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Macroscopic permeability of doubly

porous solids with spheroidal macropores:

close form approximate solutions of the

longitudinal permeability

By Vincent Monchiet

Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, MSME UMR 8208, F-77454

Marne-la-Vallée, France

The presence of macropores and fractures significantly affects the effective trans-
port properties of porous solids such as concrete or rocks. The dimensions of the
fractures are generally large behind that of the initial porosity, so that the problem
contains two porosities. The influence of the macroporosity is studied in the homog-
enization framework by solving at the intermediate scale, that of the macropores,
a coupled Darcy/Stokes problem with the Beavers-Joseph-Saffman (BJS) interface
condition. We derive analytic expressions of the macroscopic permeability in the
case of an isotropic permeable matrix containing spheroidal shaped macropores.
To this aim, we consider a Representative Volume Element (RVE) on which uni-
form boundary conditions are considered for the velocity and pressure fields. The
local problem is written as minimum principles; kinematic and static approaches
are developed in order to derive rigorous bounds for the macroscopic permeability.
Close form expressions of the longitudinal permeability (along the revolution axe
of the spheroid) are determined by considering a simplified RVE constituted of two
confocal spheroids. They depend on the volume fraction and the eccentricity of
the spheroidal macropores, the scale factor between the two porosities and the slip
coefficient of the BJS model. Illustrations show the influence of these parameters.

Keywords: Biporous Solids, Spheroids, Permeability, Darcy, Stokes

1. Introduction

The determination of the effective permeability of biporous solids is of key impor-
tance for many practical problems. For instance, concrete and rocks are naturally
biporous solids. Note that biporous polymers are used for various applications such
as bio-implants (18; 19). The concept of the double porosity was introduced by
Barrenblatt et al. (8) to study the transport properties when the solid is consti-
tuted of two populations of pores. To avoid any confusion, the smaller pores are
called micropores. Conversely, the larger pores are called macropores, fractures or
vugs. The solid is constituted of : (i) a homogeneous permeable matrix containing
only the micropores and (ii) the macropores which are embedded in the permeable
medium.
The development of homogenization techniques applied to biporous materials has
been investigated by Auriault and Boutin (4; 5; 6), Royer et al. (31), Boutin et al.
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2 V. Monchiet

(11), Olny & Boutin (26) considering the method based on a double asymptotic ex-
pansion series. When the fractures are sufficiently large relative to the micropores,
a double upscaling approach can be applied and it has been found that the macro-
scopic permeability involves the resolution of a coupled Darcy/Stokes problem at
the intermediate scale. The Darcy equation is used to describe the fluid flow in
the permeable porous solid containing the micropores and the Stokes equations is
related to the fluid flow in the fractures. Note that the asymptotic series expansion
method do not deliver the interface conditions between the Darcy and the Stokes
region.
Two strategies have been used to account for the boundary layer. The first consists
use the Beavers-Joseph-Saffman (BJS) interfacial model (9; 32), the second one
consists to replace the Darcy law in the permeable solid by the Brinkman equation
(12; 13). The Brinkman model can simply be regarded as a transmission model,
bridging the limits of open to very porous media. Specifically, by considering the
fluid as a porous medium with very high permeability, the fluid/porous composite
region can be treated with only the Brinkman equation, which helps circumventing
the use of suitable conditions for the interface. Note that the Brinkman law intro-
duces an effective viscosity. The determination of this parameter has been addressed
in the framework of the asymptotic homogenization approach by Auriault et al. (7).
Many studies have been devoted to the resolution of the coupled Darcy/Stokes equa-
tions with various practical applications such as: fractured reservoir (27), flow in
porous media with cracks (10), industrial filtration systems (17), etc.
More specifically, numerical studies have been widely used to investigate the fluid
flow in porous solids with vugs (35; 36; 2; 22; 23) considering the coupled Darcy/Stokes
equations with the BJS interfacial model and finite element or finite volume method
for its numerical resolution.
An analytic expression of the macroscopic permeability has been first provided
by Markov et al. (20) introducing the concept of equivalent permeability for the
macropores. This equivalent permeability is determined by solving the coupled
Darcy/Stokes equations with the BJS interface model for an isolated macropore
fulfilled by a viscous fluid embedded in an infinite porous matrix. Next, by making
use of the analogy between the Darcy equation and that of the thermal conductiv-
ity, the effective permeability is estimated by the formula of Maxwell (21). More
recently, in Monchiet et al. (24), the solution of the coupled Darcy/Stokes equations
with the BJS interface model has been solved for coaxial cylinders and spheres sub-
jected to a uniform velocity or pressure gradient at its boundary. The inner cylinder
and sphere represent the macropore embedded in a porous matrix. Note that the
exact analytical solution for fluid flow in porous media including a single circular
or slightly deformed circular-shaped vug was also obtained (28; 29). Note also that
another analytic solutions has been derived for a composite cylinder (34), i.e. two
concentric cylinders in which the flow obeys to the Brinkman equation but with
different coefficients in the core and in the coating. More recently, the results of
Markov et al. (20) have been latter to the case of a spheroidal cavity (30) by ex-
panding the solution in series of functions of the spheroidal coordinates.
In the present paper, we propose to extend the work of Monchiet et al. (24) to
the case of confocal spheroids. In the case of spheroidal shape, no exact solution
has been found and to circumvent this difficulty we approximate the solution by
considering two minimum principles. By choosing adequately the trial fields, the
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Permeability of biporous solids 3

macroscopic longitudinal permeability is determined from a kinematic and a static
minimum principle, leading to a rigorous lower and upper bound respectively for
the effective permeability of the biporous solid with spheroidal vugs.

2. Homogenization of doubly porous solid

(a) Local equations and interface conditions

Consider a Representative Volume Element (RVE) of a doubly porous solid.
It is constituted of two phases: (i) a permeable matrix in which the fluid flow
obeys to the Darcy law, (ii) macropores fulfilled by the same viscous fluid in which
the fluid flow obeys to the Stokes equations. The dynamic viscosity of the fluid is
denoted by µ. We denote by Ωd the domain occupied by the porous solid (with
micropores) and by Ωs the domain of the macropores (the indices ”s” and ”d”make
reference to ”Stokes” and ”Darcy”). The Darcy region is assumed to be isotropic
and we denote by k its permeability that is assumed to be known (obtained from
experiments or numerical simulations). We also define by h = 1/k the hydraulic
resistivity. The macropores are assumed to be non interconnected. Moreover, we also
assume for simplicity that the macropores do not cross the boundary of the RVE.
Denoting by d the characteristic length of the channels of the initial interconnected
microporous solid (the micropores), we assume that d is sufficiently small compared
to the characteristic length of the macropores, L, such that the scale separation
condition between the two porosities is satisfied, d << L. Under this assumption,
the macropores are then embedded in a homogenous permeable porous solid having
the homogeneous permeability k.

∂Ω

Ωd

Ωs

Ωs

Ωs

Ωs

d

L

Figure 1. Schematic representation of the RVE

In the macropores, the fluid flow is described by the Stokes equations:

µ∆v −∇p = 0; div v = 0 ∀x ∈ Ωs (2.1)

Within the permeable solid, the fluid flow obeys to the Darcy law with the incom-
pressibility condition:

v = −k

µ
∇p; div v = 0 ∀x ∈ Ωd (2.2)

Article submitted to Royal Society



4 V. Monchiet

At the interface between the fluid and the solid, we use the interface model of
Beavers and Joseph (9), Saffman (32) (called BJS model for simplicity). The inter-
faces conditions are:

• the continuity of the mass flux:

v
d.ν = v

s.ν ∀x ∈ Γ (2.3)

• the discontinuity for the tangential velocity:

ν.σs.τ = 2µν.D(vs).τ = −λvs.τ ∀x ∈ Γ (2.4)

• the continuity for the normal traction:

ν.σs.ν = 2µν.D(vs).ν − ps = −pd ∀x ∈ Γ (2.5)

in which ps, vs and pd, vd represent the pressure and velocity fields taken at each
side of the interface Γ, exponent d makes reference to the Darcy region and s to the
Stokes one. In equation (2.4), λ is a coefficient of the BJS model, D(vs) represents
the strain rate tensor computed in the Stokes region, σs is the stress tensor defined
by:

σ
s = 2µD(vs)− psI (2.6)

where I is the identity tensor. Also, ν and τ represent the normal and the tangential
unit vectors acting on Γ.
Based on their experimental observations, Beavers & Joseph 1967 proposed the
following expressions for the coefficient λ:

λ =
µ√
k
δ (2.7)

in which δ is a dimensionless coefficient called ”slip coefficient” and is characteristic
of the geometry of the porous solid. This coefficient has been determined experi-
mentally by Beavers and Joseph (9) for Nickel foametal and found 0.78, 1.45 and 4.0
for porous microstructures having average pore size of 0.016, 0.034 and 0.045 inches
respectively. For Aloxite they found a value of 0.1 for the both average pore size
of 0.013 and 0.027 inches. Numerical studies have been also provided by Sahraoui
and Kaviany (33) for 2d periodic structure made of cylindrical particles and found
a value of the slip coefficient closed to 2. Note that the existence and uniqueness
of the solution of Darcy/Stokes coupled problem with the BJS interface condition
has been studied for instance by Arbogast and Lehr (1).
Note also that the velocity field is divergence free in the porous solid and in the
macropores. The pressure is then an harmonic function everywhere in the RVE:

∆p = 0 ∀x ∈ Ωd ∪ Ωs (2.8)

(b) Boundary conditions and macroscopic permeability

(i) Uniform pressure gradient condition on the boundary

In order to determine the macroscopic permeability of the porous material, let
Ω be subjected to the following prescribed pressure on its external surface ∂Ω:

p = J .x, ∀x ∈ ∂Ω (2.9)
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Permeability of biporous solids 5

where J represents the macroscopic pressure gradient. Due to the linearity of the
coupled Darcy/Stokes equations, the local velocity linearly depends on the applied
macroscopic pressure gradient J . Let us introduce the localization tensorA(x) such
that:

v(x) = A(x).J (2.10)

The macroscopic velocity is obtained by the averaging rule:

V =< v(x) >Ω= − 1

µ
K

hom.J (2.11)

where <>Ω denotes the volume average over the volume Ω. The macroscopic per-
meability is given by:

K
hom = −µ < A(x) >Ω (2.12)

(ii) Uniform velocity condition on the boundary

The following boundary condition is considered on the external surface of the
RVE:

v.n = V .n, ∀x ∈ ∂Ω (2.13)

in which n is the normal unit vector taken on the boundary ∂Ω.
Due to the linearity of the equations, the local pressure field can be read in the
form:

p(x) = B(x).V (2.14)

The pressure field being discontinuous across the interface Γ, the following definition
is used for the average gradient of pressure:

J =< ∇p(x) >Ω +
1

|Ω|

∫

Γ

[p(x)]νdx (2.15)

where [p(x)] = pd(x) − ps(x) represents the jump of p(x) across Γ. Note that Eq.
(2.15) can be also read:

J =
1

|Ω|

∫

∂Ω

p(x)ndx (2.16)

Introducing Eq. (2.14) in Eq. (2.15), it leads to:

J = −µHhom.V (2.17)

where Hhom is the macroscopic hydraulic resistivity, the inverse of Khom that is
given by:

H
hom = − 1

µ

{
< ∇B(x) >Ω +

1

|Ω|

∫

Γ

ν
s
⊗ [B(x)]dx

}
(2.18)

3. Minimum principles

(a) First minimum principle : kinematic approach

In this section, we derive the variational procedure in order to deliver a lower
bound for the macroscopic permeability (then an upper bound for the hydraulic
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6 V. Monchiet

resistivity) of the biporous solid. This variational principle is called kinematic ap-
proach since it uses the velocity as trial fields. Let us first consider the problem for
which the solid is subjected to a macroscopic velocity V by applying the uniform
boundary condition described by Eq. (2.13). We denote by V the set of admissible
velocity fields which are:

• (i) continuous and derivable in Ωs and Ωd,

• (ii) which satisfy to the boundary condition (2.13),

• (iii) are divergence free,

• (iv) which comply with continuity of the normal velocity across the interface
Γ (see Eq. (2.3)).

Let us also introduce the functional W (v) defined by:

W (v) =
1

|Ω|

∫

Ωd

µh

2
v
d.vddV +

1

|Ω|

∫

Γ

λ

2
(vs.τ )2dS +

1

|Ω|

∫

Ωs

µD(vs) : D(vs)dV

(3.1)
where it is recalled that vs and vd represent the velocity in the Stokes and in the
Darcy region respectively. Denoting by v the solution of the Darcy-Stokes problem
with the boundary condition (2.13), we have:

W (v) =
µ

2
V .Hhom.V = min

ṽ∈V
W (ṽ) (3.2)

It is then possible to derive an upper bound for the macroscopic hydraulic resis-
tivity, then an lower bound for the macroscopic permeability Khom considering an
admissible velocity field ṽ.

Proof:
The first variation of the potential W (v) is:

δW (v) =
1

|Ω|

∫

Ωd

µhvd.δvdV +
1

|Ω|

∫

Γ

λ(vs.τ )(δvs.τ )dS

+
1

|Ω|

∫

Ωs

2µD(vs) : D(δvs)dV

(3.3)

in which δv = v − ṽ satisfies to δv = 0 on the boundary ∂Ω.
We aim to show that δW (v) = 0. In Ωd, we have vd = −k/µ∇pd, it follows that
the first integral in Eq. (3.3) can be also read (considering that h = 1/k):

∫

Ωd

µhvd.δvddV = −
∫

∂Ω

pd(δvd.n)dS +

∫

Γ

pd(δvd.ν)dS (3.4)

Owing to the property δv = 0 on the boundary ∂Ω, we deduce that:
∫

Ωd

µhvd.δvddV =

∫

Γ

pd(δvd.ν)dS (3.5)

The last integral in Eq. (3.3) can be read:
∫

Ωs

2µD(vs) : D(δvs)dV =

∫

Γ

2µδvs.D(vs).νdS−
∫

Γ

2µ div(D(vs)).δvsdV (3.6)
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Permeability of biporous solids 7

Moreover, vs being divergence free, we have div(D(vs)) = 1
2∆vs. Since vs satisfies

to the Stokes equations, we have also µ∆vs = ∇ps. As a consequence, the above
integral can be also put into the form:

∫

Ωs

2µD(vs) : D(δvs)dV =

∫

Γ

2µδvs.D(vs).νdS −
∫

Ωs

∇ps.δvsdV (3.7)

δvs being divergence free, we have ∇ps.δvs = div(psδvs). This implies:

∫

Ωs

2µD(vs) : D(δvs)dV =

∫

Γ

2µδvs.D(vs).νdS −
∫

Γ

psδvs.νdS (3.8)

Considering Eqs. (3.5) and (3.8) in Eq. (3.3), we obtain:

δW (v) =
1

|Ω|

∫

Γ

pd(δvd.ν)dS +
1

|Ω|

∫

Γ

λ(vs.τ )(δvs.τ )dS

+
1

|Ω|

∫

Γ

2µδvs.D(vs).νdS − 1

|Ω|

∫

Γ

psδvs.νds

(3.9)

On Γ, the velocity δvs can be decomposed into its normal and tangential compo-
nents:

δvs = (δvs.τ )τ + (δvs.ν)ν (3.10)

The normal component of δv is continuous across Γ, δvd.n = δvs.n, this leading
for Eq. (3.9) to:

δW (v) =
1

|Ω|

∫

Γ

[
2µν.D(vs).ν + pd − ps

]
(δvd.ν)dS

+
1

|Ω|

∫

Γ

[2µτ .D(vs).ν + λvs.τ ] (δvs.τ )dS

(3.11)

The two integrals in the above equation are null considering Eq. (2.4) and Eq. (2.5).
The solution of the Darcy-Stokes problem v is a stationary point of W . Moreover,
if h, µ and λ are strictly positive, then W is convex. Thereby the solution of the
coupled Darcy/Stokes problem v is a global minimum of W .
The second part of the proof consists to prove that:

W (v) =
µ

2
V .Hhom.V (3.12)

In Ωd, if we replace vd by −k/µ∇pd, it gives:

∫

Ωd

µh

2
v
d.vddV = −

∫

∂Ω

1

2
pd(vd.n)dS +

∫

Γ

1

2
pd(vd.ν)dS (3.13)

Because vs satisfies to the Stokes equations, we have:

∫

Ωs

µD(vs) : D(vs)dV = µ

∫

Γ

v
s.D(vs).νdS − 1

2

∫

Γ

ps(vs.ν)dV (3.14)
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8 V. Monchiet

Considering Eqs. (3.13) and (3.14) in Eq. (3.1) with the interface conditions (2.3),
(2.4) and (2.5) we obtain:

W (v) = −1

2

∫

∂Ω

pd(vd.n)dS (3.15)

Owing to the boundary condition v.n = V .n we deduce that:

W (v) = −1

2
V .

∫

∂Ω

pdndS (3.16)

Considering Eq. (2.16) we deduce that:

W (v) = −1

2
V .J =

µ

2
V .Hhom.V (3.17)

(b) Complementary minimum principle : static approach

A complementary variational principle can be derived by considering the admis-
sible pair (p̂d, σ̃s) ∈ S such that:

• p̂d and σ̃s are continuous and derivable in Ωd and Ωs,

• σ̃s is divergence free in Ωs,

• p̂d and σ̃s comply with the continuity of the traction: ν.σ̃s.ν = −p̃d on Γ,

• p̂d satisfies to the uniform pressure gradient boundary condition p̃d = J .x on
∂Ω.

This complementary variational principle leads to an upper bound for the macro-
scopic permeability of the biporous solid, then a lower bound for the resistivity.
This variational principle is also called static approach since it uses the pressure in
the Darcy region and the stress in the Stokes region as trial fields.
The complementary variational principle reads:

W ∗(pd,σs) =
1

2µ
J .Khom.J = min

(p̂d,σ̃s)∈S

W ∗(p̃d, σ̃s) (3.18)

where W ∗(pd,σs) is defined by:

W ∗(pd,σs) =
1

|Ω|

∫

Ωd

k

2µ
∇pd.∇pddV +

1

|Ω|

∫

Γ

1

2λ
(ν.σs.τ )2dS

+
1

|Ω|

∫

Ωs

1

4µ
σ

s : σsdV

(3.19)

where σ
s represents the deviatoric part of σs.

Proof:
Consider the first variation of W ∗:

δW ∗(pd,σs) =
1

|Ω|

∫

Ωd

k

µ
∇pd.∇δpddV +

1

|Ω|

∫

Γ

1

λ
(ν.σs.τ )(ν.δσs.τ )dS

+
1

|Ω|

∫

Ωs

1

2µ
σ

s : δσsdV

(3.20)
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Permeability of biporous solids 9

in which δpd = pd− p̃d and δσs = σs− σ̃s. Note that δpd satisfies to δpd = 0 on the
boundary ∂Ω. Additionally, the pressure pd is Laplacian free, ∆pd = 0, consequently
we have: ∫

Ωd

k

µ
∇pd.∇δpddV = −

∫

Γ

k

µ
(∇pd.ν)δpddS (3.21)

In the last integral in (3.20), we can replace σ
s by 2µD(vs). Because D(vs) is

deviatoric, in the expression D(vs) : δσs the term δσs can be substituted to δσs.
As a consequence, we can read:

1

2µ
σ

s : δσs = D(vs) : δσs (3.22)

Since δσs is divergence free, we have:
∫

Ωs

1

2µ
σ

s : δσsdV =

∫

Γ

v
s.δσs.νdS (3.23)

Owing to Eq. (3.21) and Eq. (3.23) in Eq. (3.20), we obtain:

δW ∗(pd,σs) =
1

|Ω|

∫

Γ

k

µ
(∇pd.ν)δpddS +

1

|Ω|

∫

Γ

1

λ
(ν.σs.τ )(ν.δσs.τ )dS

+
1

|Ω|

∫

Γ

v
s.δσs.νdS

(3.24)

The velocity is decomposed into its tangential and normal components:

v
s = (vs.τ )τ + (vs.ν)ν (3.25)

Eq. (3.24) then becomes:

δW ∗(pd,σs) = − 1

|Ω|

∫

Γ

k

µ
(∇pd.ν)δpddS +

1

|Ω|

∫

Γ

1

λ
(ν.σs.τ )(ν.δσs.τ )dS

+
1

|Ω|

∫

Γ

(vs.ν)(ν.δσs.ν)dS +
1

|Ω|

∫

Γ

(vs.τ )(τ .δσs.ν)dS

(3.26)

In the first integral in Eq. (3.26), k/µ(∇pd.ν) = −v
d.ν. The normal component

of the velocity being continuous across Γ, we have vs.ν = vd.ν. Then Eq. (3.26)
becomes:

δW ∗(pd,σs) =
1

|Ω|

∫

Γ

(vs.ν)
[
ν.δσs.ν + δpd

]
dS

+
1

|Ω|

∫

Γ

[
1

λ
ν.σs.τ + v

s.τ

]
(ν.δσs.τ )dS

(3.27)

The first integral is null because δpd and δσs satisfy to the continuity of the traction
on Γ. The second integral is also null because σs and v

s satisfy to the BJS condition
(see Eq. (2.4)). It follows that δW ∗(pd,σs) = 0. Due to the convexity of W ∗, the
solution of the coupled Darcy/Stokes problem is a global minimum of W ∗.
The second part of the demonstration consists to prove that:

W ∗(pd,σs) =
1

2µ
J .Khom.J (3.28)
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10 V. Monchiet

To this end, we replace, in the first integral in (3.19), k/µ∇pd by −vd. It follows
that:

∫

Ωd

k

2µ
∇pd.∇pddV = −

∫

∂Ω

1

2
pd(vd.n)dS +

∫

Γ

1

2
pd(vd.ν)dS (3.29)

In the last equation in (3.19), we have σ
s : σs = 2µD(vs) : σs and:

∫

Ωs

1

4µ
σ

s : σsdV =

∫

Γ

1

2
ν.σs.vsdS (3.30)

Owing to Eqs. (3.29) and (3.30) in Eq. (3.19), we obtain:

W ∗(pd,σs) = − 1

|Ω|

∫

∂Ω

1

2
pd(vd.n)dS +

1

|Ω|

∫

Γ

1

2
pd(vd.ν)dS

+
1

|Ω|

∫

Γ

1

2λ
(ν.σs.τ )2dS +

1

|Ω|

∫

Γ

1

2
ν.σs.vsdS

(3.31)

The velocity field vs is split into its normal and tangential component. Considering
additionally the continuity of the normal velocity across Γ, we obtain:

W ∗(pd,σs) = − 1

|Ω|

∫

∂Ω

1

2
pd(vd.n)dS +

1

|Ω|

∫

Γ

1

2
(vd.ν)

[
ν.σs.ν + pd

]
dS

+
1

|Ω|

∫

Γ

1

2

[
1

λ
ν.σs.τ + v

s.τ

]
(ν.σs.τ )dS

(3.32)
The two last integrals are null considering the interface conditions (2.4) and (2.5).
It remains:

W ∗(pd,σs) = − 1

|Ω|

∫

∂Ω

1

2
pd(vd.n)dS (3.33)

On the boundary ∂Ω, we have pd = J .x. Moreover, vs being divergence free, we
have:

W ∗(pd,σs) = −J .
1

|Ω|

∫

∂Ω

1

2
x(vd.n)dS = −1

2
J .

1

|Ω|

∫

Ω

v
ddS = −1

2
J .V (3.34)

That is equivalent to (3.28) if we replace V = − 1
µ
K

hom.J

4. The confocal spheroids

In order to determine close form expressions of the macroscopic permeability, a
simplified RVE is considered. An axisymmetric spheroidal cavity of semi-axes a1
and b1 is embedded in a confocal spheroid of semi-axes a2 and b2. The inner spheroid
of semi-axes a1 and b1 represents the macropore and is fulfilled by the viscous fluid
in which the fluid flow obeys to the Stokes equations. The coating (from semi-axes
a1, b1 to a2, b2) is constituted of the microporous medium in which the fluid flow
obeys to the Darcy equation. Such a choice allows to recover as a limit, the cases
of coaxial cylindrical or spherical voids already studied in Monchiet et al. (24).
Fig. 2 depicts the RVE relative to the (x1, x2, x3) cartesian coordinates system (of
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orthonormal basis (e1, e2, e3), with axis x3 aligned with the axis of symmetry of the
void. The shape of the cavity is described by the aspect ratio a1/b1, with a1 > b1
corresponding to a prolate cavity while b1 > a1 corresponds to an oblate one. Let
us denote by c the focal distance given by c =

√
a2 − b2 for prolate spheroid and

by c =
√
b2 − a2 for oblate case. The focal distance is the same for the inner and

the outer spheroid due to the hypothesis of confocality. We also denote by e the
eccentricity of a spheroid defined by e = c/a for prolate spheroid and by e = c/b
for oblate one. The eccentricity of the inner spheroid is then denoted e1, that of
the outer spheroid is denoted by e2. We will use cylindrical coordinates (ρ, θ, z)

(a) (b)

x1

x1

x2

x2

x3

x3

a1
a1

a2

a2 b1
b1

b2

b2

Figure 2. The cell considered (a) a prolate and (b) an oblate spheroidal macropore (with
semi-axes a1, b1) embedded in a confocal spheroid of semi-axes a2, b2 that represents the
surrounding microporous medium.

and (eρ, eθ, ez) the associated orthonormal basis, also the spheroidal coordinates
(λ, ϕ, θ) and the associated orthogonal basis (eλ, eϕ, eθ). The spheroidal coordinates
are related to the cartesian coordinates by:

x1 = b cos(θ) sin(ϕ), x2 = b sin(θ) sin(ϕ); x3 = a cos(ϕ) (4.1)

Where b = c sinh(λ) and a = c cosh(λ) in the case of a prolate spheroid while, in
the case of an oblate cavity, a = c sinh(λ) and b = c cosh(λ) with λ ∈ [0,+∞[, also
ϕ ∈ [0, π] and θ ∈ [0, 2π]. The outer spheroid corresponds to λ = λ2 while the inner
one corresponds to λ = λ1. The iso-λ surfaces are confocal spheroids.
The unit vectors of the spheroidal basis are:

eλ =
1

Lλ

{
a sin(ϕ) eρ + b cos(ϕ) e3

}
; eϕ =

1

Lλ

{
b cos(ϕ) eρ − a sin(ϕ) e3

}
(4.2)

with Lλ =
√
a2 sin2(ϕ) + b2 cos2(ϕ).

The porosity f related to the macropores is given by:

f =
a1b

2
1

a2b22
(4.3)

Note that f is not the total porosity since it does not include the porosity related
to the micro-channels system. In the case f = 0, the volume of the macropore is
null and the RVE is only constituted of the population of micropores.
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5. Derivation of analytic bounds

We propose to determine a lower and an upper bound of the macroscopic perme-
ability. To this end, we use the kinematic and static approach described in section
3 with appropriate trial fields. The latter are inspired of the exact solution for the
spherical shape. Particularly, two constatations could be done regarding the solution
in the case of coaxial spheres. First, the solution in the Darcy region has the same
general expression that the solution of Eshebly (15; 16) for the problem of ther-
mal conductivity. It is constituted of a first constant field satisfying to a prescribed
constant remote velocity and a supplementary heterogeneous field in ”1/r3” due to
the presence of the spherical inhomogeneity. Due to the equivalence between the
Darcy equations and that of the thermal conductivity, we can use the Eshelby solu-
tion of the spheroidal inhomogeneity problem as the trial field in the Darcy region.
Moreover, this field complies with the two kind of boundary conditions considered
in this paper (see section 2b). Second, the solution within the spherical macropore
is quadratic with the position vector. Consequently, we also use a quadratic field in
the spheroidal macropore.
In this section we present the trial fields considered for the kinematic and static
approach. The admissibility conditions are verified and we provide the analytic ex-
pressions of the bounds. All the details related to the derivations of the bounds are
provided in appendices as supplementary material (see ref. (25)).

(a) Kinematical approach : lower bound for the macroscopic permeability

(i) The field inside the Darcy matrix

In the Darcy region, the following trial velocity field is considered:

vλ =
b

Lλ

[D1 −D2∆(1 − α)] cos(ϕ) (5.1)

vϕ =
a

Lλ

[D1 +D2∆α] sin(ϕ) (5.2)

vθ = 0 (5.3)

in which vλ, vϕ, vθ are the components of the velocity field in the spheroidal frame
(eλ, eϕ, eθ). In Eq. (5.1), D1 and D2 are two unknown coefficients. ∆ is defined by:

∆ =
a1b

2
1

ab2
(5.4)

Particularly, ∆ = 1 when λ = λ1 (at the interface Γ) and ∆ = f when λ = λ2 (at
the boundary of the RVE). In Eq. (5.1), α is also a function of λ (or equivalently
the eccentricity e) and is given by:

α =





1− e2

e3
arctanh(e)− 1− e2

e2
(prolate)

−
√
1− e2

e3
arcsin(e) +

1

e2
(oblate)

(5.5)

With the introduction of α we obtain a unique expression for both oblate and pro-
late cases. This field is inspired of the solution of the spheroidal inhomogeneity
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problem embedded in an infinite solid for the thermal conductivity problem. The
field associated with coefficients D1 complies to a remote uniform velocity pre-
scribed at the infinity (λ = +∞). The field associated with D2 is the perturbed
heterogeneous field due to the presence of the spheroidal inclusion and vanishes at
the infinity.
Consider the particular case of the spherical shape. We use the spherical coordinates
(r, ϕ, θ) and the associated spherical frame (er, eϕ, eθ). We have a = b = Lλ = r,
c = 0 and the eccentricity is e = 0. By taking the limit in Eq. (5.5), we found
that α = 1/3. Moreover ∆ given by Eq. (5.4) is ∆ = a31/r

3 (a1 = b1 being the
radius of the spherical macropore). Component vλ in Eq. (5.1) becomes the radial
component vr in the spherical frame. The components of the velocity field are then
given by:

vr =

[
D1 −D2

2a31
3r3

]
cos(ϕ) (5.6)

vϕ =

[
D1 +D2

a31
3r3

]
sin(ϕ) (5.7)

vθ = 0 (5.8)

that is the general form of the solution derived in Monchiet et al. (24).

(ii) Expression in the Stokes region

In order to recover the solution for the spherical shape, we consider in the Stokes
region a velocity field that is quadratic with respect to the position vector. :

v1 = S2x1x3 (5.9)

v2 = S2x2x3 (5.10)

v3 = S1 + S3(x
2
1 + x2

2)− S2x
2
3 (5.11)

where v1, v2, and v3 are the component of the velocity field written in the cartesian
frame.
The velocity considered in the Darcy and in the Stokes region contains the exact
solution for the spherical shape. As a consequence, the macroscopic permeability
derived from the minimum principle becomes exact in the case of a spherical macro-
pore.
The components of the velocity field, written in the spheroidal frame, are:

vλ =
b

Lλ

[
S1 + S2a

2(1 − 2 cos(ϕ)2) + S3b
2 sin(ϕ)2

]
cos(ϕ) (5.12)

vϕ =
a

Lλ

[
S1 − S2(a

2 + b2) cos(ϕ)2 + S3b
2 sin(ϕ)2

]
sin(ϕ) (5.13)

vθ = 0 (5.14)

(iii) Verification of boundary conditions

Let us recall that the trial velocity field must comply with the uniform velocity
boundary conditions (2.13). At the boundary, we have λ = λ2, ∆ = f and α = α2.
Te verification of the boundary condition leads to:

D1 −D2f(1− α2) = V3 (5.15)
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14 V. Monchiet

(iv) Continuity of the normal velocity at the interface

Additionally, the normal component of the velocity field must be continuous
across the interface Γ. This involves the continuity of the component vλ at λ = λ1.
It leads to:

D1 −D2(1− α1) = S1 + S2a
2
1 + S3b

2
1, (5.16)

2S2a
2
1 + S3b

2
1 = 0 (5.17)

Let us introduce the following change of variables:

S2 =
S′
2

a21
S3 = −2S′

2

b21
(5.18)

Eqs. (5.16) and (5.17) become:

D1 −D2(1− α1) = S1 − S′
2 (5.19)

(v) Derivation of the macroscopic permeability

At this stage, the velocity defined by Eqs. (5.1) and (5.9) contains five coeffi-
cients D1, D2, S1, S2 and S3. In fact, the trial field depends on two independent
coefficients after verification of the boundary condition (see Eq. (5.15)) and the in-
terface condition (see Eqs. (5.18) and (5.19)). The remaining unknown coefficients
are determined by the minimization of W (v) defined by Eq. (3.1). In (25), we pro-
vide all the details about the calculation of the volume and surface integrals which
enters in W (v). Also, the minimization of W (v) with respect to the unknown coeffi-
cients is subsequently provided and the macroscopic permeability is derived. Below,
are given the analytic results.
The macroscopic longitudinal permeability is:

Khom
33 = k

[
1 +

f

α1 − fα2 − T

]
(5.20)

In Eq. (5.20), it is recalled that k is the permeability of the surrounding solid, α1

and α2 are the values of α given by Eq. (5.5) for e = e1 and e = e2 respectively.
Expression of T is:

T =
γ1βδǫ

2 + (γ1γ3 − γ2
2)δ

2ǫ

γ1βδǫ2 + (γ1γ3 − γ2
2)δ

2ǫ− βǫ− (γ1 − 2γ2 + γ3)δ
(5.21)

In which β, γ1, γ2, γ3 are four coefficients which depend on the eccentricity e1 of
the inner spheroid. Their expressions are:

γ1 =
3

2

(1 − t)a21 + 2tb21
a1b1

,

γ2 =
3

8

7(1− t)a21 + 2(1 + 6t)b21
a1b1

γ3 =
1

16

75(1− t)a41 + 6(6 + 19t)a21b
2
1 + 4b41

a31b1

(5.22)
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with:

t =





−
√
1− e2

e3
arcsin(e) +

1

e2
(prolate)

1− e2

e3
arctanh(e)− 1− e2

e2
(oblate)

(5.23)

In Eq. (5.21), it is recalled that δ is the slip coefficient introduced in Eq. (2.7).
Moreover ǫ =

√
k/b1 in which k = 1/h is the permeability of the permeable sur-

rounding solid. Note that k ∼ d2 where d is the characteristic length of the second
porosity. Consequently ǫ ∼ d/b1. Due to the separation of scale between the two
porosities, ǫ is a small parameter called ”scale factor between the two porosities”.

(b) Static approach: upper bound for the macroscopic permeability

(i) The field in the Darcy region

In the Darcy region, we choose the pressure field into the form:

pd = a [D∗
1 +D∗

2∆α] cos(ϕ) (5.24)

Again this field is adapted from the problem of the spheroidal inhomogeneity prob-
lem in an infinite solid in the case of the thermal conductivity. The term related
to coefficient D∗

1 is associated with a remote constant gradient of pressure while
the term related to coefficient D∗

2 is the perturbed field due to the presence of the
spheroidal inhomogeneity.
The boundary condition (2.9) at λ = λ2 is satisfied if:

D∗
1 +D∗

2fα2 = J3 (5.25)

(ii) The field in the Stokes region

In the Stokes region, we choose the stress field in the form:

σ
s =




S∗
1x3 0 S∗

2x1

0 S∗
1x3 S∗

2x2

S∗
2x1 S∗

2x2 −2S∗
2x3


 (5.26)

in the cartesian frame (e1, e2, e3). Again, this general expression contains the exact
solution for the coaxial spheres. As a consequence, the expression of the macroscopic
permeability derived from the static approach becomes exact in the case of the
spherical shape.

(iii) Continuity of the traction at the interface

Note that the admissibility requires the continuity of the traction at λ = λ1. It
is satisfied for:

D∗
1 +D∗

2α1 =
[a21S

∗
1 + 2b21S

∗
2 ] sin

2(ϕ) − 2b21S
∗
2 cos

2(ϕ)

L2
λ1

(5.27)
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It involves:

D∗
1 +D∗

2α1 = qS∗
1 , S∗

2 = − q

2
S∗
1 (5.28)

in which the coefficient q is given by:

q =
a21

a21 + b21
(5.29)

(iv) Macroscopic permeability

The trial field is defined by the pressure field given by Eq. (5.24) in the Darcy
region and by the stress field given by Eq. (5.26) in the Stokes region. These fields
then contains four coefficientsD∗

1 ,D
∗
2 , S

∗
1 and S∗

2 . The admissibility of this trial field
includes the verification of the boundary condition for the pressure field (see Eq.
(5.25)) and the continuity of the traction at the interface between the regions (see
Eq. (5.28)). As a consequence, only one unknown coefficient remains in the problem.
This coefficient is determined by the minimization od W ∗(pd,σs) defined by Eq.
(3.18). All the details related to the calculation of the integrals in the expression of
W ∗(pd,σs) and its minimization with the undetermined coefficient are provided in
the appendices which can be found in (25). Also, the derivation of the macroscopic
permeability is detailed. The final results are summarized below.
The macroscopic permeability reads:

Khom
33 = k

[
1 +

f

α1 − fα2 − T ∗

]
(5.30)

with :

T ∗ =
q2δǫ2

q2δǫ2 − γ∗ǫ − β∗δ
(5.31)

Expression of T ∗ depends on q, γ∗ and β∗ which depend on the eccentricity of the
inner spheroid. Coefficient q is given by Eq. (5.29). Coefficients γ∗ and β∗ are given
by:

γ∗ =
3a31(3(1− t)a21 + 2(1 + 2t)b21)

32b1(a21 + b21)
2

; β∗ =
a21(3a

2
1 + 2b21)

30(a21 + b21)
2

(5.32)

and t is given by Eq. (5.23). Note that T ∗ also depends on the slip coefficient δ and
on the scale factor ǫ =

√
k/b1.

6. Illustrations

In Fig. 3 and Fig. 4 we represent the variations of the macroscopic longitudinal
resistivity as function of the volume fraction f of the macropores. On each figures,
we consider different values of the aspect ratio : a1/b1 = 1/5, 1/2, 1, 2, 5. Also, we
used different values of the scale factor ǫ =

√
k/b1 and of the slip coefficient δ.

The particular case a1 = b1 correspond to the spherical shape for which the two
bounds coincide with the exact solution derived in (24). On each figure, we represent
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the resistivity obtained with the kinematic approach (the upper bound) and with
the static approach (the lower bound). Let us recall that the kinematic approach
delivers an upper bound for the macroscopic permeability, then a lower bound for
the resistivity and vice versa for the static approach.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Upper bound (kinematic)

Lower bound (static)

Macroscopic resistivity Hhom
33 /h

volume fraction f

1/51/21
2

5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Upper bound (kinematic)

Lower bound (static)

Macroscopic resistivity Hhom
33 /h

volume fraction f

1/51/21
2

5

Figure 3. Variations of the macroscopic hydraulic resistivity as function of the macropore
volume fraction (see Eq. (4.3)) for different spheroidal shapes, δ = 0.1 and ǫ = 0.01 (at
the left) and ǫ = 0.1 (at the right).

0 0.2 0.4 0.6 0.8 1
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0.6

0.8
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Macroscopic resistivity Hhom
33 /h
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1/51/21
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1/51/21
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Figure 4. Variations of the macroscopic hydraulic resistivity as function of the macropore
volume fraction (see Eq. (4.3)) for different spheroidal shapes, ǫ = 0.01, δ = 1 (at the left)
and δ = 10 (at the right).

It is observed that, at a given value of the porosity f and comparatively to
the spherical shape, an oblate spheroidal shape increases the resistivity (then re-
duces the permeability) while a prolate spheroidal shape decreases the resistivity
(then increases the macroscopic permeability). Obviously, this remark only holds
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for the longitudinal resistivity, i.e. along the axe of revolution of the spheroid. The
transverse permeability has not been determined in this paper and such observa-
tion would probably be inverted in that case. The transverse permeability will be
derived in a future work. It observed in Figs. 3 and 4 that the lower and upper
bounds are very closed in the great majority of cases. For the considered values of
δ and ε, the bounds then provide a good estimation of the exact solution. However,
in the last Fig. 4 (at the right) some important differences are noted particularly
when the aspect ratio is equal to 1/5 (oblate void) and 5 (prolate void). In that
case the variations of the macroscopic longitudinal resistivity are represented for a
higher value of the slip coefficient (δ = 10) than in other figures. The solution could
be perhaps improved by considering additional trial fields in the Stokes region, not
in the Darcy region, since the BJS interface condition only involves the velocity
v
s. Further investigations could be carried on to improve the bounds in the case of

large values of the slip coefficient.

7. Conclusion

In this paper, we derive analytic expression of the macroscopic longitudinal perme-
ability of doubly porous materials made up of an initially isotropic permeable solid
in which spheroidal macropores are embedded. The homogenization problem con-
sists to solve, at the intermediate scale, the coupled Darcy/Stokes equations with
the Beavers-Joseph-Saffman (BJS) interface model. Two variational procedures are
provided to determine a lower and an upper bound for the macroscopic permeability
of the doubly material. The approach is applied in the case of confocal spheroids
that corresponding to a simplified representation of the real microstructure. By
choosing the appropriate trial fields, two close form expressions of the macroscopic
longitudinal permeability are derived which, particularly, leads to the exact solution
in the particular case of coaxial spheres.
The results shown that the two bounds are very closed in the large range of the
physical parameters which enter in the expression of the permeability : the vol-
ume fraction of the macropores, the eccentricity of the spheroidal macropores, the
scale factor between the two population of pores and the slip coefficient of the BJS
model. It must be however noted significant differences for large values of the slip
coefficient.
In order to evaluate the accuracy of the approximate expressions, the comparison
with numerical solutions could be provided. Moreover the results must be also ex-
tended to the case of non axisymmetric loading in order to determine the transverse
permeability. This will be the subjects of the next work.

There is no acknowledgements and no funding was received for this re-
search.
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