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Abstract

In this paper, we provide exact FFT-based numerical bounds for the elastic prop-
erties of composites having arbitrary microstructures. Two bounds, an upper and a
lower, are derived by considering usual variational principles based on the strain and
the stress potentials. The bounds are computed by solving the Lippmann-Schwinger
equation together with the shape coefficients which allow an exact description of
the microstructure of the composite. These coefficients are the exact Fourier trans-
form of the characteristic functions of the phases. In this study, the geometry of
the microstructure is approximated by polygonals (2D objects) and by polyhedrons
(3D objects) for which exact expressions of the shape coefficients are available. Var-
ious applications are presented in the paper showing the relevance of the approach.
In the first benchmark example, we consider the case of a composite with fibers.
The effective elastic coefficients ares derived and compared, considering the exact
shape coefficient of the circular inclusion and its approximation with a polygonal.
Next, the homogenized elastic coefficients are derived for a composite reinforced
by 2D flower-shaped inclusions and with 3D toroidal-shaped inclusions. Finally, the
method is applied to polycristals considering Voronoi tessellations for which the
description with polygonals and polyhedrons becomes exact. The comparison with
the original FFT method of Moulinec and Suquet is provided in order to show the
relevance of these numerical bounds.
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1 Introduction

An alternative approach to Finite Elements Methods (FEM) has been pro-
posed in the middle of the nineties by Moulinec ans Suquet [13] for the com-
putation of the effective properties of elastic composites. The unit cell problem
is solved by means of an iterative scheme which uses the periodic Green ten-
sor for the strain and could be directly applied to digital images which come
from modern devices such as µ−tomograpy. An alternative approach based
on the form factors or the shape coefficients (following the terminology used
in the book of Nemat-Nasser [15]) has been developed by Bonnet [4] to im-
prove the FFT solutions. The shape coefficients are the exact expressions of
the Fourier transform of the characteristic functions of the phase. Closed-form
expressions are available for inclusions having ellipsoidal shapes [15] and have
been later considered to improve the FFT solutions in the case of a composite
with aligned cylindrical fibers [4]. Note that the shape coefficients are also the
basis of recent closed-form approximation expressions of effective properties
of periodic composites [17,18]. Accordingly to Ref. [4], for many problems, the
microstructure geometry is only approximated when using the Moulinec and
Suquet method [13]. As for example, in the case of a composite with fibers, the
cross section geometry is approximated with squared pixels which leads to a
poor approximation of the real geometry and introduces corners which reduce
the convergence of the method. Note that an alternative approach consists to
use composite pixels [5,6,9,8]. Later, it has been demonstrated that the use of
the shape coefficients in the FFT ”strain” and ”stress” based iterative schemes
provides rigorous bounds of the effective elastic properties of the composites
[11]. The method has been also recently extended to the case of composites
with interface discontinuities [12].
However, the method based on shape coefficients is restricted to compos-
ites with ellipsoidal inclusions which considerably reduces the capacity of the
approach. In this paper, we propose to extend the method to arbitrary mi-
crostructures, making use of recent results [19] on the shape coefficients for
polygons and polyhedrons. Such expressions are the basis of the approxima-
tion used in that paper to describe the geometry of the inclusions; leading
obviously to better approximation than pixels. Note that such approximation
is also the basis of the finite element method since each interface is discretized
with a finite number of nodes connected by segments (in 2D). The benchmark
problem of a circular inclusion is first considered: the solution with the exact
shape coefficient [4] is compared with the solution based on equilateral poly-
gons. Next, we apply the approach to the case of a composite with ”flower
shaped” and toroidal inclusions. Finally, we apply the approach to polycrys-
tals simulated by Voronoi tesselations for which the description with polygones
(in 2D) and polyhedrons (in 3D) is exact. Through these different examples,
the FFT numerical bounds are compared with the solution derived with the
original method of Moulinec and Suquet [13].

2



2 Derivation of FFT numerical bounds

We consider a heterogeneous elastic material defined by a parallelepipedic
unit cell and three (two for plane strain or plane stress problems) vectors of
translation invariance. The unit cell is made up of M phases whose elastic
(resp. compliance) tensors are denoted by Cα (resp. Sα = (Cα)

−1) with α =
1..M . Classically, the local problem involves the compatibility equations, the
linear elastic constitutive law, the equilibrium and the periodic conditions at
the boundary of the unit cell:





ε(x) = 1

2
(∇u(x) +∇tu(x)), ∀x ∈ V

σ(x) = C(x) : ε(x), ∀x ∈ V

div(σ(x)) = 0, ∀x ∈ V

u(x)−E.x periodic, σ(x).n antiperiodic

(1)

in which the stiffness tensor C(x) (resp. the compliance S(x)) of the hetero-
geneous medium is given by:

C(x) =
∑

α

Iα(x)Cα, S(x) =
∑

α

Iα(x)Sα

with : Iα(x) =




1 ∀x ∈ Vα

0 ∀x ∈ V − Vα

(2)

Iα(x) for α = 1..M are the characteristic functions associated with the phases
Vα, they satisfy to

∑
α Iα(x) = 1. Prescribed macroscopic strain E =< ε >V

or macroscopic stress Σ =< σ >V are classically considered.
Variational principles based on the macroscopic elastic energy could be con-
sidered to determine a lower and an upper bound for the effective elastic coef-
ficients of the composites. Following Ref. [11], the discretization is performed
with truncated Fourier series for the strain or the stress. Thus, for any real
quantity f we put:

f(x) =
n=N−1∑

n=−N

f̂(ξn) exp(iξn.x), f̂(ξ) =< f(x) exp(−iξ.x) >V , (3)

where < • > V denotes the volume average of the quantity“•”over the volume
V of the unit cell. Moreover, ξn for n = −N..N − 1 denote the discrete wave
vectors given by:

ξn = 2πnζ, n = −N..N − 1, ζi =
1

Li

(4)
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and L1, L2, L3 are the dimensions of the cell along the three space directions x1,
x2 and x3. Obviously, the problem is discretized along each space direction,
this would involve the use of two indices n1 and n2 for 2D problems and
three for 3D one. However, only one indice n is used for simplicity. Still for
simplicity, we shall use the notation f̂n, the Fourier transform of f associated
with the wave vector ξ

n
. Particularly, the Fourier component corresponding

to n = 0 of the quantity f̂ represents its average over the volume of the cell,
f̂0 =< f(x) >V . For instance, we have ε̂0 = E and σ̂0 = Σ.
The stationarity point of the strain based potential with respect to ε̂n can
be computed with the following recurrence relation (all the details about the
demonstration could be found in [11]):

(ε̂n)
i+1 = (ε̂n)

i − Γ̂0

n :

[
α=M∑

α=1

Cα : (ε̂αn)
i

]
(5)

which starts with ε̂i=1
n = 0 for n 6= 0 and ε̂i=1

0 = E. Note that the iterative
scheme has the same general structure than that already provided by Moulinec
and Suquet [13]. Particularly, it uses the same expression for the Green tensor
Γ0, the latter is explicitly known in the Fourier space and can be found for
instance in [13,14,10,11]. The difference with the scheme of Moulinec and Su-
quet [13] lies in the calculation of the elastic response of the composite. In the
present iterative scheme, it involves the computation of (ε̂αn)

i at each iteration
by computing the discrete convolution product between the shape coefficient
of the phase α with the strain (ε̂n)

i. The discrete convolution product reads:

εαn =
m=N−1∑

m=−N

Îα(ξn − ξm)ε̂m (6)

A lower bound for the homogenized elastic tensor is computed with the stress
based iterative scheme. This scheme has been formulated by [1,4], it uses the
compliance tensors Sα for α = 1..M and the dual, stress based, Green operator
∆0:

(σ̂n)
i+1 = (σ̂n)

i − ∆̂0

n :

[
α=M∑

α=1

Sα : (σ̂α
n)

i

]
(7)

which is initialized with σ̂n = 0 for any n 6= 0 and σ̂0 = Σ. In (7), Sα is the
compliance of the phase α, ∆̂0

n are the Fourier coefficients of the Green tensor
for the stress whose expression could be found in [1,4]. At each step of the
stress based iterative scheme, we need to compute σ̂α

n which, again, requires
the convolution product between the shape coefficients with the stress.
It must be emphasized that the main differences between the present FFT
iterative schemes and that of Moulinec and Suquet [13,14] lies in the use of
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the shape coefficients to make the convolution product in Eq. (6). Indeed, in
the Moulinec-Suquet approach [13,14], the inverse FFT of ε̂n is computed to
obtain ε̂n that represents the strain at the nodes of a regularly spaced grid in
the real space. The latter is multiplied by the characteristic function Iα(xn),
here xn denote the position of the nodes of the grid. As a consequence, the
real geometry is then replaced by voxels. The bound property of the solu-
tions is ensured if the exact expression of Îα(ξn) is used. Formally, we have
Îα(ξn) 6= FFT (Iα(xn)) except for an infinite number of wave vectors. By in-
creasing the number of wave numbers, the two methods converge to the same
solution. The two methods are then equivalent for infinite number of wave
vectors but differs at finite number. With the shape coefficients, it is possible
to enclose the exact solution at any value of the wave number while, however,
with the Moulinec-Suquet method, only an estimate of the solution is com-
puted, neither an upper bound nor a lower bound. In addition, it will be shown
in the numerical examples, that the Bhattacharya-Suquet stress based itera-
tive scheme [1] (the stress based counterpart of the Moulinec-Suquet method)
leads to the same estimation of the homogenized elastic properties.
Note also that since n and m vary from −N to N − 1, then n−m varies from
−2N to 2N−2 in Eq. (6). As a consequence Îα(ξn−ξm) must be computed on
a double grid (dimension is 4N × 4N) while the coefficients ε̂m are computed
on the simple grid (dimension is 2N × 2N). The components Îα(ξn) must be
computed before the iteration process and stored. The procedure is computa-
tionally more expensive than the original scheme [13] because the convolution
product is made on the double grid while the former method uses a repre-
sentation of the elasticity tensor on the simple grid. To conclude, the bound
character of the solutions requires: (i) to use the exact expressions of the shape
coefficients, (ii) to make the discrete convolution product on the double grid.
More details about the numerical implementation of the discrete convolution
product on the double grid could be found in [11]. In the next section we
discuss more about the shape coefficient. At this stage, it must be recalled
that the shape coefficients are only known in the case of ellipsoids. For other
inclusion shapes, we propose to approximate with polygons and polyhedrons.

3 Shape coefficients

3.1 Definition and properties

The shape coefficient of the phases Vα is the Fourier transform of the character-
istic function Iα(x). It is denoted Îα(ξ). First, note that the Fourier coefficient
corresponding to n = 0 represents the volume average of the corresponding
quantity. It follows that:
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Îα(ξ = 0) =< Iα(x) >V= cα (8)

where cα = Vα/V represents the volume fraction of the phase of volume Vα.
Due to the property:

α=M∑

α=1

Iα(x) = 1 (9)

It can be deduced that:

∀ξ 6= 0 :
α=M∑

α=1

Îα(ξ) = 0 (10)

This means that, for a two-phase composite, the shape coefficient of the matrix
is known as soon as that of the inclusion phase is known.

3.2 Shape function of polygons

Consider a polygon in the plane (e1, e2) where (e1, e2, e3) is the cartesian
frame and e3 is orthogonal to the polygon. Let us denote the positions of its
corners by r1, r2, r3, ..., rJ , the corners being numbered in counter-clockwise
direction and their total number is J . The shape function Î(ξ) of the polygon
is given, ∀ξ 6= 0, by:

Îα(ξ) = −
i

S

e3 ∧ ξ

‖ξ‖2
.

J∑

j=1

vjsinc

(
ξ.vj

2

)
exp(−iξ.Xj) (11)

in which ‖ξ‖ denotes the norm of ξ, vj = (rj−rj−1) and Xj =
rj+rj−1

2
defines

the center of the segment (rj−1, rj) (see Fig. 1), also the convention r0 = rJ
must be applied in the summation over j in Eq. (11). Moreover S represents
the area of the unit cell which is taken equal to 1 in our computations. In Eq.
(11), “sinc” is the cardinal sine function (defined by sinc(x) = sin(x)/x). Note
that in Ref. [19], various expressions for the shape coefficients of polygons are
provided and they are all mathematically equivalent. However the expression
given by Eq. (11) is the most convenient for the numerical, implementation
since it uses the cardinal sine that admits the limit sinc (ξ.vj/2) = 1 when
ξ.vj = 0. Indeed, during the numerical integration of the shape coefficient the
factor ξ.vj can be null or very close to zero when a wave vector ξ is orthogonal
to an edge. For instance, if an edge is oriented along the x1-axis, the factor
ξ.vj is null for all the wave vectors corresponding to ξ1 = 0. Expressions given
by Eq. (11) takes appropriately the limit in such situation.
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r1

r2

r3
r4

r5 X1

X2

X3

X4

X5

Fig. 1. Positions and centers of the edges of the polygonal.

When ξ = 0, the shape coefficient of the polygon is Î(ξ) = A/S where A
denotes the area of the polygon defined by:

A =
1

2
e3.

J∑

j=1

rj−1 ∧ rj (12)

3.3 Expression for polyhedrons

A polyhedron is defined by its K flat faces denoted Γk for k = 1...K. Each face
Γk is a Jk-polygon given by the simple polygonal vertex chain (rk,1, ..., rk,J)
and by the normal unit vector nk of the polyhedron that pointing towards
outside the polyhedron. From a practical point of view, when implementing
the method, the mesh on the boundary of the inclusion can be obtained from
a mesh generator software, a numerical test can be applied to check that all
points of the polygonal chain of the simple polygon are coplanar. The test
consists to check that the quantity

Dk = rk,j.nk (13)

is independent of j. Note that |Dk| represents the distance from the origin of
the cartesian frame to the plane that contains the polygonal Γk.
The shape coefficient of the α-polyhedron is ∀ξ 6= 0 and ∀ξ such that ‖ξ‖ 6=
ξ.nk:

Î(ξ) = −
i

V

K∑

k=1

ξ.nk

‖ξ‖2
χk(ξ) (14)

where V denotes the volume of the unit cell and:

χk(ξ) = −i
nk ∧ ξ

‖ξ‖2 − (ξ.nk)2
.

J∑

j=1

vk,jsinc

(
ξ.vk,j

2

)
exp (−iξ.Xk,j) (15)
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with vk,j = (rk,j − rk,j−1) and Xk,j = (rk,j + rk,j−1)/2 defines the center of
the segment (rk,j−1, rk,j). The convention rk,0 = rk,J must be used in the
summation over j in (15). Note that χk(ξ) is the 2D-shape function of the
facet k of the polyhedron.
If ξ 6= 0 but ‖ξ‖ = ξ.nk, the shape function is given by:

Î(ξ) = −
i

V

K∑

k=1

Ak

ξ.nk

exp(−iDkξ.nk) (16)

where Ak is the area of the polygonal Γk and Dk is given by Eq. (13).
Finally, when ξ = 0, the shape coefficient is Iα(ξ) = Ω/V in which Ω is the
volume of a the polyhedron which can be conveniently computed from:

Ω =
1

3

K∑

k=1

AkDk (17)

From a numerical point of view, during the computation of the shape function,
we need to test if the discrete wave vectors are colinear to the normal unit
vector nk of the polygonal Γk. If it is, the alternative expression given by Eq.
(16) must be used. Note that the wave vectors are discretized along each space
direction with 2N wave numbers n = −N..N − 1 (see Eq. (4)), then a total of
(2N)3 wave vectors are considered. Moreover, the boundary of the inclusion
must be discretized with a large number of facets and for each one we must
check if the (2N)3 wave vectors are colinear to the normal unit vector nk to
the facet. A more efficient and economic method is proposed below.
Let us denote:

Bk(ξ) =
√
‖ξ‖2 − (ξ.nk)2 (18)

When ξ is colinear to nk, the quantity Bk(ξ) is null and the shape coefficient
must be computed with expression (16). let us introduce the function Yk(ξ, ǫ)
defined by:

Yk(ξ, ǫ) = H(Bk(ξ)− ǫ) (19)

where H(x) is the heaviside function:

H(x) =




0 if x < 0

1 if x ≥ 0
(20)

Then, we propose to replace Bk(ξ) by the quantity:
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Bk(ξ, ǫ) = Bk(ξ)Yk(ξ, ǫ) + (1− Yk(ξ, ǫ))ǫ (21)

which is equivalent to:

Bk(ξ, ǫ) =




Bk(ξ) if Bk(ξ) ≥ ǫ

ǫ if Bk(ξ) < ǫ
(22)

As a consequence, all the values of Bk(ξ) inferior to ǫ are replaced by the value
ǫ in the expression of Bk(ξ, ǫ). It must be emphasized that Bk(ξ) is obtained
as the limit of Bk(ξ, ǫ) for ǫ → 0. The main idea of the approach is to eliminate
the singularity in the expression of χk(ξ) given by Eq. (15) by replacing the
factor ‖ξ‖2 − (ξ.nk)

2 by B2
k(ξ, ǫ) that is strictly positive owing to expression

(22).
Let us now replace in Eq. (14) the term χk(ξ) by:

χk(ξ, ǫ) = −i





nk ∧ ξ

B2
k(ξ, ǫ)

.
J∑

j=1

vk,jsinc

(
ξ.vk,j

2

)
exp (−iξ.Xk,j)



Yk(ξ, ǫ)

+Ak exp(−iDkξ.nk)(1− Yk(ξ, ǫ))

(23)

Advantageously, we have only on expression for the shape function considering
Eq. (13) in which χk(ξ) is replaced by χk(ξ, ǫ). With this substitution, the
singularity in Eq. for ‖ξ‖ = ξ.nk is removed. The numerical tests show that
χk(ξ, ǫ) and χk(ξ) are equal by considering the value ǫ = 10−3.

4 Benchmark problem

In order to validate the approach, we consider the simple case of a composite
with circular inclusions (see Fig. 2. Each phase is assumed to be isotropic;
the elastic coefficients of the matrix are λ1 = 1, µ1, that of the inclusion are
λ2 = 10 and µ2 = 10. The index “1” makes reference to the matrix while
index “2” makes reference to the inclusion phase. The radius of the inclusion
is R = 0.25, the dimension of the unit cell is 1 along each space direction.
The exact shape coefficient for a circular inclusion can be found in [4] and is
expressed with the Bessel function of the first kind and first order J1 :

∀ξ 6= 0 : I2(ξ) =
πR

2S‖ξ||
J1(R‖ξ|) (24)

For ξ = 0, the shape coefficient is I2(ξ) = πR2/S. The area of the unit cell is
S = 1 for the numerical application.
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Alternatively, we approximate the shape coefficient with a regular polygon by
considering a discretization with nodes evenly spaced on the boundary of the
circle (see Fig. 2). The number of edges is J , equal to the number of nodes
and all edges have the same length.

r1

r2r3

r4

r5 r6

Fig. 2. Unit cell of the composite with a circular inclusion. Approximation of the
shape of the inclusion with a regular polygon.

In Fig. 3, the left subfigure show the macroscopic elastic coefficient C11 (in
Kelvin notation [16]) as function of the number of polygonal edges J . The so-
lution tends asymptotically to the exact shape coefficient solution J increases.
The relative error between the two solutions is provided in Fig. 3 (at the
right). It is observed a good convergence, the relative error is of order 10−4 by
considering J = 100 edges.
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Fig. 3. Left: variations of the effective elastic coefficient C11 as function of the number
of edges J (for the polygonal approximation) and its comparison with the solution
with the exact shape coefficient. Right: relative error between the two solutions
(using the approximate and exact shape coefficient of the inclusion).

5 Flower shape inclusion

The method is now applied to a composite with inclusions having a flower
shape. In Fig. 4 show a unit cell containing a single flower shape inclusion
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centered at the origin on the left and a population of flower shape inclusions
on the right. The geometry of a single inclusion is obtained considering a
boundary delimited by the coordinates x1 = ρ(θ) cos(θ), x2 = ρ(θ) sin(θ) with
ρ(θ) = R cos(2θ) and R = 0.25. In the case of multiple inclusion, we use the
same parametrized function with R = 0.15 and the population is generated
by considering the translation property of the Fourier transform. Specifically,
the shape coefficient of a flower located at x = X is computed from that
located at the origin and by multiplying it by the factor “exp(iξ.X)”. From
a numerical point of view, the shape coefficient of a single centered flower
inclusion is first computed. Next, the shape coefficient for the population of
inclusions is obtained by multiplying the aforementioned shape coefficient by
the factor “

∑
i exp(iξ.Xi)”where Xi represents the positions of the inclusions.

For the simulations, we use the same elastic coefficients that for the circular
inclusion.

Fig. 4. Composite with one (left) and multiple (right) flower shape inclusions.

We consider a unit cell containing a flower-shape inclusion centered at the
origin (see Fig. 4 at the left). The variations of the elastic moduli with the
number of edges is represented in Fig. 5 for the two bounds: the strain based
upper bound (”strain UB” in Fig. 5), the stress based lower bound (”stress
LB” in Fig. 5). The number of wave vectors is N = 128. It is observed a good
convergence for J = 200 edges. This value is used thereafter for the comparison
between the different solutions.
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4.5

4.6

4.7

C22

50 100 150 200
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Number of edges J

Number of edges J

Number of edges J

Number of edges J

Number of edges J

Number of edges J

Fig. 5. Variation of the effective elastic coefficients obtained with the two bounds
as function of the number of edges.

We now consider the case of a composite with a population of inclusions (see
Fig. 4 at the right). Figure 6 show results of the effective elastic coefficients
for J = 200 as function of the wave number N taken along each space direc-
tions. We compare the two bounds with the solution computed with the strain
based FFT iterative scheme of Moulinec-Suquet [13] (denoted ”strain MS” in
the legend). Also we provide the results obtained with the dual ”stress based”
iterative of Bhattacharya-Suquet scheme [1] which also use a description of the
microstructure with pixels in the real space ’denotes ”stress BS” in the legend).
It is first observed that the two FFT numerical bounds have a uniform con-
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vergence. Moreover, the iterative Moulinec-Suquet and Bhattacharya-Suquet
schemes leads to the same estimates of the effective properties of the composite
which are comprised between the two bounds.
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Fig. 6. Effective coefficients of the composite with the flower shape inclusions. Com-
parison of the solutions obtained with the different FFT iterative schemes.
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6 Toroidal inclusion

We consider a composite constituted of toroidal inclusions with axis of rev-
olution aligned along the x3-axis. The coordinates of the surface are given
by:





x1 = (R + r cos(θ)) cos(ϕ)

x2 = (R + r cos(θ)) sin(ϕ)

x3 = r sin(θ))

(25)

with θ = [0..2π] and ϕ = [0..2π]. The parameters R and r are known as the
major and the minor radius. While R is the distance from the center of the tube
to the center of the torus, r is the radius of the tube. Since there is no available
analytic expression for the shape coefficient in the literature, the geometry is
then approximated by polyhedrons. In our numerical applications, we choose
R = 0.25 and r = 0.1, the dimension of the cuboidal unit cell is L = 1. The
unit cell contains one toroidal inclusion centered at the origin. The surface of
the torus is discretized by considering p discrete values regularly distributed
in the interval [0..2π] for both θ and ϕ. The surface of the toroidal inclusion
is then described by K = p× p facets as shown in Fig. 7.
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Fig. 7. Toroidal inclusion with K = 10× 10 facets and K = 30× 30 facets.

The computation of the homogenized elastic coefficients are performed by
considering µ1 = λ1 = 1 in the matrix and µ2 = λ2 = 10 in the inclusion.
In Fig. 8 we represent the components C11, C33, C12, C13, C44 and C66 as
function of the number of facets K. In these figures, we provide the upper
bound (UB) obtained with the strain based iterative scheme and the lower
bound (LB) obtained with the stress based iterative scheme and we show
their variations with respect to value of the wave number N . The unit cell
having the two following symmetries : (i) the invariance by the reflection with
respect to the three mutually orthogonal planes oriented along the axes of the
cartesian frame, (ii) the invariance by rotation of an angle π/4 around the
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x3-axis, the resulting homogenized elastic matrix is orthotropic. This implies
that C22 = C11, C23 = C13 and C44 = C55. Note that the material is also close
to transverse isotropy, we have C66 ≃ C11 − C12 that is rigorously satisfied
only if the material is invariant by any rotation around the x3-axis, that is
not true due to the spatial distribution of the inclusions. In the considered
problem, the distance between two neighboring inclusions is sufficiently large
enough to neglect interaction in order to recover the transverse isotropy. It is
observed that a uniform convergence of the bounds, particularly for C13 and
C33 the lower bound has converged for N = 32 which suggests that the lower
bound is close to the exact solution. The convergence of the homogenized
elastic coefficients is observed for a number of facets up to K ≃ 50× 50.
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7 Application to cubic polycrystals

Another interesting applications for which the description with polygons and
polyhedrons are exact is the case of polycristals generated by Voronoi tessel-
lations. In the 2D case, each single crystal is then represented by a polygon in
the plane (e1, e2). Vector e3 is normal to the plane. The polycrystal is made-
up of M single cubic-crystals. The elastic matrix of the crystal α in the global
cartesian frame is Cα = RT

αCRα where C is the elastic matrix of the cubic
crystal written in the frame of cristallographic directions:

C =




λ+ 2µ1 λ 0

λ λ+ 2µ1 0

0 0 2µ2


 (2D), (26)

C =




λ+ 2µ1 λ λ 0 0 0

λ λ+ 2µ1 λ 0 0 0

λ λ λ+ 2µ1 0 0 0

0 0 0 2µ2 0 0

0 0 0 0 2µ2 0

0 0 0 0 0 2µ2




(3D) (27)

The computations are performed with the following values of the local elastic
moduli: µ1 = 1, µ2 = 2 and λ = 1. The matrix of rotation Rα depends on the
crystal orientation. The crystallographic texture is assumed to be uniformly
random. In 2D case, the orientation of each crystal is defined by an angle θ
randomly chosen in the interval [0, π]. A representative cell of the polycristal is
represented in Fig. 9. Three angle are used in the 3D case, a representative cell
of the polycristal is represented in Fig. 9. It is possible to impose a geometrical
periodicity constraint at the boundary of the unit cell. It results in a slight
decrease of the dispersion of the apparent properties when compared to simu-
lations relying on the initial Voronoi model. In this example, the calculations
are performed on 40 samples and the effective shear modulus is determined
by the classic ensemble average rule.
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The variations of the homogenized shear modulus with the number of wave
vectors are provided in Fig. 10 in 2D case (left) and in 3D case (right). The two
numerical bounds are compared with the solutions computed with the iterative
Moulinec-Suquet scheme. The solution with the dual iterative Bhattacharya-
Suquet scheme is not presented because it leads to the same values. Again, we
observe that the solution obtained with the FFT scheme of Moulinec-Suquet
is comprised between the two bounds. Note that only the shear modulus is
represented, the macroscopic compressibility being equal to the local com-
pressibility for polycrystals.
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Fig. 10. Variations of the effective shear modulus µhom as function of the number
of wave vectors.
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8 Conclusion

In this paper, we extend the FFT-based numerical method based of shape co-
efficients to arbitrary microstructure. The use of these shape coefficients allows
to deliver a lower and an upper bound for the effective properties of composites
and polycrystals. For arbitrary microstructure, the phases are meshed by poly-
gons in 2D case and by polyhedrons in 3D case for which the shape coefficients
are explicitly known. The approach is applied to a composite with circular and
flower-shaped inclusions. Then, the method is applied to polycristals gener-
ated by Voronoi tesselations. It has been shown that the numerical have a
uniform convergence with the number of wave vectors. The results are com-
pared to that computed with the original scheme of Moulinec ans Suquet
which approximates the microstructure with pixels in the real space. It has
been found that the results with the latter approach are comprised between
the two bounds.
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