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Abstract. In this paper we study a class of self-consistent dynamical systems,
self-consistent in the sense that the discrete time dynamics is di�erent in each
step depending on current statistics. The general framework admits popular
examples such as coupled map systems. Motivated by an example of [9], we
concentrate on a special case where the dynamics in each step is a β-map with
some β ≥ 2. Included in the de�nition of β is a parameter ε > 0 controlling
the strength of self-consistency. We show such a self-consistent system which
has a unique absolutely continuous invariant measure (acim) for ε = 0, but at
least two for any ε > 0. With a slight modi�cation, we transform this system
into one which produces a phase transition-like behavior: it has a unique acim
for 0 < ε < ε∗, and multiple for su�ciently large values of ε. We discuss
the stability of the invariant measures by the help of computer simulations
employing the numerical representation of the self-consistent transfer operator.

1. Introduction. A self-consistent dynamical system is a discrete time dynamical
system where the dynamics is not the same map in every time step, but computed
by the same rule from some momentary statistical property of the system. Such
systems arise in problems of both physical and mathematical motivation, but their
rigorous mathematical treatment so far has been restricted to some special cases,
mainly coupled map systems.

Self-consistent systems bear resemblance to the larger framework of systems that
are governed by laws that vary over time. The uniqueness and stability of the
invariant measure is thoroughly studied for examples including non-autonomous

dynamical systems [12, 32], random dynamical systems [1, 3, 10, 11] and random

perturbations of dynamical systems [6, 2]. However, a self-consistent system is not
a special case of any of these examples, as the dynamics in each step is not chosen
via an abstract rule or drawn randomly from a set of possibilities, but is computed
in a deterministic way from the trajectory of an initial probability distribution on
the phase space.

The introduction of self-consistent systems dates back to [21], who studied glob-
ally coupled interval maps. In a globally (or mean-�eld) coupled map system the

2020 Mathematics Subject Classi�cation. Primary: 37A05, 37A10, 37E05; Secondary: 37M25,
65P99.

Key words and phrases. Self-consistent dynamics, phase transition, β-map, absolutely contin-
uous invariant measure, discrete transfer operator.

The author was supported by ERC grant No 787304 and NKFIH OTKA grant K123782.

1
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dynamics is the composition of the individual dynamics of a single site and a cou-
pling dynamics which is typically the identity perturbed by themean-�eld generated
by the sites, hence self-consistency arises from coupling. The e�ect of the mean-
�eld is usually multiplied by a nonnegative constant ε called the coupling strength,
which controls to what extent the self-consistency distorts the uncoupled dynam-
ics. The literature studying coupled map systems is quite extensive. As systems of
coupled maps are just loosely connected to the present work, we refrain from giving
a complete bibliography, as a starting point see [13, 31] and the references therein.
Typically the existence and uniqueness of the invariant measure is studied in terms
of the coupling strength. Most available results prove the uniqueness of the SRB
measure for small coupling strength [8, 20, 22], but in some speci�c models phase
transition-like phenomena can also be observed [5]: unique invariant measure for
small coupling strength, and multiple for stronger coupling.

The literature of self-consistent systems not arising from coupled map systems
is particularly sparse (in fact the only example known to us is the one discussed
below). In this paper our goal is to study such a system which is in some sense
much simpler than a coupled map system, hence interesting phase transition-like
phenomena can be shown by less involved methods than the ones used for example in
[5]. As results of this type are particularly hard to obtain in the coupled map setting,
our results, although obtained in a simpli�ed self-consistent system, contribute to
the few existing examples.

Our main point of reference is Section 5 of [9], speci�cally the two systems de�ned

by Example 5.2 which we now recall. Let X = [0, 1] and Eµ =
∫ 1

0
x dµ(x), where µ

is a probability measure on X. Let

(a) Tµ(x) = x · Eµ,
(b) Tµ(x) = x/Eµ mod 1 (where 1/0 mod 1 is de�ned as 0).

The map Tµ induces an action on the space of probability measures, and an invariant
measure of such a system is a probability measure for which µ = (Tµ)∗µ. As
Blank noted, in case (a) the only invariant measures are the point masses supported
on 0 and 1, as Tµ is a contracting linear map in all nontrivial case. Case (b) is
more interesting since now Tµ is a particular piecewise expanding map, a beta map,
�rst studied by [28, 29, 30]. Blank pointed out, that the self-consistent system
has in�nitely many mutually singular invariant measures, including the Lebesgue
measure. We are going to show that this picture is not complete, as the existence of
multiple Lebesgue-absolutely continuous invariant measures (acims) can be shown.

The stability of these invariant measures is a more delicate question. By stabil-

ity we mean that the invariant density attracts all elements of some neighborhood
in a suitable norm, hence these equilibrium states rightfully describe an asymp-
totic behavior of the system. Rigorous results in this direction are only available
in case of smooth self-consistent dynamics [24, 4] and the treatment of piecewise
smooth dynamics (such as example (b) of Blank) would require a completely dif-
ferent approach. However, to obtain a rough picture of the phenomena to be ex-
pected, computer simulations can be very useful. Numerical approximations of
transfer operators and invariant densities have been extensively studied in the last
few decades, typically by the help of generalized Galerkin-type methods. The idea
behind these discretization schemes is the construction of a sequence of �nite rank
operators approximating the transfer operator of the dynamical system. The most
notable scheme is Ulam's method [33], a relatively crude but robust method. The
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convergence of the �xed points of the �nite rank operators to the invariant den-
sity was �rst proved by [26] in case of one-dimensional dynamics, and since then,
many generalizations have followed. For a comprehensive study see [27] and the
references within. Better approximation can be achieved by higher order Galerkin-
type methods [14, 15]. For a more extensive survey of the discretization of the
Perron-Frobenius operator see [25]. The approximation of invariant densities of
non-autonomous dynamical systems on the other hand have a much more limited
literature, focusing mainly on the setting of random dynamical systems [17, 18, 19].
The self-consistent case, to the best of our knowledge is an uncharted territory.
To make the �rst steps, we consider speci�c systems (motivated by example (b)
of Blank) with piecewise linear dynamics. The advantage of such systems is that
the transfer operator maps the space of piecewise constant functions to itself, hence
no discretization scheme is needed to compute pushforward densities. However,
the task is not completely trivial, as the chaotic nature of the dynamics causes
computational errors to blow up rapidly.

The setting and our results are summarized in Section 2. In Section 3 we intro-
duce an auxiliary function ψε providing the main tool for the proofs of our results.
In Section 4 we study a self-consistent system which interpolates linearly between
the doubling map and case (b) of Blank's example by a parameter ε. We show that
the system has a unique acim only in the case of ε = 0 (giving the doubling map)
and has multiple absolutely continuous invariant measures for any ε > 0 (in partic-
ular for ε = 1, giving Blank's example.) In Section 5 we study a modi�ed version
of this self-consistent system which indeed exhibits a phase transition like-behavior:
it has a unique acim if ε is smaller than some ε∗ > 0 and multiple acims if ε is
su�ciently large. In Section 6 we showcase some results of computer simulations
intended to study the stability of invariant densities with respect to the iteration of
the self-consistent transfer operator.

2. The results. Let X = [0, 1] and denote the space of probability measures on
X byM(X). For a measure µ ∈M(X), let

Eµ =

∫ 1

0

x dµ(x). (1)

Given an initial probability measure µ ∈ M(X) and ε ≥ 0, de�ne the dynamics
T εµ : X → [0, 1) as

T εµ(x) =

(
2 + εF

(
1

Eµ
− 2

))
x mod 1, x ∈ X, (2)

where F ∈ C1(R,R) is such F (0) = 0. The parameter ε controls to what extent
the measure µ in�uences the dynamics. (If µ0 = δ0 the Dirac mass concentrated on
zero, we de�ne T εδ0 ≡ 0.) In particular for ε = 0, µ has no in�uence at all and

T 0
µ(x) = 2x mod 1, x ∈ X (3)

for any µ ∈M(X).
We are going to study the self-consistent system

(M(X), (T ε· )∗·). (4)

An invariant measure of the system (4) is a measure µ ∈M(X) such that

(T εµ)∗µ = µ.
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It is easy to see that the system (4) has many invariant measures: for instance the
Lebesgue measure λ, since

Eλ =

∫ 1

0

x dx =
1

2
⇒ T ελ(x) = 2x mod 1

implying that

(T ελ)∗λ = λ. (5)

In addition to this, in�nitely many mutually singular invariant measures exist: con-
sider a measure uniformly distributed on a periodic orbit of the doubling map which
is symmetric about 1

2 . More precisely, consider x ∈ [0, 1] with binary expansion

.111 . . . 1︸ ︷︷ ︸
k times

000 . . . 0︸ ︷︷ ︸
k times

As the doubling map acts as a shift on binary expansions, the images of x are

.11 . . . 1100 . . . 00 .00 . . . 0011 . . . 11

.11 . . . 1000 . . . 01 .00 . . . 0111 . . . 10

.11 . . . 0000 . . . 11 .00 . . . 1111 . . . 00

...

.10 . . . 0001 . . . 11 .01 . . . 1110 . . . 00

We can see that this orbit is symmetric about 1
2 : if y is in this orbit, then so is

1−y. This implies that if µ = 1
k+1

∑k
j=0 δ2jx mod 1, we have Eµ = 1

2 and T εµ(x) = 2x

mod 1, by which (T εµ)∗µ = µ.
Our main question is if (4) has multiple invariant measures absolutely continuous

with respect to the Lebesgue measure (acims).
For ε = 0 we have seen that irrespective of the measure µ, the dynamics is always

the doubling map. So in this case we have a unique absolutely continuous invariant
measure.

We �rst show that by taking the identity as F (producing Blank's example for
ε = 1) this property is immediately lost as we introduce self-consistency.

Theorem 2.1. Consider the self-consistent system (4) and suppose that F (x) = x.
Then for any ε > 0, at least two acims exist: one is Lebesgue, and the other is

equivalent to Lebesgue.

We then show that under some additional assumptions on F , the uniqueness of
the acim persists for ε small enough. But not inde�nitely: we also show that for
su�ciently strong self-consistency this is not the case, i.e. multiple acims exist if ε
is large enough.

Theorem 2.2. Consider the self-consistent system (4) and suppose that F (x) > 0

for all x 6= 0 and F ′(x) = O
(

1
| log x|

)
as x→ 0+.

1. There exists an ε∗1 > 0 such that for 0 ≤ ε < ε∗1 the only acim is the Lebesgue

measure.

2. There exists an ε∗2 ≥ ε∗1 such that for ε ≥ ε∗2 at least two acims exist: one is

Lebesgue, and the other is equivalent to Lebesgue.
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An example of the function F for which Theorem 2.2 holds is F (x) = x2k, where
k ≥ 1 is an integer.

To discuss the stability of these invariant densities we performed a series of
computer simulations. Based on the results of these computations we make two
conjectures.

Conjecture 1. In the setting of Theorem (2.1),

1. In case of ε = 0, the uniform density is stable with respect to the BV -norm

‖ · ‖BV = var(·) +
∫
| · |.

2. In case of ε > 0, the uniform density is not stable with respect to the L1-norm

‖ · ‖L1 =
∫
| · | but there exists a di�erent invariant density in BV which is

stable with respect to the L1-norm.

Part (1) of this conjecture is the stability of Lebesgue measure under the dou-
bling map, which is well known, we included it in the conjecture to highlight the
bifurcation phenomenon.

Conjecture 2. In the setting of Theorem (2.2), the uniform density is stable with

respect to the BV -norm for all ε > 0. Other acims are unstable with respect to the

BV -norm.

3. The auxiliary function ψε. The aim of this section is to give the de�nition and
discuss some properties of an auxiliary function on which the proofs of Theorems
(2.1) and (2.2) rely. Let

Tβ(x) = βx mod 1, x ∈ [0, 1] (6)

such that β > 1, and denote by µβ the unique acim of the system. By the classical
results of [30] we in fact know that such a measure exists, and it is equivalent to
the Lebesgue measure. Remember that by our notation (1)

Eµβ =

∫ 1

0

x dµβ(x).

De�ne ψε : (1,∞)→ R as

ψε(β) = 2 + εF

(
1

Eµβ
− 2

)
. (7)

Suppose there exists a β̄ such that ψε(β̄) = β̄. Notice that in this case µβ̄ is an
invariant measure of the self-consistent system (4). Indeed,

β̄ = 2 + εF

(
1

Eµβ̄
− 2

)
⇒ Tµβ̄ (x) = β̄x mod 1,

and this implies that

(Tµβ̄ )∗µβ̄ = µβ̄ .

This shows that every �xed point of ψε gives rise to an absolutely continuous in-
variant measure of (4). Moreover, if F ≥ 0, the absolutely continuous invariant
measures of (4) and the �xed points of ψε are in one�to�one correspondence. So it
su�ces to study number of �xed points of the function ψε to prove our Theorems
2.1 and 2.2.

We now state a lemma implying regularity properties of ψε.
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Lemma 3.1. 1. Let 2 ≤ β < 3. There exists a constant K > 0 such that

|Eµβ − Eµ2 | ≤ K|β − 2|(1 + | log |β − 2||).
2. Let 2 < a0 ≤ a1. There exists a constant K(a0, a1) > 0 such that for all

β, β′ ∈ [a0, a1],

|Eµβ − Eµβ′ | ≤ K(a0, a1)|β − β′|(1 + | log |β − β′||).

Proof. As proved in [29], the unnormalized invariant density of Tβ can be given by
the formula

hβ(x) =

∞∑
n=0

1

βn
1[0,Tnβ (1))(x). (8)

Thus ∫ 1

0

hβ(x) dx =

∞∑
n=0

∫ 1

0

1

βn
1[0,Tnβ (1))(x) dx =

∞∑
n=0

1

βn
Tnβ (1) (9)

∫ 1

0

xhβ(x) dx =

∞∑
n=0

∫ 1

0

1

βn
x1[0,Tnβ (1))(x) dx =

∞∑
n=0

1

2βn
(Tnβ (1))2. (10)

Notice in particular that since T2 has range [0, 1), we have T 0
2 (1) = 1 and Tn2 (1) = 0

for all n ≥ 1, hence h2(x) = 1. This implies that∫ 1

0

h2(x) dx = 1 and

∫ 1

0

xh2(x) dx =
1

2
.

By de�nition and the above observation, we have

Eµβ =
1∫ 1

0
hβ(x) dx

∫ 1

0

xhβ(x) dx and Eµ2
=

1

2
.

We can deduce the following uniform bounds on Eµβ :

1

4
≤ 1

2
· β − 1

β
≤ Eµβ ≤

1

2
, (11)

where the last inequality is always strict if β is not an integer. Indeed,

1

2

∑∞
n=0

1
βn (Tnβ (1))2∑∞

n=0
1
βnT

n
β (1)

≤ 1

2
,

since (Tnβ (1))2 ≤ Tnβ (1) for all n. In particular, if β is an integer, T 0
β (1) = 1 and

Tnβ (1) = 0 for all n ≥ 1, hence the equality (and this is the only case that equality

can occur). We get the lower bound from the fact 1 ≤ hβ ≤ β
β−1 (including just the

�rst term in the sum (8) versus all terms).
In particular observe that

Eµβ ≤ Eµ2 (12)

so |Eµβ − Eµ2
| = Eµ2

− Eµβ .
Let us write hβ(x) = 1 + gβ(x) where

gβ(x) =

∞∑
n=1

1

βn
1[0,Tnβ (1))(x).

Then

Eµβ =

∫ 1

0
x(1 + gβ(x))dx∫ 1

0
1 + gβ(x)dx

=
1
2 +

∫ 1

0
xgβ(x)dx

1 +
∫ 1

0
gβ(x)dx

,
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so

Eµβ ≥
1
2

1 +
∫ 1

0
gβ(x)dx

≥ 1

2

(
1−

∫ 1

0

gβ(x)dx

)
⇒ Eµ2

− Eµβ ≤
1

2

∫ 1

0

gβ(x)dx,

so it is enough to show∫ 1

0

gβ(x)dx =

∞∑
n=1

1

βn
Tnβ (1) ≤ Nη +

(
1

β

)N
(13)

for η = β − 2 and N = d log η
log 1/β e to prove the claim of part (a). To show (13), we

�rst note that
∞∑

k=N+1

1

βk
=

1

β − 1

(
1

β

)N
(14)

Now notice that if Tn−1
β (1) = βn−2(β − 2) < 1

β , the images Tnβ (1) fall under the

�rst branch. By the choice of N , this is exactly the case for all k = 1, . . . , N . So

1

βn
Tnβ (1) =

βn−1(β − 2)

βn
≤ 1

β
(β − 2) for 1 ≤ n ≤ N

implying
N∑
k=1

1

βk
≤ N

β
(β − 2) (15)

Putting together (14) and (15) we get (13).
Part 2 can be proved in an analogous way to [23, Proposition 2] as a consequence

of [23, Corollary 1].

This lemma has the following important corollary:

Corollary 1. 1. For 2 ≤ β < 3, there exists a constant K̃ > 0 such that

1

Eµβ
− 2 ≤ K̃|β − 2|(1 + | log |β − 2||).

2. ψε(β) is continuous for all β ≥ 2.

Indeed, by part (1) of Lemma 3.1 and (11)

1

Eµβ
− 1

Eµ2

=

∣∣∣∣Eµ2 − Eµβ
EµβEµ2

∣∣∣∣ ≤ 8K|β − 2|(1 + | log |β − 2||).

We note that part (2) of Lemma 3.1 serves only the purpose to draw the conclusion
of part (2) of the above corollary.

We now outline our main idea behind the proofs of Theorems 2.1 and 2.2. First
observe that ψε(2) = 2, since Lebesgue measure is an invariant measure of the
doubling map. But since Lebesgue is invariant for any β-map where β is an integer,
we have ψε(k) = 2 for all k ≥ 2, k ∈ N. So if for some β̄ ∈ (k, k + 1) we have
ψε(β̄) > β̄, we can conclude that ψε has a �xed point β∗ ∈ (k, k + 1). This implies
that µβ∗ is an invariant measure of the self-consistent system (4) that is equivalent,
but not equal to Lebesgue.

In the following sections we are going to prove Theorem 2.2 part (1) by showing
that no such β̄ exists for the stated values of ε, while we prove Theorem 2.1 and
Theorem 2.2 part (2) by showing the existence of a β̄ such that ψε(β̄) > β̄ in the
settings considered.
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4. Proof of Theorem 2.1. In this section we consider the special case when F is
the identity. Now (7) takes the form

ψε(β) = 2 + ε

(
1

Eµβ
− 2

)
.

We are going to show that for any ε > 0 the map ψε has another �xed point in
addition to β = 2. This implies Theorem 2.1, as discussed in Section 3. Accord-
ing to our arguments in Section 3, it is more than enough to prove the following
proposition:

Proposition 1. Let ε > 0. For any δ > 0 there exists a β > 2, |β − 2| < δ such

that

ψε(β) > β. (16)

This is the consequence of the following lemma, which claims that the log-
Lipschitz continuity of β 7→ Eµβ at β = 2 stated in Lemma 3.1 cannot be improved
to Lipschitz continuity:

Lemma 4.1. There exists a sequence βk → 2+ such that

|Eµβk − Eµ2
| > cβk |βk − 2|

for some cβk > 0 such that limβk→2+ cβk =∞.

To see that Lemma 4.1 readily implies (16), note �rst that we can discard the
absolute values from the statement of this lemma by (12). As we previously showed
that Eµβ is bounded away from 0, we also have

1

Eµβk
− 1

Eµ2

> c̃βk(βk − 2)

for some c̃βk > 0 such that limβk→2+ c̃βk =∞. But then for c̃βk >
1
ε we have

ψε(βk) = 2 + ε

(
1

Eµβk
− 2

)
> 2 + εc̃βk(βk − 2) > βk.

By choosing k0 so large such that c̃βk0
> 1

ε holds for all k ≥ k0, we obtain that

ψε(βk) > k for all k ≥ k0.

The proof of Lemma 4.1. We are going to construct the sequence βk explicitly. Let
βk be such that the �rst k images of 1 fall under the �rst branch of Tβk and the
k + 1-th image of 1 is 0. This means that

Tβk(1) = βk − 2

T 2
βk

(1) = βk(βk − 2)

T 3
βk

(1) = β2
k(βk − 2)

...

T kβk(1) = βk−1
k (βk − 2)

T k+1
βk

(1) = βkk (βk − 2) = 1 ≡ 0. (17)

To obtain βk, one simply has to �nd the unique positive solution of (17). It is easy
to see that the thus de�ned βk → 2+ as k →∞.
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x

Tβ3(x)

β3 − 2

β3(β3 − 2)

β2
3(β3 − 2)

= 1
β3

= 1

β3
3(β3 − 2)

1

Figure 1. The choice of βk, k = 3 is pictured.

Straightforward calculations using (9) and (10) give that∫ 1

0

hβk(x) dx =

∞∑
n=0

1

βnk
Tnβk(1) = 1 + k · 1

βk
(βk − 2)

∫ 1

0

xhβk(x) dx =

∞∑
n=0

1

2βnk
(Tnβk(1))2 =

1

2

(
1 +

βkk − 1

βk − 1
· 1

βk
(βk − 2)2

)
Now as

Eβk =
1∫ 1

0
hβk(x) dx

∫ 1

0

xhβk(x) dx,

and in particular E2 = 1
2 , we obtain that

|Eβk − E2| =

∣∣∣∣∣∣
1
2 ·
(

1 +
βkk−1
βk−1 ·

1
βk

(βk − 2)2
)

1 + k · 1
βk

(βk − 2)
− 1

2

∣∣∣∣∣∣ = |βk − 2| ·

∣∣∣∣∣∣
βkk−1
βk−1 (βk − 2)− k
2βk + 2k(βk − 2)

∣∣∣∣∣∣ .
Since

∣∣∣∣∣ β
k
k−1

βk−1 (βk−2)−k
2βk+2k(βk−2)

∣∣∣∣∣→∞ we can choose

cβk =

∣∣∣∣∣∣
βkk−1
βk−1 (βk − 2)− k
2βk + 2k(βk − 2)

∣∣∣∣∣∣ .

5. Proof of Theorem 2.2. Throughout this section we assume that F > 0 for all

x 6= 0 and F ′ has the property F ′(x) = O
(

1
| log x|

)
as x→ 0+.

5.1. Weak self-consistency: unique acim. In this section we prove the following
proposition:

Proposition 2. There exists an ε∗1 > 0 such that for 0 ≤ ε < ε∗1 the function ψε

has a unique �xed point.

As discussed, this implies part (1) of Theorem 2.2.
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Proof. As we previously noted ψε(2) = 2. We are going to show that no other �xed
point exists provided that ε is small enough.

First notice that ψε ≥ 2 by (12), so no �xed point exists which is smaller that 2.
We now show that despite the irregularity of β 7→ Eµβ in β = 2 (as stated in

Lemma 4.1), ψε is Lipschitz continuous in β = 2 as a result of the derivative of F
vanishing in 0 at an appropriate rate.

Lemma 5.1. There exists a δ = δ(F ) > 0 and an M = M(F ) > 0 such that

|ψε(β)− ψε(2)| ≤ εM |β − 2| (18)

for all β ∈ (2, 2 + δ).

Proof. Let G : (0, h)→ (0,∞) (for some small h > 0) be the inverse function of the

map x 7→ K̃x(1 + | log x|) de�ned for small x > 0, where K̃ is from Corollary 1 part
(1), that is,

1

Eµβ
− 2 ≤ K̃(β − 2)(1 + | log(β − 2)|)

for all β > 2 su�ciently close to 2. Taking arbitrary α > 1, since x
1
α > K̃x(1 +

| log x|) for all su�ciently small x > 0, we have that xα < G(x) and so 1
α| log x| <

1
| logG(x)| = K̃G′(x) for all su�ciently small x > 0. Therefore, since by assumption

F ′(x) is O
(

1
| log x|

)
as x → 0+ we have that F ′(x) < MG′(x) for some constant

M = M(F ) and for su�ciently small x > 0. Since F (0) = 0, it follows that
F (x) < MG(x) for su�ciently small x > 0 and so

ψε(β)− 2 = εF

(
1

Eµβ
− 2

)
≤MεG

(
1

Eµβ
− 2

)
≤ εM(β − 2).

Now we show that for small enough ε, we have ψε(β) < β for 2 < β < 2 + δ. By
(18),

ψε(β)− 2 ≤ εM(β − 2)

ψε(β) ≤ εM(β − 2) + 2

and

εM(β − 2) + 2 < β whenever

ε <
1

M
.

We now show

ψε(β) = 2 + εF

(
1

Eµβ
− 2

)
< β for β ∈ [2 + δ,∞). (19)

By (11) we have

F

(
1

Eµβ
− 2

)
≤ F

(
2

β − 1

)
.

Since for β ≥ 2 + δ

2 + εF

(
1

Eµβ
− 2

)
≤ 2 + εF

(
2

1 + δ

)
< 2 + δ ≤ β
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when ε < δ

F( 2
1+δ )

, (19) is proved. This implies the statement of the proposition

with

ε∗1 = min

 1

M
,

δ

F
(

2
1+δ

)
 .

5.2. Strong self-consistency: multiple acims. In this section we prove Theo-
rem (2.2), part (2). For this it su�ces to �nd a single β̄ such that ψε(β̄) > β̄ holds
for su�ciently large ε.

We in fact show that we can achieve ψε(β̄) > β̄ for arbitrary β̄ ∈ (k, k + 1),
provided that ε is large enough in terms of β̄.

Proposition 3. Let β̄ ∈ (k, k + 1). There exists an ε∗2 = ε∗2(β̄) such that

ψε(β̄) > β̄

holds for all ε > ε∗2(β̄).

Proof. We would like to have

ψε(β̄) = 2 + εF

(
1

Eµβ̄
− 2

)
> β̄

This holds if

ε >
β̄ − 2

F

(
1

Eµβ̄
− 2

) ,
so by the choice of

ε∗2 =
β̄ − 2

F

(
1

Eµ
β̄

− 2

)
the proposition is proved.

This proposition has the following corollary:

Corollary 2. The self-consistent system (4) can have an arbitrarily large �nite

number of invariant measures equivalent to the Lebesgue measure, provided that ε
is large enough.

To see this, let ` ≥ 2 be an arbitrary integer. Choose β̄k ∈ (k, k+1), k = 2, . . . , `.
Let ε∗ = maxk∈{2,...,`} ε

∗
2(β̄k). Then Proposition 3 implies that for ε > ε∗, the

function ψε has a �xed point on each of the intervals (k, k+1), k = 2, . . . , ` implying
a total number of at least ` acims.

6. Numerical results.
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)

(a) N = 108
, ∆ = 10−6

, β1 = 2.001,

ε = 0.1
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2.015
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(
)

(b) N = 107
, ∆ = 10−5

, β1 = 2.03,

ε = 0.2

Figure 2. Approximation of ψε with ergodic averages, F (x) = x.
Px,N (β) is plotted for β ∈ [2, β1] with gridsize ∆ and for x drawn
uniform randomly from [0, 1]. The line x = y is plotted.

6.1. Illustrations of β 7→ ψε(β). To illustrate the results of the previous sections,
we present some computer approximations of the curve β 7→ ψε(β) for some appro-
priate functions F . Since Tβ(x) = βx mod 1 is ergodic (proved in [30]), we can
approximate Eµβ by computing the reciprocal of ergodic averages. This means we
can approximate the graph of ψε by

ψε(β) ≈ Px,N (β) = 2 + εF

(
N∑N−1

n=0 T
n
β (x)

− 2

)
for (Lebesgue) almost every x ∈ [0, 1] and N large.

We �rst consider the setting of Theorem 2.1: the case when F is the identity.
We illustrate on Figure 2 that no matter how small ε is, the curve approximating
β 7→ ψε(β) always grows above the line x = y for β values su�ciently close to 2.
This shows that β 7→ 1

Eµβ
− 2 cannot be Lipschitz at 2, otherwise multiplying it

with su�ciently small ε would force the curve β 7→ ψε(β) = 2 + ε
(

1
Eµβ
− 2
)
to

always stay below x = y.
We now consider the setting of Theorem 2.2. We �rst study the setting of part

(1), that is when ε is su�ciently small. Now β 7→ F
(

1
Eµβ
− 2
)
is Lipschitz at 2 as

a result of F ′(x) = O
(

1
| log x|

)
and the log-Lipschitz continuity of β 7→ 1

Eµβ
− 2. So

su�ciently small ε will not let the curve β 7→ ψε(β) rise above x = y. The results of
our computer simulations are pictured on Figure 3, showing clearly that the curve
approximating β 7→ ψε(β) has a single intersection with the diagonal x = y at
β = 2.

The setting of Theorem 2.2 part (2) is studied on Figure 4 �rst for the special
case F (x) = x2. We can clearly see, as suggested by Corollary 2, that if ε is larger
and larger, the curve approximating β 7→ ψε(β) has intersections with the line x = y
on more and more intervals between two consecutive integers.

Similar plots can be made for F (x) = x4 and F (x) = x6. On Figure 5 we can see
that for su�ciently large ε the curve approximating β 7→ ψε(β) has intersections
with the line x = y, indicating multiple invariant densities.
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(a) F (x) = x2
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(
)

(c) F (x) = x6

Figure 3. Approximation of ψε with ergodic averages. Px,N (β)
is plotted for β ∈ [2, 3] with gridsize ∆ = 10−4, N = 106 and for
x drawn uniform randomly from [0, 1], ε = 0.8. The line x = y is
plotted.

6.2. Stability of the invariant densities. Although the existence of a unique or
multiple invariant measures is an interesting phenomenon on its own, it is natural
to further inquire about their stability. Let dµ = fdλ and let P εf denote the
transfer operator associated to the dynamics T εµ. This operator maps the density h
of a measure ν to the density of the measure (T εµ)∗ν. Consider an initial measure
dµ0 = f0dλ. The associated dynamics is T εµ0

and the associated transfer operator is
P εf0

. Let f1 = P εf0
f0 be the pushforward density and dµ1 = f1dλ be the pushforward

measure. Continuing this further we obtain the nth step pushforward density as

fn+1 = P εfnfn, n = 0, 1, . . .

As an ease of notation, consider the self-consistent transfer operator Fε de�ned as

Fε(fn) = P εfnfn.

An invariant density of the self-consistent system is a �xed point of this operator,
and we can study its stability, that is, if densities su�ciently close to it in some
metric converge to it. A function space well suited to this problem is the space BV
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Figure 4. Approximation of ψε with ergodic averages, F (x) = x2.
Px,N (β) is plotted for β ∈ [2, β1] with gridsize ∆ = 10−4, N = 106

and for x drawn uniform randomly from [0, 1]. The line x = y is
plotted.
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(a) ε = 35, F (x) = x4
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Figure 5. Approximation of ψε with ergodic averages, Px,N (β) is
plotted for β ∈ [2, 3] with gridsize ∆ = 10−4, N = 106 and for x
drawn uniform randomly from [0, 1]. The line x = y is plotted.

of functions of bounded variation, and the metric is the one given by the bounded
variation norm.



A SELF-CONSISTENT DYNAMICAL SYSTEM 15

In case of ε = 0, producing the doubling map as the dynamics in each step, it
is well known that the Lebesgue measure is stable in the sense that all measures
with a density of bounded variation converge to it exponentially fast. It is a natural
question to ask if this still holds in our self-consistent system when Lebesgue is the
unique absolutely continuous invariant measure, so in the setting of Theorem 2.2
part (1). On the other hand, in the setting of Theorem 2.1 and Theorem 2.2 part
(2) we have proved that the Lebesgue measure is a unique invariant measure of
the system for su�ciently small values of ε, but for larger values multiple invariant
measures exits. It would be interesting to see what kind of bifurcation occurs at the
critical value of the coupling: is Lebesgue stable for small ε, and does it stay that
way when multiple invariant measures arise, or does it lose its stability? Also, are
the new invariant measures stable or unstable? For example, it would be interesting
to show a similar behavior to the pitchfork bifurcation observed in the system of
coupled fractional linear maps of [5]: they show that the stable, unique invariant
measure loses stability if the coupling strength is su�ciently increased, and two new
stable invariant measures arise.

To study these questions we present the results of some computer simulations. We
�rst note that there exists an explicit expression for the transfer operator associated
to the β map Tβ(x) = βx mod 1:

Pβf(x) =
∑

y∈T−1
β (x)

f(y)

|T ′β(y)|
, f ∈ L1,

or more explicitly one can write

Pβf(x) =


1
β

∑bβc
k=0 f

(
x+k
β

)
if 0 ≤ x < β − bβc

1
β

∑bβc−1
k=0 f

(
x+k
β

)
if β − bβc ≤ x ≤ 1.

(20)

It is clear that if f is a a �nite linear combination of indicators of intervals (a step
function), Pβf is also a step function. As functions of this kind are easy to store and
manipulate by computer programs, we will restrict to working with densities of this
kind. Note that this restriction means that we do not need to apply a discretization
scheme to compute pushforward densities.

Let the step function f be represented by the vectors xf ∈ [0, 1]N such that
xf (1) = 0 and xf (N) = 1 and yf = (R+

0 )N−1. The vector xf contains the jumps of
the step function in increasing order and yf contains the respective heights of the
steps. We de�ne the total variation of f as

var(f) =

N−2∑
i=1

|yf (i+ 1)− yf (i)|.

Our initial densities will be generated in the following way: xf (2), . . . , xf (N − 1)
are N − 2 numbers drawn from the uniform random distribution on (0, 1) and
then ordered increasingly. The values ỹf (1), . . . , ỹf (N − 1) are also drawn from the
uniform random distribution on (0, 1). We de�ne

yf (i) =
1∑N−1

j=1 ỹf (j)(xf (j + 1)− xf (j))
· ỹf (i), i = 1, . . . , N − 1,

as this is an easy way to generate a fairly general step function of integral 1.
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Let the `expectation' associated to the density f be de�ned as

Ef =

N−1∑
i=1

yf (i)

2
(xf (i+ 1)2 − xf (i)2).

The action of the self-consistent transfer operator Fε(f) can be computed in the
following way: take an initial density represented by the pair of vectors (xf0 , yf0) ∈
[0, 1]N0 × (R+

0 )N0−1. Compute β0 = 2 + εF
(

1
Ef0
− 2
)
de�ning the dynamics Tβ0

.

Compute the new vector of jumps xf1 as the vector containing the values Tβ0(xf0(i)),
i = 1, . . . , N0 and 1 in increasing order.

To compute the new heights of the steps, choose ρ > 0 such that ρ < min |xf1
(i+

1)− xf1
(i)| and compute

yf1
(i) = Pβ0

f0(xf1
(i+ 1)− ρ) for i = 1, . . . , N0

by using the formula (20). As f0 is piecewise constant and exactly stored, the
evaluation of a f0 at prescribed places is not an issue. Set N1 = N0 + 1 and repeat
with (xf1

, yf1
) ∈ [0, 1]N1 × (R+

0 )N1−1.
Our procedure is the following: we generate K1×K2 of the above described step

functions in the following way: for each k = 1, . . . ,K1 we generate a random integer
between 1 and M (denote this by m(k)) and generate K2 step functions with m(k)
inner jumps (this means not counting 0 and 1). This gives us a fairly general pool
of initial densities.

We then compute the T long trajectories of the densities with respect to the
self consistent transfer operator Fε. We are going to use the notation f it = Fεf i0
where the lower index refers to time and the upper index to which one of the initial
densities we are considering, so t = 1, . . . , T and i = 1, . . . ,K1 ×K2.

However, our experience is that computational errors grow rapidly and seriously
skew our results in the long run. So in each iteration we normalize f it by the
numerical integral

I(f it ) =

N∑
j=1

yfit (j)(xfit (j + 1)− xfit (j)),

de�ning

f̃ it =
1

I(f it )
f it .

This assures us that the Perron-Frobenius operator is indeed applied to a density
function. This density f̃ it might not be the actual density F tε(f i0), but one close to
it. It can be thought of as F tε(gi0) for some di�erent initial density gi0 by anticipating
a type of shadowing property.

We are going to study two mean quantities of the densities. De�ne the mean

slope of the densities at time t as

β(t) =
1

K1 ×K2

K1×K2∑
i=1

2 + εF

(
1

Ef̃it
− 2

)
and the mean total variation as

var(t) =
1

K1 ×K2

K1×K2∑
i=1

var(f̃ it ).



A SELF-CONSISTENT DYNAMICAL SYSTEM 17

Finally, we de�ne our notions of stability of an invariant density f∗(ε). We are going
to study two types of stability.

1. Stability in the BV-norm:

varf∗(ε)(t) =
1

K1 ×K2

K1×K2∑
i=1

var(f̃ it − f∗(ε))→ 0 as t→∞

2. Stability in the L1-norm:

intf∗(ε)(t) =
1

K1 ×K2

K1×K2∑
i=1

∫
[0,1]

|f̃ it − f∗(ε)|dλ→ 0 as t→∞

If an explicit expression for f∗(ε) is not available, then in practice f∗(ε) is f̃T̄ (ε)
for some T̄ considerably larger than T and some �xed initial density, as we assume
this is a good approximation of an invariant density.

Note that L1-stability is weaker than BV -stability. We further remark that
var(t) → 0 as t → ∞ implies stability of the uniform invariant density in the
BV -sense.

We �rst consider the setting of Theorem 2.1. In this case we studied the values
ε = 0.1 and ε = 0.2. From Figure 2 we can read that there exists an invariant density

f∗(ε) for which 2 + εF
(

1
Ef∗(0.1)

− 2
)
≈ 2.0006 and 2 + εF

(
1

Ef∗(0.2)
− 2
)
≈ 2.0181.

Running our simulations we can see from Table 1 that in both cases var does not
converge to zero, so the uniform density is not stable in BV -sense. To convince
ourselves more thoroughly that the constant density is indeed not stable, we made
computations with pools of initial densities very close to the constant one in the
sense that var(f i0) < 10−4. In this case convergence is slower, but it is clearly not
to the constant density, see Table 2.

On the other hand, we can also read form Table 1 that β converges to 2.0006 and
2.0181 for ε = 0.1 and 0.2 respectively, and this suggests that the nontrivial invariant
densities are stable. Table 3 provides further evidence pointing to the stability of
the nontrivial invariant densities in the L1-sense. Note that convergence of intf∗(ε)
to zero is not something to be expected since f̃T̄ (ε) is just an approximation of
f∗(ε). However, as T̄ is larger, intf∗(ε) converges to smaller values which supports
our hypothesis.

So it seems likely that the constant density looses its stability (in the L1-sense)
as ε becomes larger than zero, and a new stable invariant density arises (in the
L1-sense).

To back our assumption that var and β̄ correctly describes the behavior of a
typical density, we plot all the total variation and β for the densities on Figures 6
and 7 respectively, for each time instance. We can see that they all converge to a
single value, hence the averaging does not give an average of di�erent asymptotic
behaviors but shows us the true one.

The asymptotic densities obtained from iterating an appropriate initial density
for both cases ε = 0.1 and ε = 0.2 are pictured on Figure 8.

Finally we discuss the convergence of our method depending on the value of ε.
By convergence we mean that the quantities var and β settle at a value var∗ and
β∗ in the sense that

|var∗ − var(t)| < 10−4 and |β∗ − β(t)| < 10−4 for t = T0, . . . , T1,
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t var β
0 7.1815 2.0065
5 1.1544 2.0039
10 0.9559 2.0020
15 0.9856 2.0015
20 0.9901 2.0012
25 0.9917 2.0011
30 0.9928 2.0010
35 0.9934 2.0009
40 0.9940 2.0008
45 0.9944 2.0008
50 0.9947 2.0007
55 0.9949 2.0007
60 0.9950 2.0007
65 0.9952 2.0007
70 0.9953 2.0007
75 0.9954 2.0007
80 0.9954 2.0007
85 0.9955 2.0007
90 0.9955 2.0006
95 0.9956 2.0006
100 0.9956 2.0006

t var β
0 5.1121 1.9993
5 0.9983 2.0130
10 0.9415 2.0117
15 0.9490 2.0134
20 0.9429 2.0149
25 0.9371 2.0160
30 0.9341 2.0165
35 0.9323 2.0168
40 0.9330 2.0171
45 0.9320 2.0174
50 0.9309 2.0176
55 0.9298 2.0178
60 0.9289 2.0179
65 0.9280 2.0180
70 0.9274 2.0181
75 0.9270 2.0181
80 0.9269 2.0181
85 0.9269 2.0181
90 0.9269 2.0181
95 0.9270 2.0181
100 0.9270 2.0181

Table 1. Computation of the mean total variation var and mean
slope for F (x) = x. T = 100, M = K1 = K2 = 10. Left hand side:
ε = 0.1, right hand side: ε = 0.2.

t var β
0 0.0000 2.0000
25 1.0000 2.0000
50 1.0000 2.0000
75 1.0000 2.0000
100 0.9998 2.0000
125 0.9995 2.0001
150 0.9987 2.0002
175 0.9978 2.0003
200 0.9969 2.0005
225 0.9966 2.0005
250 0.9966 2.0005
275 0.9964 2.0005
300 0.9962 2.0006

t var β
0 0.0000 2.0000
25 1.0000 2.0000
50 0.9993 2.0003
75 0.9783 2.0072
100 0.9362 2.0160
125 0.9307 2.0177
150 0.9268 2.0181
175 0.9269 2.0181
200 0.9269 2.0181
225 0.9269 2.0181
250 0.9269 2.0181
275 0.9269 2.0181
300 0.9269 2.0181

Table 2. Computation of the mean total variation var and mean
slope for F (x) = x, var(f i0) < 10−4. T = 300, M = K1 = K2 = 10.
Left hand side: ε = 0.1, right hand side: ε = 0.2.
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t intf∗(0.1) intf∗(0.2)

0 0.4096 0.5018
10 0.0101 0.0321
20 0.0049 0.0174
30 0.0028 0.0097
40 0.0017 0.0064
50 0.0011 0.0040
60 0.0007 0.0021
70 0.0005 0.0007
80 0.0004 0.0003
90 0.0003 0.0002
100 0.0002 0.0001
110 0.0002 0.0001
120 0.0002 0.0001
130 0.0001 0.0001
140 0.0001 0.0001
150 0.0001 0.0001
160 0.0001 0.0001
170 0.0001 0.0001
180 0.0001 0.0001
190 0.0001 0.0001
200 0.0001 0.0001

Table 3. Computation of intf∗(ε) and mean slope for F (x) = x,

T = 200, T̄ = 5000. M = K1 = K2 = 10.
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(b) ε = 0.2

Figure 6. Total variation for each f it as a function of time, F (x) =
x, T = 100, K1 ×K2 = 100.

where we choose T0, T1 to be some �xed large numbers. In Figure 9 we plotted the
mean total variation and mean slope of the last 50 iterates of our density pool for
a range of ε values, that is, we chose T0 = 150 and T1 = 200. If this produces a
considerable range of values for a single ε (an interval having length larger then



20 F. M. SÉLLEY

0 20 40 60 80 100

t

1.9

1.95

2

2.05

2.1

2.15

2.2

(a) ε = 0.1

0 20 40 60 80 100

t

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

(b) ε = 0.2

Figure 7. Associated slope to each f it as a function of time,
F (x) = x, T = 100, K1 ×K2 = 100.
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Figure 8. Approximation of the invariant density of the self-
consistent system (4) with F (x) = x by a high iterate of an appro-
priate initial density.

10−4 above an ε value), then the method does not converge. So we can read from
this �gure that our method is converges until ε ≈ 0.4.

Now we move on to consider the setting of Theorem 2.2. We studied the cases
F (x) = x2, F (x) = x4 and F (x) = x6 for a few values of ε for which simulations
similar to the ones discussed for the case of F (x) = x clearly suggest unique or
multiple absolutely continuous invariant measures. In the �rst columns of Tables 4
we see computations in the cases when the constant density is the unique invariant
one, see Figure 3. We can see that in all cases var(t) decreases rapidly, suggesting
the stability of the invariant constant density in BV -sense.

In the second columns of Tables 4, we considered situations where multiple in-
variant densities exist, see Figure 4 (a) and Figure 5. In case of F (x) = x2, our
method does not converge in the sense that the values of var do not settle at a value
with precision 10−4 if we consider any subinterval t = T0, . . . , 100. We did other
experiments with T1 = 500 and T1 = 1000, T0 = T1 − 100 but obtained similar
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Figure 9. For each ε = k · 10−3, k = 1, . . . , 103 the values var(t)
and β(t) are plotted for t = 150, . . . , 200, F (x) = x, K1×K2 = 100.

t ε = 1 ε = 2.5
0 6.4694 5.0341
5 1.2483 1.1951
10 0.9808 0.8849
15 0.9914 0.8471
20 0.9976 0.8447
25 0.9994 0.8275
30 0.9999 0.8418
35 1.0000 0.8305
40 1.0000 0.8468
45 1.0000 0.8321
50 0.9531 0.8358
55 0.5357 0.8382
60 0.1802 0.7651
65 0.0128 0.6366
70 0.0004 0.5117
75 0.0000 0.4535
80 0.0000 0.4269
85 0.0000 0.4255
90 0.0000 0.4015
95 0.0000 0.3966
100 0.0000 0.3813

t ε = 1 ε = 35
0 5.3766 6.4806
5 1.2370 1.1785
10 0.9882 0.9788
15 0.6884 0.9873
20 0.0474 0.5994
25 0.0015 0.1093
30 0.0000 0.0347
35 0.0000 0.0023
40 0.0000 0.0001
45 0.0000 0.0000
50 0.0000 0.0000
55 0.0000 0.0000
60 0.0000 0.0000
65 0.0000 0.0000
70 0.0000 0.0000
75 0 0.0000
80 0 0.0000
85 0 0
90 0 0
95 0 0
100 0 0

t ε = 1 ε = 400
0 7.7582 5.1444
5 1.3852 1.0419
10 0.5224 0.5990
15 0.0210 0.1435
20 0.0007 0.0026
25 0.0000 0.0002
30 0.0000 0.0000
35 0.0000 0.0000
40 0.0000 0.0000
45 0.0000 0.0000
50 0.0000 0.0000
55 0.0000 0.0000
60 0.0000 0.0000
65 0 0.0000
70 0 0
75 0 0
80 0 0
85 0 0
90 0 0
95 0 0
100 0 0

Table 4. Computation of the mean total variation var. T = 100,
M = K1 = K2 = 10. Left hand side: F (x) = x2, center: F (x) =
x4, right hand side: F (x) = x6.

results. However, a slow decrease of var is observable, so we do not exclude the
possibility that we could obtain convergence for T1 = 10k for some k large, but our
limited resources prohibit us from carrying out such computations in a reasonable
amount of time.

On the other hand, for F (x) = x4 and F (x) = x6 we see fast convergence of var
to zero implying that the constant density is likely to be stable one in BV -sense.
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(a) F (x) = x2, ∆ = 10−3
, E = 2.5
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(b) F (x) = x4, ∆ = 0.5, E = 100
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(c) F (x) = x6, ∆ = 10−2
, E = 12

Figure 10. For each ε = k ·∆, k = 1, . . . , E/∆ the values var(t)
are plotted for t = 150, . . . , 200, K1 ×K2 = 100.

On Figure 10 we discuss the convergence of our method for a range of ε similarly
as we have done for F (x) = x (plotted on Figure 9). We can see that for F (x) = x2

our method becomes erratic for larger ε values than ε ≈ 1.6. But our method
seems to converge nicely in the F (x) = x4 and F (x) = x6 case for all values of ε
considered.

7. Concluding remarks. To answer the question regarding stability rigorously,
the careful study of the self-consistent transfer operator is necessary. When ε = 0,

Fnε = PnT ,

where PT is the transfer operator of the doubling map. The stability result regarding
the doubling map can be proved by elementary means: one can show by explicit
calculations that ‖PnT f − 1‖BV ≤ C

2n ‖f − 1‖BV for all f ∈ BV ([0, 1],R) such that∫ 1

0
f = 1 However, when ε > 0 we have to deal with the self-consistency. In this

case

Fnε = P εf0
P εf1

. . . P εfn−1

for some densities f0, . . . fn−1, so the problem does not simplify to the study of a
single linear operator. Provided that ε is small enough, it is natural to expect that
P εf0

P εf1
. . . P εfn−1

is `close' to PnT in some sense, hence acts similarly. In the coupled

map systems of [24] and [4] giving rise to self-consistent dynamics this is precisely
the strategy to prove stability in BV . However, the (C3 or C2 and Lipschitz second
derivative) smoothness of the stepwise dynamics is an essential part of their proof.
In the setting of this paper, the stepwise dynamics T εµ is discontinuous, posing a
major technical di�culty, so it can also be the case that di�erent tools are needed
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to study the asymptotic behavior of the operator Fε. In correspondence to the
numerical stability of the nontrivial invariant densities of the case F (x) = x, we
also believe that in full generality only stability in the L1-sense is to be expected.

Another question that arises observing the Figures 2 and 4 is if the intersection
of the numerical approximation of β 7→ ψε(β) and the line x = y approximates a
single intersection of β 7→ ψε(β) and x = y or in�nitely many accumulating ones.
As the regularity of ψε is quite low, one can quite possibly imagine in�nitely many
intersections reminiscent of the in�nitely many accumulating zeros of the trajectory
of Brownian motion. This would be interesting, as it would give in�nitely many
absolutely continuous invariant measures.
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