a degradation
of the performances by increasing the product fdT in the
case of fast fading channels. It is also worth noting that
the on-line and the off-line modes lead to similar theoretical
performance at low SNRs and high SNRs, over the Rayleigh
fading channel. Indeed, at low SNR, the use of an off-line
algorithm does not improve the system performance compared
to an on-line algorithm due to the severe noise degradation.
At high SNR, the a priori information used by the off-line
technique no longer impacts the estimation process since the
received signal is reliable enough. However at medium SNRs,
where real systems are constrained to operate, there is a clear
improvement allowed by the off-line approach
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Fig. 3. NDA BCRBτ in terms of SNR, BPSK modulation, N = 40.

In Figure 4, we evaluate the on-line and the off-line BCRB
on τ in the center of the observation block when N = 100 for
various SNR values for both 16QAM and BPSK constellations
in the case of a Rayleigh fading channel. As expected, a lower
BCRB is observed with the off-line technique and a larger
block size (with respect to the results of the previous figure)



and a higher BCRB is obtained with larger order constellations
in both DA and NDA contexts.
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Fig. 4. BCRBτ in terms of SNR, fdT = 0.001, N = 100.

V. CONCLUSION

In this paper, we evaluated the analytical expression of the
BCRB for the joint time-varying delay and channel gain in the
case of Rayleigh fading channels for DA and NDA modes. The
simulation results show that we can achieve better estimation
of the channel gains using off-line estimation techniques. In
particular, we showed that off-line estimation techniques in
the NDA mode theoretically outperform on-line estimation
techniques operating in the DA mode over various channel
conditions. Therefore, unsupervised off-line estimators are of a
considerable interest, especially for narrowband wireless com-
munication systems with high power efficiency requirements.
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