Effect of sedimentation ponds on the mitigation of eutrophication lake: evidence from lake Aydat (France)

Auguste Caen¹

Jean-Denis Mathias¹

Delphine Latour²

¹IRSTEA, LISC ²UBP, LMGE

7-June 2017

The eutrophication :

An excess of nutrients in lake body water. The common nutrients are :

- Phosphorus
- Nitrogen

In this study we focus on **Phosphorus** (it is the limiting nutrient in the Aydat lake).

Eutrophic state

The eutrophication :

Caused by :

- Agricultural spreading
- Urbanisation
- Pollution

Oligotrophic state

The eutrophication causes a cyano-bacteria proliferation :

It causes :

- Lack of oxyen and biodiversity
- Toxins production

Oligotrophic state

Two main methods

Eutrophic state

Oligotrophic state

First solution : decreasing of input phosphorus

Oligotrophic state

Second solution : filtering structures

In 2013 : design of the wetland

- Two sedimentation ponds.
- One semi-natural area.

Objective : To filter input nutriments in the lake.

FIGURE - The Aydat lake : two sedimentation ponds and one semi-natural area.

The lake

Very slow dynamics of phosphorus in water body.

In 2013 : design of the wetland

- Two sedimentation ponds.
- One semi-natural area.

Objective : To filter input nutriments in the lake.

FIGURE - The Aydat lake : two sedimentation ponds and one semi-natural area.

The semi-natural area

 Moderately fast dynamics of phosphorus in water body.

The goal of the semi-natural area

filtering of Nitrogen.

Auguste Caen, Jean-Denis Mathias, Delphine Latour IEffect of sedimentation ponds on the mitigation of eutro

In 2013 : design of the wetland

- Two sedimentation ponds.
- One semi-natural area.

Objective : To filter input nutriments in the lake.

FIGURE - The Aydat lake : two sedimentation ponds and one semi-natural area.

The sedimentation ponds

- Very fast dynamics of phosphorus in water body.
- Very slow dynamics of sediment filling.

Observations :

- An important quantity of phosphorus filtered.
- No significant improvement of the lake water quality.

Questions :

- What is the effective role of the filtering structures on the lake state?
- What is the low-cost management for the best lake state?

FIGURE - The Aydat lake : two sedimentation ponds and one semi-natural area.

Questions :

- What is the effective role of the filtering structures on the lake state?
- What is the low-cost management for the best lake state?

FIGURE - The Aydat lake : two sedimentation ponds and one semi-natural area.

Analysis difficulties

- data hard to access
- complex parameterization

A mathematical model to answer these questions

In order to predict general patterns of phosphorus evolution, and estimate the current state : We need to model the phosphorus evolution in the Aydat system.

The Carpenter model :

$$\frac{dP(t)}{dt} = L(t)$$

$$\frac{dP(t)}{dt}$$
: Phosphorus dynamics
$$L(t)$$
: Phosphorus input rate

Auguste Caen, Jean-Denis Mathias, Delphine Latour IEffect of sedimentation ponds on the mitigation of eutro

The Carpenter model :

 $\frac{dP(t)}{dt} = L(t) - hP(t)$

- $\blacksquare \frac{dP(t)}{dt}$: Phosphorus dynamics
- L(t) : Phosphorus input rate
- **hP(t)**: Phosphorus output rate

The Carpenter model :

$$\frac{dP(t)}{dt} = L(t) - hP(t) - sP(t)$$

- $\frac{dP(t)}{dt}$: Phosphorus dynamics
- L(t) : Phosphorus input rate
- **hP(t)** : Phosphorus output rate
- **sP**(t) : Phosphorus sedimentation rate

rste

The Carpenter model :

$$\frac{dP(t)}{dt} = L - hP(t) - sP(t) + r \frac{P(t)^{q}}{m^{q} + P(t)^{q}}$$

- $\frac{dP(t)}{dt}$: Phosphorus dynamics
- L(t) : Phosphorus input rate
- **hP(t)** : Phosphorus output rate
- sP(t) : Phosphorus sedimentation rate
- **r** $\frac{P(t)^{q}}{m^{q}+P(t)^{q}}$: Phosphorus recycling rate

The states of lake (OECD standards)

With a fixed input value :

If the initial state of the lake is in the green **zone**, the final state will be **oligotrophic**.

With a fixed input value :

If the initial state of the lake is in the green **zone**, the final state will be **oligotrophic**.

With a immediate change in the input rate towards a fixed value (here L = 47):

From any initial state in the red zone :...

For a immediate change in the input rate towards a fixed value (here L = 47):

... first there is an immediate change in the input rate towards L = 47 ...

For a immediate change in the input rate towards a fixed value (here L = 47):

... after the lake converges. The final state is **eutrophic**.

Adaptation of the Carpenter model

Qualitative behaviour

- No filter effect on the input phosphorus
- Stable depth
- Slow dynamics
- A negligible recycling rate

The semi-natural area model :

$$\frac{dP_{sn}(t)}{dt} = L - h_{sn}P_{sn}(t) - sP_{sn}(t) + r \frac{P_{sn}(t)^q}{m^q + P_{sn}(t)^q}$$

Adaptation of the Carpenter model

Qualitative behaviour

- No filter effect on the input phosphorus
- Stable depth
- Slow dynamics
- A negligible recycling rate

The semi-natural area model : $\frac{dP_{sn}(t)}{dt} = L - h_{sn}P_{sn}(t) - sP_{sn}(t) + r \frac{P_{sn}(t)^q}{m^q + P_{sn}(t)^q}$

Adaptation of the Carpenter model

Qualitative behaviour

- No filter effect on the input phosphorus
- Stable depth
- Slow dynamics
- A negligible recycling rate

The semi-natural area model : $\frac{dP_{sn}(t)}{dt} = L - h_{sn}P_{sn}(t) + r \frac{P_{sn}(t)^{q}}{m^{q} + P_{sn}(t)^{q}}$

Adaptation of the Carpenter model

Qualitative behaviour

- No filter effect on the input phosphorus
- Stable depth
- Slow dynamics
- A negligible recycling rate
- \Rightarrow *a priori* no impact on lake's state.

irstea

The semi-natural area model : $\frac{dP_{sn}(t)}{dt} = L - h_{sn}P_{sn}(t)$

quelques modeles calibrés : \Rightarrow bonne voie pour hypotheses de modeles.

The speed of semi-natural area convergence depends on the
$$h_{sn}$$
 value :

For the dynamical model :

$$\frac{dP_{sn}(t)}{dt} = L - h_{sn}P_{sn}(t)$$

the solution is : $P_{sn}(t) = \frac{L}{h_{sn}}(1 - e^{-t\mathbf{h_{sn}}}) + P_{sn}(0)e^{-t\mathbf{h_{sn}}}$

quelques modeles calibrés : \Rightarrow bonne voie pour hypotheses de modeles.

For the dynamical model :

$$\frac{dP_{sn}(t)}{dt} = L - h_{sn}P_{sn}(t)$$

the solution is : $P_{sn}(t) = \frac{L}{h_{sn}}(1 - e^{-t\mathbf{h_{sn}}}) + P_{sn}(0)e^{-t\mathbf{h_{sn}}}$

Therefore :

The convergence speed of the semi-natural area depends only on the h_{sn} value. The greater the h_{sn} value is, the faster the semi-natural area convergence is.

quelques modeles calibrés : \Rightarrow bonne voie pour hypotheses de modeles.

Behaviours of the lake according to the h_{sn} value :

With a fixed value of the input phosphorus in the system "semi-natural area + lake" (here L = 47),...

quelques modeles calibrés : \Rightarrow bonne voie pour hypotheses de modeles.

Behaviours of the lake according to the h_{sn} value :

..., with a fixed initial value of the "output phosphorus" from the semi-natural area, which depends on the phosphorus quantity in the semi-natural area...

quelques modeles calibrés : \Rightarrow bonne voie pour hypotheses de modeles.

Behaviours of the lake according to the h_{sn} value :

... and with a fixed initial value of the phosphorus in the lake water body, we study the possible trajectory of the phosphorus in the lake water body.

Auguste Caen, Jean-Denis Mathias, Delphine Latour IEffect of sedimentation ponds on the mitigation of eutro

quelques modeles calibrés : \Rightarrow bonne voie pour hypotheses de modeles.

When *h_{sn}* very great : The convergence of the semi-natural area is immediate...

quelques modeles calibrés : \Rightarrow bonne voie pour hypotheses de modeles.

quelques modeles calibrés : \Rightarrow bonne voie pour hypotheses de modeles.

quelques modeles calibrés : \Rightarrow bonne voie pour hypotheses de modeles.

input phosphorus rate = hmPm

quelques modeles calibrés : \Rightarrow bonne voie pour hypotheses de modeles.

The semi-natural effect :

With the same initial values, according to the h_{sn} value, the final state can be **eutrophic** or **oligotrophic**.

Semi-natural area : the effect on the lake according to the h_{sn} value

Evolution of the "green" and "red" zones according to the h_{sn} value, with L = 47.

Auguste Caen, Jean-Denis Mathias, Delphine Latour IEffect of sedimentation ponds on the mitigation of eutro

Semi-natural area : the effect on the lake

The semi-natural area :

The semi-natural area increases the "lake inertia" according to the h_{sn} value. With the semi-natural area, the **resilience** is increased, for better or for worse.

Auguste Caen, Jean-Denis Mathias, Delphine Latour IEffect of sedimentation ponds on the mitigation of eutro

Adaptation of the Carpenter model

The sedimentation pond model :	Qualitative behaviour
$\frac{dP_{sp}(t)}{dt} = L - h_{sp}(t)P_{sp}(t) - s_{sp}(t)P_{sp}(t) + r \frac{P_{sp}(t)^{q}}{m^{q} + P_{sp}(t)^{q}}$	A filter effect
	A decreasing pond depth
with	Fast dynamics
for $t=0$: $h_{sp}(0)=h_0$ and $s_{sp}(0)=s_0$	A negligible recycling rate
for $t - \infty$: $h_{\text{ex}}(\infty) - h_{\text{max}} > h_{\text{ex}}$ and $s_{\text{ex}}(\infty) = 0$	
$\sin t = \infty \cdot \operatorname{isp}(\infty) = \operatorname{imax} > \operatorname{ing} \operatorname{and} \operatorname{isp}(\infty) = 0$	

Adaptation of the Carpenter model

The sedimentation pond model :	Qualitative behaviour
$\frac{dP_{sp}(t)}{dt} = L - h_{sp}(t)P_{sp}(t) - s_{sp}(t)P_{sp}(t) + r \frac{P_{sp}(t)^{q}}{m^{q} + P_{sp}(t)^{q}}$	A filter effect
	A decreasing pond depth
with	Fast dynamics
for $t=0$: $h_{sp}(0)=h_0$ and $s_{sp}(0)=s_0$	A negligible recycling rate
for $t = \infty$; $h_{sp}(\infty) = h_{max} > h_0$ and $s_{sp}(\infty) = 0$	

Adaptation of the Carpenter model

The sedimentation pond model :	Qualitative behaviour
$\frac{dP_{sp}(t)}{dt} = L - h_{sp}(t)P_{sp}(t) - s_{sp}(t)P_{sp}(t)$	A filter effect
with	A decreasing pond depth
for $t = 0$: $h_{sp}(0) = h_0$ and $s_{sp}(0) = s_0$	Fast dynamics
for $t = \infty$: $h_{sp}(\infty) = h_{max} > h_0$ and $s_{sp}(\infty) = 0$	A negligible recycling rate
for $t = \infty$: $h_{sp}(\infty) = h_{max} > h_0$ and $s_{sp}(\infty) = 0$	A negligible recycling rate

Adaptation of the Carpenter model

The semi-natural area model :

$$\frac{dP_{sp}(t)}{dt} = L - h_{sp}(t)P_{sp}(t) - s_{sp}(t)P_{sp}(t)$$

with

for t = 0: $h_{sp}(0) = h_0$ and $s_{sp}(0) = s_0$ for $t = \infty$: $h_{sp}(0) = h_{max} > h_0$ and $s_{sp}(\infty) = 0$

Cleaning of the pond

After each cleaning, the parameters are reset :

$$h_{sp}(t) = h_0$$
$$s_{sp}(t) = s_0$$

Adaptation of the Carpenter model

The semi-natural area model :

$$\frac{dP_{sp}(t)}{dt} = L - h_{sp}(t)P_{sp}(t) - s_{sp}(t)P_{sp}(t)$$

with

for
$$t = 0$$
: $h_{sp}(0) = h_0$ and $s_{sp}(0) = s_0$
for $t = \infty$: $h_{sp}(0) = h_{max} > h_0$ and $s_{sp}(\infty) = 0$

Evolution of the h_{sp} and s_{sp}

According to the available data from the Aydat lake, the evolution of h_{sp} and s_{sp} is linear.

The speed of sedimentation pond convergence :

For all *t* value, the scale of $h_{sp}(t)$ is between 100 and 1000. So the convergence of the sedimentation pond is very fast.

behaviours of the sedimentation pond without cleaning :

With a fixed value of the input phosphorus in the system "sedimentation pond + lake" (here L = 55),...

behaviours of the sedimentation pond without cleaning :

..., with an fixed initial value of the phosphorus quantity of the sedimentation pond, with a initial s_{sp} value not null,...

Auguste Caen, Jean-Denis Mathias, Delphine Latour IEffect of sedimentation ponds on the mitigation of eutro

behaviours of the sedimentation pond without cleaning :

... and with a fixed initial values of the phosphorus in the lake water body, we study the possible trajectory of the phosphorus in the lake water body.

have a filter effect.

behaviours of the sedimentation pond without cleaning :

After an enough time, the parameters s_{sp} and h_{sp} converge to 0 and h_{max} . Therefore the filter effect is null, the final state is **eutrophic**.

With a appropriate cleaning of the sedimentation pond :

The cleaning reset the *h_{sp}* and *s_{sp}* parameters.

With a appropriate cleaning of the sedimentation pond :

The final state is oligotrophic.

Critical times :

There is a time T_{c1} , after which the cleaning is inefficient. There is a time T_{c2} , before which the cleaning is inefficient.

Critical times :

There is a time T_{c1} , after which the cleaning is inefficient. There is a time T_{c2} , before which the cleaning is inefficient.

Sedimentation pond : the effect on the lake

The sedimentation pond

With the appropriate management, the filter effect allows us to maintain the lake in the acceptable state.

Auguste Caen, Jean-Denis Mathias, Delphine Latour IEffect of sedimentation ponds on the mitigation of eutro

Initial tools : Carpenter model Qualitative behaviours A dynamical model of phosphorus in lake water body. Gualitative behaviours derived from the little available data. Dynamical models : Semi-natural area model A dynamical model of semi-natural area model A dynamical model of semi-natural area model A dynamical model of semi-natural area without sedimentation rate. Sedimentation pond model of sedimentation ponds with filling and cleaning of sediment. ↓ ↓ Effects on lake : Filter effect According to the semi-natural parametrization, it increases the lake inertia. Filter effect	Take home message					
Carpenter model Qualitative behaviours A dynamical model of phosphorus in lake water body. derived from the little available data. Dynamical models : Semi-natural area model A dynamical model of semi-natural areas without sedimentation rate. Sedimentation pond model A dynamical model of semi-natural areas without sedimentation rate. A dynamical model of sediment. Image: the semi-natural area model A dynamical model of sediment. Image: the semi-natural area model A dynamical model of sediment. Image: the semi-natural area model A dynamical model of sediment. Image: the semi-natural area model A dynamical model of sediment. Image: the semi-natural area model A dynamical model of sediment. Image: the semi-natural area model A dynamical model of sediment. Image: the semi-natural area model A dynamical model of sediment. Image: the semi-natural area model A dynamical model of sediment. Image: the semi-natural area model A dynamical model of sediment. Image: the semi-natural area model A dynamical model of sediment. Image: the semi-natural area model A coording to the semi-natural parametrization, it increases the lake inertia. Image: the semi-natural area model A coording to the cleaning management, th	Initial tools :					
A dynamical model of phosphorus in lake water body. Dynamical models : Semi-natural area model A dynamical model of semi-natural areas without sedimentation rate. Effects on lake : Effects on lake : Semi-natural area model A dynamical model of semi-natural areas without sedimentation rate. Filter effect According to the semi-natural parametrization, it increases the lake inertia. A dynamical model of sedimentation pond model A dynamical model of sedimentation ponds with filling and cleaning of sediment. Filter effect According to the semi-natural parametrization, it increases the lake inertia.		Carpenter model		Qualitative behaviours		
Dynamical models : Semi-natural area model A dynamical model of semi-natural areas without sedimentation rate. Sedimentation pond model of sedimentation ponds with filling and cleaning of sediment. ↓ ↓ Effects on lake : Filter effect According to the semi-natural parametrization, it increases the lake inertia. Filter effect	and the second s	A dynamical model of phosphorus in lake water body.		derived from the little available data.		
Dynamical models : Semi-natural area model A dynamical model of semi-natural areas without sedimentation rate. A dynamical model of sedimentation ponds with filling and cleaning of sediment. Image: Sedimentation pond model A dynamical model of sedimentation ponds with filling and cleaning of sediment. Image: Sedimentation pond model A dynamical model of sedimentation ponds with filling and cleaning of sediment. Image: Sedimentation pond model A dynamical model of sedimentation ponds with filling and cleaning of sediment. Image: Sedimentation pond model A dynamical model of sedimentation ponds with filling and cleaning of sediment. Image: Sedimentation pond model A dynamical model of sedimentation ponds with filling and cleaning of sediment. Image: Sedimentation pond model A dynamical model of sedimentation ponds with filling and cleaning of sediment. Image: Sedimentation pond ponds with filling and cleaning of sediment. According to the cleaning management, the final lake state can be seutrophic or oligotrophic.	\downarrow					
Semi-natural area model Sedimentation pond model A dynamical model of semi-natural areas without sedimentation rate. A dynamical model of sedimentation ponds with filling and cleaning of sediment. Effects on lake : Image: Sedimentation ponds with filling and cleaning of sediment. Effects on lake : Fillter effect According to the semi-natural parametrization, it increases the lake inertia. Fillter effect According to the semi-natural parametrization, it increases the lake inertia. According to the cleaning management, the final lake state can be eutrophic or oligotrophic.	Dynamical					
A dynamical model of semi-natural areas without sedimentation rate. A dynamical model of semi-natural and cleaning of sediment. Fiffects on lake : Buffer effect According to the semi-natural parametrization, it increases the lake inertia. Fillter effect Cording to the cleaning management, the final lake state can be eutrophic or oligotrophic.	models :	Semi-natural area model	2	Sedimentation pond model	23	
Effects on lake : Buffer effect According to the semi-natural parametrization, it increases the lake inertia. Fillter effect According to the cleaning management, the final lake state can be eutrophic or oligotrophic.		A dynamical model of semi-natural areas without sedimentation rate.	1	A dynamical model of sedimentation ponds with filling	8	
Effects on lake : Buffer effect According to the semi-natural parametrization, it increases the lake inertia. Fillter effect According to the cleaning management, the final lake state can be eutrophic or oligotrophic.				and cleaning of sediment.		
Effects on lake : Buffer effect According to the semi-natural parametrization, it increases the lake inertia. Fillter effect According to the cleaning management, the final lake state can be eutrophic or oligotrophic.						
Buffer effect Fillter effect According to the semi-natural parametrization, it increases the lake inertia. According to the cleaning management, the final lake state can be eutrophic or oligotrophic.	Effects on lake :	v				
According to the semi-natural parametrization, it increases the lake inertia.		Buffer effect		Fillter effect	h	
		According to the semi-natural parametrization, it increases the lake inertia.		According to the cleaning management, the final lake state can be eutrophic or oligotrophic .	9	

Aydat : the adapted model

To be continued

and the owned by the owned by the second states of the	The second state of the se	
Mathematical issues		
An acceptable final lake state	Low cost management	Stable management
From any state, we want to know – if it exists – the management of the Aydat system, for which the lake remains or becomes oli-	Any management has a cost. We want to know the management with the lowest cost.	We want management with a strong resistance to shocks (increasing of input phosphorus).
gotrophic.	\Downarrow	\Downarrow
Viability Theory	Optimal Control	Stochastic Modelling
		i

The eutrophication : a current problem The Aydat lake : a study case of eutrophication The Carpenter model Structures upstream of the lake completed pro

thanks for your attention

Auguste Caen, Jean-Denis Mathias, Delphine Latour IEffect of sedimentation ponds on the mitigation of eutro