
HAL Id: hal-03183556
https://hal.science/hal-03183556v1

Submitted on 27 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Content-aware texture deformation with dynamic
control

Geoffrey Guingo, Frédéric Larue, Basile Sauvage, Nicolas Lutz, Jean-Michel
Dischler, Marie-Paule Cani

To cite this version:
Geoffrey Guingo, Frédéric Larue, Basile Sauvage, Nicolas Lutz, Jean-Michel Dischler, et al.. Content-
aware texture deformation with dynamic control. Computers and Graphics, 2020, 91, pp.95-107.
�10.1016/j.cag.2020.07.006�. �hal-03183556�

https://hal.science/hal-03183556v1
https://hal.archives-ouvertes.fr


Computers & Graphics (2020)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Content-aware texture deformation with dynamic control

Geoffrey Guingoa,b, Frédéric Laruea, Basile Sauvagea, Nicolas Lutza, Jean-Michel Dischlera, Marie-Paule Canic

aICube, Université de Strasbourg, CNRS, France
bUniversité Grenoble Alpes, CNRS (LJK), and Inria, Grenoble, France
cLIX, École Polytechnique, CNRS, France

A R T I C L E I N F O

Article history:
Received July 9, 2020

Keywords: Texturing, Deformation, Re-
al-time, Animation, GPU

A B S T R A C T

Textures improve the appearance of virtual scenes by mapping visual details on the sur-
face of 3D objects. Various scenarios – such as real-time animation, interactive texture
modelling, or offline post-production – require textures to be deformed in a controllable
and plausible manner. We propose a novel approach to model and control texture defor-
mations, which is easy to implement in a standard graphics pipeline. The deformation
is implemented at pixel resolution as a warping in the parametric domain. The warping
is controlled locally and dynamically by real-time integration along the streamlines of
a pre-computed flow field. We propose a technique to pre-compute the flow field from
a simple scalar map representing heterogeneous dynamic behaviors. Moreover, to man-
age sampling issues arising in over-stretched areas during deformation, we provide a
mechanism based on re-sampling and texture synthesis. Warping may alternatively be
controlled by deformation of the underlying surface, environment parameters or inter-
active editing, which demonstrates the versatility of our approach.

c© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Textures are a common way to enhance the realism of vir-
tual scenes. Their mechanism to increase user immersion is to
provide an approximate solution to complex light-matter inter-
action related to the presence of micro- and meso-scale surface
details that would be otherwise hard to explicitly simulate due
to memory or computation cost. Multiple texture layers en-
able representing rich information about surface material and
fine geometry, including color (albedo), normal, displacement,
shininess, etc. Mapping textures onto the surface of 3D objects
leads to great results in terms of surface appearance for static
scenes.

However, texturing is much more challenging when anima-
tion or time-dependent effects are involved. Besides natural
phenomena, such as ageing, weathering, or drying effects, an-
imated objects often imply evolving visual patterns. Fluids
show weakly structured patterns, that move, appear, disappear,
or merge. By contrast, solids show complex patterns that are
distorted, stretched or sheared. Modelling such dynamic be-

haviours involves the texture, the (possibly animated) geometry,
and the mapping / parameterization. While these three aspects
have been given a lot of attention as separate topics, the proper
interplay between them remains a largely open problem.

We introduce a new model for real-time texture deformation,
which is represented as a warping of the parametric domain
onto itself. The novelty of our approach is to define the warping
as the advection of the parametric domain in a flow field. This
field is pre-computed and static. Dynamics is introduced by
per-pixel integration time-steps, which makes possible to con-
trol the deformation locally. Our model comes with the follow-
ing benefits:

• The deformation is content-aware. This is achieved thanks
to the fact that everything is computed per-pixel in the
parametric domain, on the basis of a vector field derived
from the texture content itself. For instance, in Figure 1,
the flowers are less deformed than the stretchable denim.

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag


2 Preprint Submitted for review / Computers & Graphics (2020)

 

G
eo

m
et

ri
c

d
ef

or
m

at
io

n

E
n

vi
ro

n
m

en
t

p
ar

am
et

er
s

In
te

ra
ct

iv
e

lo
ca

le
d

it
in

g
F

lo
w

 f
ie

ld
 b

as
ed

te
xt

u
re

d
ef

or
m

at
io

n

M
O

D
E

L
C

O
N

T
R

O
L

 B
Y

Fig. 1. Our content-aware texture deformation model improves the dynamic appearance of textured surfaces. It allows to mimic various non-uniform
physical behaviors at texel resolution. Top row: the parameterization is advected in a static flow field; the resulting deformation depends on the speed
and direction (forward/backward) of the integration along the streamlines. Bottom row, from left to right: the deformation can be controlled dynamically
by brush painting during user interactive editing (in this example, backward integration narrows the mortar while forward integration widens it), by the
geometric deformation of the underlying animated surface, or by any environment parameter (here, cracks enlarge only in regions of high sun exposure.
The shadow contour is highlighted in red on the closeup view for a better visibility).

• The model is versatile. It spans multiple visual effects,
such as non-homogeneous elasticity and feature shrinkage
(see Figure 1). This is possible because we do not rely on
a specialized physical simulation.

• The deformation is controlled locally and dynamically. It
enables our model to be used within any interactive an-
imation or editing framework. We show different scenar-
ios, including automatic guidance from the local geometric
deformation of the underlying surface, control through en-
vironment parameters, or interactive texture editing under
user’s control.

• Implementation within the standard rendering pipeline is
straightforward and efficient. At each time step, all texels
update their warping in parallel with a trivial integration
scheme, while the rendering relies on standard interpola-
tion and MIP-mapping techniques.

• Unpleasant visual distortions due to extreme local defor-
mations are solved by combining a re-sampling technique
and local detail synthesis, pre-computed and stored in a
texture stack. We can thus compute a plausible appear-
ance for thin connected structures, such as cracks or joints
in cellular patterns.

Defining a flow field manually would be tedious and non in-
tuitive. We provide a technique to derive the field from a scalar
map. Such a scalar map, which is easier and more intuitive
to draw for an artist, may represent, for instance, the expected
texel rigidity in an elastic deformation scenario.

Our texture stack pre-integrates a warping with constant
time-steps and re-samples the texture accordingly. Texture de-

tails are reintroduced in over-stretched regions by a state-of-the-
art synthesis algorithm. At run-time, while the warping evolves,
we keep track of the deformation magnitude at each texel so as
to determine the most appropriate stack level to fetch.

In addition to the usual material texture layers, the simplest
version of our model (i.e. without stack) only requires one ad-
ditional map to store both the flow field and the warping. The
final rendering then requires only one texture indirection to de-
termine the actual texture coordinates from the warping, mak-
ing the whole process easy to integrate to the graphics pipeline.

2. Related work

2.1. Image retargeting

Image retargeting is an editing approach that aims at pro-
ducing a re-scaled version of an input image while preserving
its most prominent features (which can be either detected auto-
matically or specified by the user) by removing, duplicating or
displacing some existing content [1, 2, 3]. It has been used,
among other things, for the synthesis of architectural scenes
[4, 5], where features of facades can be easily identified and
extracted for editing purposes.

The goal of retargeting is then to preserve the visual consis-
tency of the content regardless of the target image size, but not
to deform it. Moreover, the approach is not intended for an-
imation, which implies two crucial limitations for our case of
interest. First, real-time is not viewed as a determinant factor.
Secondly, no consideration is given to temporal consistency,
leading to modifications that are not guaranteed to be contin-
uous over time, reversible, or able to mimic existing dynamic



Preprint Submitted for review / Computers & Graphics (2020) 3

behaviors. On the contrary, real-time and temporal consistency
are important in our case.

2.2. Texture advection

Texture advection has been used for texturing fluids whose
dynamics are provided by an evolving geometry [6, 7, 8], a flow
field [9], or a particle system [10, 11]. These methods tackle
the problem of synthesising a globally and temporally coher-
ent appearance from a small input texture exemplar. The main
challenges are (i) to make weakly structured content coherently
appear and disappear over time, and (ii) to handle topological
changes. In contrast, our goal is to deform structured materi-
als and we are concerned neither with run-time synthesis, nor
content appearance and disappearance. We also rely on a fixed
topology for both the surface and the texture. As a consequence,
we use advection in a different way. While fluids advect inde-
pendent patches of texture on a low resolution field, our flow
field is defined at the same resolution as the texture and every
texel is advected coherently with its neighbors.

An early method for texturing animated objects was intro-
duced by Smets-Solanes [12] in the context of implicit surfaces.
They develop the concept of a virtual skin, which supports the
texture; the skin evolves in a vector field defined by the surface
so as to stick to the surface in 3D. In our context, the vector field
is defined by the texture so as to deform in the 2D parametric
domain.

In the field of scientific visualization, advection of static tex-
tures has a long tradition: the texture is used as a metaphor to
visualize dynamic flow fields [13]. Here, we conversely use a
static flow field to control texture dynamics.

2.3. Texture warping for editing and synthesis

Warping has been used in the context of texture synthesis and
editing. Brooks and Dodgson [14] make use of self-similarity
measures to edit textures. One application among others con-
sists in warping the texture so as to enlarge some features while
shrinking some others. Similar results can be reproduced with
our method (see Section 5.2), with the advantage that we pro-
vide local and dynamical control in real-time thanks to the use
of the underlying flow field. Liu et al. [15] tackle the problem of
synthesizing so-called ”near-regular” textures: a regular pattern
undergoes small deformations which are modelled as a random
warping field. Since their goal is to synthesize random variety
in static textures, they do address neither control nor dynamic
effects.

2.4. Texture warping for dynamic deformations

Li et al. [16] simulate an elastic skin on an animated mesh.
Since they run a physical simulation at mesh resolution, they
have few control and they cannot adapt the deformation to tex-
ture content.

Content-aware deformation has been addressed in several
works. Gal et al. [17] preserve the shape of some selected fea-
tures when deforming texture maps. They rely on a geometric
optimization process which reaches interactive frame-rate. A
similar technique is used offline by Grabli et al. [18] on high-
resolution textures in the context of post-production. Koniaris

No warping - standard result

Warping - our result

Texture Scalar map Flow field

Fig. 2. A warping deforms the texture parametric domain so as to control
the dynamic appearance. In this example the flowers remain nearly rigid
during stretching. The warping is computed by integrating along stream-
lines of a static flow field. In turn, the flow field can be automatically de-
rived from a scalar map.

et al. [19] compute a non-linear geometric optimization at run
time on a low resolution rectangular grid, so as to keep some
texture features as-rigid-as-possible. Koniaris et al. [20] solve
a position based dynamics problem to simulate heterogeneous
elasticity of textures mapped on deforming surfaces. It is based
on a quite heavy hierarchical solver on GPU. Their rigidity map
inspired our flow field generation (Section 4).

These methods rely on real-time simulation or optimiza-
tion, which requires to solve a global equation at each time
step. While this is appropriate for interactive applications
on medium-size data, it remains time consuming for high-
resolution textures, and it is complex to integrate in the graphics
pipeline. In addition, the deformation is only controlled indi-
rectly through global parameters. By contrast, we provide direct
and local control, and easy integration in the standard graphics
pipeline. Run-time computations are purely local and confined
in the fragment shader, while the global problem has been pre-
processed when computing the flow field. It thus preserves the
key advantage of texturing: to generate high frequency details
in parallel on low frequency geometry. We are also not limited
to a given physical phenomenon. Finally, our method success-
fully deforms thin connected features such as cracks or joints in
cellular patterns, which are difficult to handle in numerical sys-
tems. This is made possible by our smooth pre-computed flow
field which avoids real-time optimization.



4 Preprint Submitted for review / Computers & Graphics (2020)

Fig. 3. Different input textures and their associated scalar maps. It can be seen that various kinds of contents can be deformed, including very thin
structures. The right-most example illustrates the case of a scalar map which is not only binary.

3. Texture deformation

3.1. Motivation

Let S be a surface, and X its embedding into 3D, defined as :

p
X
−→ x (1)

where p ∈ S and x ∈ R3 is a 3D position. When S is animated,
its 3D geometry Xt(S) depends on the time t.

Standard 2D texture mapping is defined through a composi-
tion:

p
U
−→ u

C
−→ Color(p) (2)

where U is the parameterization, u is a 2D parametric coor-
dinate and C is the texture, stored as an image, which maps
the parametric domain to a color. Usually, U and C are pre-
computed according to X. U is thus most often time invariant.
The texture then simply follows the geometry which remains
the only animated part. While this is perfectly acceptable for
a flapping flag, this method typically produces visual artifacts
as soon as surface deformation is not isometric. Figure 2 illus-
trates this problem: the texture color patterns (middle row) just
follow the geometric deformation, as a skin pinned to each ver-
tex of the mesh. This produces a distortion of any rigid pattern
(here the flowers) embedded within the texture. Our purpose
is to make parameterization time-dependent as well, so as to
automatically maintain consistency between geometry and tex-
ture. The bottom row in Figure 2 illustrates this correction:
the flower patches are kept almost rigid while the supposedly
extensible fabric is distorted. Although standard software al-
lows to keyframe texture coordinates so that parameterization
may also be animated, manually specifying such key-frames
independently from the animation of the surface is a tedious
task, given that visual consistency with the deforming geome-
try needs to be maintained.

The main challenge is to automatically generate visually con-
sistent texture deformations in the form of parameterization
warpings, so as to avoid any need for manual keyframing of
texture coordinates. While doing so, having the deformation
depend on texture contents, e.g. generating different behaviours
for pixels which represent different materials in the texture, is of
particular interest. Our last requirement is to design a real-time
method, allowing interactive animation and user control.

3.2. Deformation as a parametric warp

Our model is defined as:

p
U
−→ u

Wt
−→ w

C
−→ Color(p, t) (3)

where U is the initial parameterization, C is the texture, and
Wt is a time-dependent warping function from the parametric
domain onto itself. During the animation, U and C are kept
constant while Wt evolves.

Note that in our model, Wt is sampled on texels, which form
a fine and regular grid, while U is sampled on mesh vertices,
often coarse and irregular. This gives us two advantages over
directly animating U. First, computations are made easier by
the regular grid, and the implementation on GPU is straightfor-
ward. Second, the deformations are created at fine resolution,
and can be set to depend on the texture. Indeed, we define Wt

according to the texture content C(u), which makes the defor-
mation content-aware.

3.3. Warping as an advection in a flow field

The warping advects any parameter u along the streamlines
of a flow field:

Wt(u) = u +

∫ t

s=0
~v(Ws(u))dµ (4)

where:

• t is the temporal variable of the animation;

• ~v is a static flow field;

• dµ is the integration step which controls the warping.

The intuition of formula (4) is that the advection speed ~v
is modulated by dµ. In a standard advection, one would have
dµ = ds, so every texel u would be advected exactly at speed ~v
without control. By taking control over the integration step dµ
we introduce the possibility of modulating the speed, as if the
texels could “swim” forward and backward along the stream-
lines. dµ is defined at any time t (control across time) and any
position u (control across space). In Section 5, we present dif-
ferent scenarios to derive dµ from the geometry, from an inter-
active tool, or from environment parameters.

An advantage for ~v to be static is that it can be pre-computed
(see Section 4) and loaded on the GPU. Thus the warping Wt is
updated using a discretization of equation (4), computed at each



Preprint Submitted for review / Computers & Graphics (2020) 5

Fig. 4. Left: a bent cylinder textured with snake scales, which are de-
formed according to the tensor. Tensor magnitude is illustrated at the bot-
tom (blue: no deformation; green: stretch; red: compression). Right: tex-
ture visualized in parametric space. Top: with warping. Bottom: without
warping.

frame for all texels in parallel during a single off-screen render-
ing pass. This is a major advantage against real-time simulation
techniques, which have to solve a global equation at each time
step.

The warping is actually computed using

Wt+dt(u) −Wt(u) ≈ ~v(Wt(u))dµ, (5)

which is a trivial discretization of Equation (4). It proved to
be sufficient in our tests, though more sophisticated integration
schemes could improve the precision.

4. Flow field generation

Designing an appropriate flow field ~v is a delicate task. In this
section, we propose a technique that avoids a painful manual
drawing of a vector field. Instead, the user provides a scalar
map R from which the flow field is computed automatically by
solving the equation:

div(~v) = R (6)

The intuition is driven by an analogy with fluids. Regions
with positive divergence (e.g. sources) repulse the parameteri-
zation, so that the texture shrinks when advected. Conversely,
a negative divergence (e.g. sinks) attracts the parameterization
and stretches the texture. We ask the user to provide the scalar
map R, −1 ≤ R(u) ≤ 1 for every texel u. It represents the
stretched versus shrunk regions. Figure 3 shows the textures we
used to illustrate this paper, as well as the corresponding scalar
maps R that we drawn using standard image editing tools. Ask-
ing as input a scalar map instead of a vector field enables to
benefit from many existing advanced segmentation tools, like
self-similarity measures [14] for instance, to further simplify
the design process.

In a scenario where an elastic deformation is driven by an
animated geometry, as in Figure 2, R can be interpreted as a
rigidity map, set to 1 on rigid regions and to −1 on soft re-
gions. Indeed, if the geometry is stretched, then a standard tex-
ture mapping would stretch all texels the same way (Figure 2
middle). To mimic a more physical behavior, we would like
the fabric to be extensible while the flowers remain nearly rigid

(d) Anisotropic warping(c) Isotropic warping(b) No warping(a) Input

Fig. 5. An input texture (a) undergoes a geometric stretching. Results with
several controls (b,c,d) are compared. (b) no warping: scales and skin are
stretched identically. (c) isotropic control: skin is more stretched ; scales
are deformed both horizontally and vertically. (d) anisotropic control: the
deformation preferably follows the stretch direction (horizontal).

(bottom row). To make patterns to appear rigid in 3D, the ge-
ometric stretch has to be compensated by a texture shrinkage,
which corresponds to an expansion in the parametric domain.

In practice, we compute the field ~v by solving Equation (6)
with Dirichlet boundary conditions: we set ~v(u) = ~0 for all
texels u on the boundary of the parametric domain, or of each
chart of the texture atlas. Equation (6) is expressed on the dual
grid : R is linearly interpolated, and div(~v) is computed with
finite differences. The resulting system has less equations than
unknowns, yet it has no exact solution in general – this is due to
the Dirichlet conditions and the divergence theorem. We solve
this system in the least-square sense using a numerical solver.
This computation is done only once, as a pre-processing, since
only the resulting flow field is required for our real-time defor-
mation.

Notice that the interval [−1; 1] for R is arbitrary. Scaling R
would scale ~v, which can be compensated by inverse scaling of
dµ. In practice we adjust manually the scaling of dµ.

5. Warping control

The advection – and thus the deformation – is controlled by
the integration time-steps dµ which are defined per pixel. This
allows for local and dynamic control. We propose several ways
to control texture deformation, motivated by various applica-
tions, and discuss results. In an animation scenario, we com-
pute the time-steps from the underlying geometry. In an editing
scenario, we define the time-steps by a simple brush. Lastly, we
illustrate control by environment parameters.

5.1. Control by geometry deformation
Consider a common situation: a finely detailed texture is

mapped on a coarsely triangulated surface which is animated.
We want to derive dµ from the time-varying geometry Xt.

Surface deformation can be expressed locally by the tensor
matrix, which captures the geometric strains. Let Tt be the 2×2
matrix describing the deformation of a triangle between con-
secutive frames t − dt and t (see Appendix A for details). To



6 Preprint Submitted for review / Computers & Graphics (2020)

Fig. 6. Texture deformation controlled by a brush during an interactive
mapping editing session. Left: reference images. Right: results after edit-
ing. First row: The mortar has been either stretched or compressed, in
order to produce a user-desired, space-varying effect. Second row: the
editing process is applied to the foreground texture, a plank wall, which
lets appear a background image.

take into account this tensor, we experimented with various for-
mulas. In the following we propose two of them, which have
different properties.

Isotropic control. We use the differential norm of the accumu-
lated tensors as a measurement of the stretch magnitude. Let
At = Tt ◦ Tt−dt ◦ . . . ◦ T0 be the accumulated tensor at frame t,
we define the control parameter as:

dµ = (‖At‖ − ‖At−dt‖) dt (7)

where ‖ ‖ represents the Frobenius norm. This expression was
set to meet the following properties :

1. A static mesh (Tt = Id) implies no texture deformation
(dµ = 0).

2. The warping is invariant under time step decomposition.
In other words, the accumulation of many small steps is
equivalent to one large step.

3. The resulting warping is independent of the geometric
path. That is, two triangle trajectories that end at the same
position produce the same warping. In particular, this en-
sures reversibility: if the mesh gets back to its rest shape,
then the warping gets back to its initial value.

Figure 4 illustrates our method on a snake skin texture: with
a standard mapping (no warping), skin and scales are stretched
identically ; with our method, the soft skin stretches a lot while
the rigid scales deform as little as possible. This can be seen
also in the accompanying video.

Flow field

Input texture

Warped texture

Re-synthesized

Fig. 7. The flow field ~v associated to an input texture is integrated, resulting
in a warped texture with shrinking or stretching cracks, depending on the
sign of the integration steps dµ. These distortions are removed by the use
of our re-synthesised texture stack.

While this produces satisfactory results for nearly isotropic
deformations, this control has a limitation: different geomet-
ric deformations with the same area change produce the same
warping, as dµ is not sensitive to the stretching direction. This
can be seen on Figure 5-c: while the geometric stretch is only
horizontal, the scales slightly shrink vertically. As shown next,
introducing anisotropic behavior is possible but at the price of
losing the above property 3.

Anisotropic control. Sensitivity to the direction can provide
more physically plausible behavior. For instance, when stretch-
ing along a given direction, one may expect the texture to warp
in that direction while remaining rigid in the orthogonal one.
The following expression for dµ achieves this:

dµ = log
(
v̄T Ttv̄

)
dt, with v̄ =

~v
‖~v‖

. (8)

The dot product between the normalized flow v̄ and Ttv̄ trans-
formed by the geometric tensor produces a stronger deforma-
tion along the tensor main stretch direction. The log function
is used to guarantee the above properties 1 and 2. As shown in
Figure 5-d, the anisotropic behavior is improved.

This type of parameter control comes, however, with a draw-
back. Since dµ depends on the flow ~v(Wt(u)) at the current
warped parameter, the result depends on the trajectory and
property 3 is lost. As a consequence, the texture deformation
achieved this way is not reversible.

Note that we make no assumption on how the animation is
computed, e.g. skinning, key-frames, simulation, or optimiza-
tion. Whatever the geometric model, the control is unchanged.
Thus our model could be combined with triangle-based simula-
tions such as the skin model of Le et al. [16].

5.2. Control by texture mapping editing
Let us consider the following content creation scenario. A

mesh has been parameterized, and a texture mapped onto it.
Since the mesh is not developable, distortions of color patterns
are introduced. Our model provides a powerful tool for artists to
improve the texture mapping at texel resolution without chang-
ing mesh unfolding and texture coordinates.



Preprint Submitted for review / Computers & Graphics (2020) 7

Time = 0

Time = t

Fig. 8. Example of control by environment parameter. The ground texture
flow field is integrated everywhere but in the palm tree shadow, making
cracks to enlarge only in areas of high sun exposure, mimicking a drying
ground. Right: comparison between the initial texture state (top) and the
warped texture after several integration steps (bottom). The shadow con-
tour is highlighted in red.

To illustrate this use of our method, we designed a tool that
modifies warping on-the-fly thanks to an interactive brush. The
value of dµ is then a simple Gaussian weight centered around
the cursor (see Figure 6 and the accompanying video). Simi-
larly to the aforementioned anisotropic control, other heuristics
that account for the current direction of ~v in the computation
of dµ might be considered as well, in order to add directional
effects to the editing brush.

Approaches have been proposed to optimize mapping with
respect to texture content [21], but since they act on texture
coordinates only, correction is only possible at triangle level.
Combining them with our method, which provides manual con-
trol at texel resolution, might thus ease the task of texture map-
ping by allowing fine editing or the achievement of artistic ef-
fects by the user.

5.3. Control by environment parameters

The warping can be controlled by any kind of external pa-
rameters. To illustrate this, let us consider the example shown
in Figure 8, where an occluder (the palm tree) is used to pro-
duce a shadow on a ground plane by shadow mapping. Flow
field integration is directly guided by the shadow map, using its
value to set the step dµ and making the ground texture to deform
with respect to sun exposure: cracks enlarge only in regions out
of the shadow. It must be noticed that control parameters can
be changed interactively: moving the light and changing the
shadow makes the deformation to immediately adapt to the new
configuration. This example illustrates also the easiness of im-
plementation and integration of our model in a GPU rendering
pipeline.

6. Re-sampling and detail synthesis

The model presented so far behaves well for smooth defor-
mations, which requires both ~v and dµ to be smooth over the
domain. This is acceptable for data such as the flowers in Fig-
ure 2. However we want to treat more challenging data, such

Fig. 9. Left: texture stack Ch. Middle: residual warping W∗r . Right: re-
sulting Ch ◦ W∗r . See how changing h reduces the residual warping while
providing an identical result.

as the mortar between the bricks in Figure 6 or the cracks in
Figure 7. In these examples, thin features undergo extreme lo-
cal deformations, which causes two problems: the sampling is
irregular and the details are over-stretched. Our goal is to get
the fourth row in Figure 7 instead of the third one. We address
these problems by pre-computing a stack, which stores a small
set of textures (about 10), using re-sampling and local detail
synthesis.

6.1. Texture re-sampling

The warping Wt is arbitrary, resulting in an uneven sampling
of the texture on the surface. This may produce artifacts when
using a standard anisotropic filtering based on MIP-maps, be-
cause the footprint of a projected pixel may encompass texels
of various sizes. Our idea is to re-sample C ◦ Wt on a regular
grid. The difficulty comes from Wt, which is controlled pixel-
wise in real time. On one hand, on-the-fly re-sampling is too
time consuming. On the other hand, pre-computed re-sampling
is not tractable since dµ is not known a priori – only ~v is known.

Our solution consists in pre-integrating the warping at dis-
crete time steps, re-sampling the result and storing it in a texture
stack. This stack is then used at run-time to reduce sampling un-
evenness: for each texel, the warping is decomposed into a pre-
integrated warping (the closest stack level) plus a much lower
residual warping. We now show how to decompose the warping
into these two parts (pre-integrated and residual), and provide
the algorithm for run-time handling.

A reference warping W∗ that is context-independent, i.e. with
no external parameter in dµ is thus pre-integrated at discrete
time steps and stored as a texture stack {Ch}0≤h≤H , where C0 =

C and every texture

Ch(u) = C0 ◦W∗h (u) (9)



8 Preprint Submitted for review / Computers & Graphics (2020)

Fig. 10. Close-up on a stretched surface area with a warped texture. Top:
standard warping with resampling (Ch ◦ W∗r ) Bottom: warping with re-
sampling and synthesis in the stretched regions. Details are improved in
stretched regions thanks to texture synthesis.

is sampled on a regular grid, as shown in Figure 9 left. We
achieve this by integrating according to time only, i.e. dµ = ds:

W∗
t∗ (u) = u +

∫ t∗

s=0
~v(W∗s (u))ds (10)

Here, t∗ behaves like a “reference time” which is related to the
“real time” t by

t∗(t) =

∫ t

s=0
dµ, and W∗t∗(t) = Wt (11)

Without loss of generality, we assume that the interval be-
tween h and h + 1 is one unit of the reference time, ie. h = t∗.
Then, during animation at time t, we decompose the warping
into a pre-integrated part W∗h(t) and a residual warping part W∗r(t)
such as:

Wt = W∗t∗(t) = W∗h(t) ◦W∗r(t) (12)

where t∗(t) = h(t) + r(t). By combining Equations (9) and (12),
we can rewrite

Color(p, t) = C ◦Wt ◦ U(p) (13)

enabling the color to be computed as:

Color(p, t) = Ch(t) ◦W∗r(t) ◦ U(p) (14)

where Ch(t) has been pre-computed in the stack, and W∗r(t) is
a much smaller warping than Wt. As shown in Figure 9, by
moving up and down in the stack, we are able to reduce the
residual warping.

The challenge is now to compute W∗r(t) in real time during an
animation or modeling session. Our insight to achieve this is as
follows. For every texel:

• We maintain a level h in the stack, which is incremented if
t∗ ≥ h + 1, decremented if t∗ ≤ h − 1.

• W∗
r(t) is updated similarly to Wt, except that it is reset when

the level is incremented or decremented.

Fig. 11. On-the-fly correction of under-sampling occurring in the over-
stretched regions of a deforming geometry. Left: no correction. Right:
the re-synthesized texture stack is used.

The detailed algorithm is given in Appendix B. An advan-
tage of our technique is to be compliant with hardware-based
anti-aliasing. Indeed, MIP-map is turned on for all color maps
Ch. Then, for every surface point p, the colors of the four neigh-
bors of u(p) are computed independently using Equation (14)
and bi-linearly interpolated.

6.2. Synthesizing details

The texture sampling is now quite regular whatever the de-
formation, so we can address the problem of stretched details.
Visual artifacts appear in over-stretched areas during the for-
ward integration (i.e. from C0 to CH) due to an enlargement of
pixel contents. Compressed areas on the contrary gather pixel
contents and thus are free from these artifacts. To solve this, we
propose to synthesize details in the stretched parts of the stack
(Figure 10). The key point is to maintain spatial coherence be-
tween stretched and compressed parts of each level, as well as
the temporal coherence across levels.

Our insight is to use the backward integration (i.e. from
CH to C0), where stretched areas behave as compression. We
first create a bottom-up stack using forward integration, we re-
synthesize the stretched parts of the very last level (CH), then
we create a second top-down stack using backward integration
from the new CH . Each slice of texture stacks resulting from
the backward and forward integration are then linearly blended,
so as to keep from each only the regions corresponding to com-
pressed area. We thus guarantee that the maximum details are
preserved at each stack level. We provide the details of our al-
gorithm in a supplemental material.

The choice of the synthesis algorithm may vary depending
on the input and the desired quality. In our case, we used a
modified version of [22], which has the advantage of being fast
and able to preserve sufficiently well the structure and spatial
organization of our inputs.

7. Results

We have shown many results throughout the paper involv-
ing color maps (Figures 1 to 10). Figure 12 shows two other
textures mapped on an animated bouncing cube (see also the
accompanying video). As can be seen, the texture deforms in



Preprint Submitted for review / Computers & Graphics (2020) 9

Fig. 12. A few frames of a soft bouncing cube with texture deformation guided by the underlying surface animation. Top row: our texture deformation
model. Bottom row: standard texture mapping. Dark parts, defined as elastic, shrink on impact with the ground and stretch after the rebound, when the
object tends to recover its rest shape.

Denim
(3.24M texels)

Bricks
(0.32M texels)

Snake
(1M texels)

Texture

Plane (2 triangles)

Inflating (4.9K tri.)

Cylinder (3.2K tri.)

Plane

Inflating
Cylinder

Plane

Inflating
Cylinder

1 step
Warping

Geometry
10 steps 1 step 10 steps

+ Resynth
Standard

0.53
0.54
0.70
1.04
1.08
1.41
2.72
2.81
3.53

0.64
0.79
1.20
1.18
1.56
3.03
2.97
3.79

0.65
0.67
0.83
1.23
1.23
1.58
3.09
3.02
3.77

0.67
0.68
0.84
1.34
1.29
1.60
---
---
---

0.69
0.72
0.88
1.36
1.33
1.71
---
---
---

0.63

Table 1. Rendering time for different textures and different geometries
(in milliseconds). ”Standard” refer to a standard rendering without tex-
ture deformation, ”Warping” to the basic version of our model, and
”+Resynth” to the version using the texture stack for detail synthesis.
”Steps” indicates the number of integration steps performed per-pixel in
the fragment shader at each frame.

a consistent manner, elastic texels being shrunk on geometry
compression and stretched on extension. Our method is obliv-
ious to the type of data stored in the texture: in Figure 6 we
present a texture with transparency; in Figure 13 the deforma-
tion is also applied to a displacement map.

7.1. Detail synthesis

As shown in Figure 3, some of the textures to which we ap-
plied our method are critical for deformation scenarios, since
the stretched parts are made of very thin structures separating
big rigid cellular patterns. In such cases, strong sampling arti-
facts appear, as a very few number of pixels cover large surface
areas, as illustrated in the upper row of Figure 10.

Such textures are not treated by previous methods, which
mainly focus on textures that exhibit small rigid features within
large elastic regions (as in Figure 15). One reason is that they
rely on physical simulations: fine features may not be captured
by the simulation grid, or it may cause numerical problems.
Another reason is that sampling issues are not addressed.

Rest position Stretched geometry
no warping warping

Fig. 13. A deformation is applied to both the color and displacement map
channels. As it can be noticed on the right side of the stretched geometry,
the warping allows to preserve the spikes thickness while stretching the
supporting geometry.

Conversely, the use of our re-synthesized stack enables to
correctly manage this critical type of textures, by preserving
details either in the compressed or stretched regions, as shown
in Figure 10 bottom. A comparison of our method on a deform-
ing geometry with and without the use of the stack is illustrated
in Figure 11.

7.2. Performances

Rendering times are given in Table 1, obtained on an In-
tel(R) Core(TM) i7-7700K, 4.20GHz, with a GeForce GTX
1060 6GB. Measurements have been made by controlling the
warping with an animated geometry, and include the time re-
quired for rendering as well as for updating the warping, aver-
aged over 1000 frames. Both are performed entirely on GPU,
using a shader programming language. We compared three dif-
ferent cases: a standard rendering without texture deformation,
and two variants of our flow field based model: with and with-
out the re-synthesized texture stack. It must be mentioned that
for numerical accuracy reasons, we subdivide the time-steps
used during the flow field integration of each rendered frame
into smaller steps (usually 10). This is done directly in the frag-
ment shader by consecutive fetches of the flow field texture. We
compared timings with and without this subdivision.

Compared to the standard rendering, the additional cost in-
duced by our approach is mainly due to the fact that the defor-
mation for the whole texture must be updated at each frame:
every texel has thus to be processed at least once to integrate



10 Preprint Submitted for review / Computers & Graphics (2020)

a) No deformation b) Compression c) Stretching d) Shearing e) Fan

Fig. 14. Illustration of the behaviour of our algorithm (anisotropic control). The texture (a) is pre-processed with a map R = 1 inside the blue disks,
R = −1 outside. It is mapped on a quad made of two large triangles, which undergoes pure compression (b), stretching (c), and shearing (d). The fan
deformation (e) is a mix of shearing and stretching.

Input image No warping Isotropic control Anisotropic control Koniaris et al. [20]
Colored pixel count: 82 742 41 803 82 105 67 983 73 727

Fig. 15. Comparison with Koniaris et al. [20]. From left to right: input texture; standard deformation (50% horizontal compression); our warping
(isotropic control); our warping (anisotropic control); [20] results.

the flow field, conversely to the standard rendering, where only
visible texels are processed. This is the minimal expected cost
for a per-pixel texture deformation. Considering the time-step
subdivision, one can note that it has a very little impact on per-
formances, despite the much more important texture fetch count
it requires. This is due to cache-coherency: since our time-
steps are very small, texture fetches are located very close to
each other in the parametric space. It can be seen that the use
of our stack for detail re-synthesis has almost no impact on the
global rendering time. The number of stack levels is relatively
low (10 in our examples) which avoids excessive cache-misses
due to frequent texture switches, and only one is used by each
texel to define the reference pre-integrated warping. We did
not include timings for the denim example using re-synthesis
because of their irrelevancy: texture resolution is high and the
deforming areas do not consist in thin structures that need to be
re-sampled. The relative overhead is about 10 to 20%, and it
decreases as the texture size grows.

In terms of memory, instead of a single texture (C) for the
standard rendering, our model requires an additional R4 texture
to store both the flow field (~v) and the warping (Wt). In the case
where the re-synthesized stack is used, we need as many tex-
tures as there are stack levels, as well as an additional one to
manage the stack (h and W∗r ). More precisely, if N is the texel
count of the input texture and L the number of stack levels, the
memory footprint of our model is of 19N bytes without stack,
and (24 + 3L)N bytes when using the stack, against 3N for a
classical albedo rendering. As an example, the snake skin tex-
ture of 992×992 texels requires 18Mb without stack and 50Mb
with a stack of 10 levels against 3Mb for a standard rendering.

7.3. Discussion

Figure 14 illustrates the behaviour of our algorithm and its
limitations. The texture is pre-processed with a scalar map

R = 1 inside the blue disks (rigid) and R = −1 outside (stretch-
able) so as to keep the disks as rigid as possible. Pure com-
pression, stretching and shearing (b, c, d) show the interaction
between rigid regions: the two left-most disks, which are closer
to each other, are more deformed. This is due to the computa-
tion of ~v, which optimizes a global equation over the domain.
The fan deformation (e) makes apparent the underlying geom-
etry made of two triangles. Each triangle undergoes a different
deformation, which implies a different warping. The disconti-
nuity on the edge is due to the parameterization – U in equa-
tion (3) – which is not smooth. To improve this result, it could
be useful to smooth U, possibly depending dynamically on the
geometry X. Another option would be to account for U and X
while computing the vector field.

Figure 15 shows a comparison between our method and the
physical simulation of Koniaris et al. [20], which also de-
forms textures at fine resolution. Even if our isotropic con-
trol well preserves the area of the fruits, it changes their shape.
Anisotropic control, in turn, strictly preserves the vertical sizes
but internal micro-patterns are distorted compared to [20]. As
expected, we cannot guaranty physical realism but only plausi-
ble deformations.

However, our model comes with several advantages over Ko-
niaris et al. [20]:

1. Our method is easy to integrate in the graphics pipeline
because it avoids numerical simulation or optimization at
run-time.

2. Our method has a constant cost per texel. Conversely,
in [20], the cost depends on the resolution of the simu-
lation grid, which may not coincide with the texture reso-
lution. Therefore, it may hinder a correct management of
very thin deforming structures at texel level.

3. All examples derived from [20] (including Figure 15) ex-
hibit rigid features on smooth stretchable backgrounds.



Preprint Submitted for review / Computers & Graphics (2020) 11

Thus, in the case of thin structures and/or strong defor-
mations, the effect of deformations on the background are
totally hidden. As already shown in Figures 7 and 10, our
method successfully handles such challenging cases.

4. Control in [20] is possible only through geometry defor-
mation, contrarily to our approach, where texture deforma-
tion can be controlled locally, by any kind of parameters,
as illustrated by Sections 5.2 and 5.3.

8. Conclusion

We presented a novel model for content-aware texture defor-
mation at texel resolution, based on the advection of the para-
metric domain in a pre-computed flow field. The deformation
can be controlled locally and dynamically using various crite-
ria, such as geometry, interactive editing, or environment pa-
rameters. Integration in the graphics pipeline is easy, and both
memory and computation loads are kept low. We showed vari-
ous examples, including challenging thin structures with strong
deformations. To improve the appearance of over-stretched fea-
tures we proposed a technique for re-sampling and detail syn-
thesis, based on a texture stack. To ease the computation of the
flow field, we derive it automatically from a scalar map.

In the future we would like to explore alternative techniques
for building the flow field, such as texture key-frames combined
with an inverse warping problem or offline simulations. It could
also be interesting to consider boundary constraints other than
the Dirichlet ones, so as to allow dynamic behaviours such as
sliding, which could lead to visual effects similar to the ones
presented in [16].

We believe that our model can inspire future research about
dynamic phenomena including both space and time variations.
It would be interesting to enhance our deformation model with
the appearance and disappearance of new features (such as
cracks), with topology changes (e.g. to represent lava flows),
or with weathering techniques [23, 24] to represent progressive
changes for static objects (e.g. rust, moist, or dust accumula-
tion).

Another direction is on-the-fly dynamic texture synthesis,
i.e. including our deformation model into a real-time synthesis
framework. This could be useful to texture infinite non param-
eterized geometry, such as an on-the-fly procedurally generated
landscape.

Acknowledgements

This work has been partially funded by the project HDWorlds
from the Agence Nationale de la Recherche (ANR-16-CE33-
0001) and by the advanced grant 291184 EXPRESSIVE from
the European Research Council (ERC-2011-ADG 20110209).

References

[1] Avidan, S, Shamir, A. Seam carving for content-aware image resizing.
ACM Transactions on Graphics 2007;26(3).

[2] Cho, TS, Butman, M, Avidan, S, Freeman, W. The patch transform and
its applications to image editing. IEEE Conference on Computer Vision
and Pattern Recognition 2008;32.

[3] Pritch, Y, Kav-Venaki, E, Peleg, S. Shift-map image editing. Proceed-
ings of the IEEE International Conference on Computer Vision 2009;:151
– 158.

[4] Lefebvre, S, Hornus, S, Lasram, A. By-example synthesis of architec-
tural textures. ACM Transactions on Graphics (SIGGRAPH Conference
Proceedings) 2010;.

[5] Cabral, M, Lefebvre, S, Dachsbacher, C, Drettakis, G. Structure-
preserving reshape for textured architectural scenes. Computer Graphics
Forum 2009;28:469–480.

[6] Bargteil, AW, Sin, F, Michaels, JE, Goktekin, TG, O’Brien, JF. A
texture synthesis method for liquid animations. In: Proceedings of the
2006 ACM SIGGRAPH/Eurographics symposium on Computer anima-
tion. 2006, p. 345–351.

[7] Kwatra, V, Adalsteinsson, D, Kim, T, Kwatra, N, Carlson, M, Lin,
MC. Texturing fluids. IEEE Transactions on Visualization and Computer
Graphics 2007;13(5):939–952.

[8] Gagnon, J, Guzmán, J, Vervondel, V, Dagenais, F, Mould, D, Paquette,
E. Distribution update of deformable patches for texture synthesis on the
free surface of fluids. Computer Graphics Forum 2019;38:491–500.

[9] Kwatra, V, Essa, I, Bobick, A, Kwatra, N. Texture optimiza-
tion for example-based synthesis. ACM Transactions on Graphics
2005;24(3):795–802.

[10] Yu, Q, Neyret, F, Bruneton, E, Holzschuch, N. Lagrangian texture ad-
vection: Preserving both spectrum and velocity field. IEEE Transactions
on Visualization and Computer Graphics 2011;17(11):1612–1623.

[11] Gagnon, J, Dagenais, F, Paquette, E. Dynamic lapped texture for fluid
simulations. The Visual Computer 2016;32(6-8):901–909.

[12] Smets-Solanes, JP. Vector field based texture mapping of animated im-
plicit objects. Computer Graphics Forum 1996;15(3):289–300.

[13] Laramee, RS, Hauser, H, Doleisch, H, Vrolijk, B, Post, FH, Weiskopf,
D. The State of the Art in Flow Visualization: Dense and Texture-Based
Techniques. Computer Graphics Forum 2004;.

[14] Brooks, S, Dodgson, N. Self-similarity based texture editing. ACM
Transactions on Graphics 2002;21(3):653–656.

[15] Liu, Y, Lin, WC, Hays, J. Near-regular texture analysis and manipula-
tion. ACM Transactions on Graphics 2004;23(3):368–376.

[16] Li, D, Sueda, S, Neog, DR, Pai, DK. Thin skin elastodynamics. ACM
Transactions on Graphics 2013;32(4):49:1–49:10.

[17] Gal, R, Sorkine, O, Cohen-Or, D. Feature-aware texturing. In: Pro-
ceedings of the 17th Eurographics Conference on Rendering Techniques.
2006, p. 297–303.

[18] Grabli, S, Sprout, K, Ye, Y. Feature-based texture stretch compensation
for 3d meshes. In: ACM SIGGRAPH 2015 Talks. 2015, p. 71:1–71:1.

[19] Koniaris, C, Cosker, D, Yang, X, Mitchell, K, Matthews, I. Real-
time content-aware texturing for deformable surfaces. In: Proceedings of
the 10th European Conference on Visual Media Production. ACM; 2013,
p. 11.

[20] Koniaris, C, Mitchell, K, Cosker, D. Real-time variable rigidity texture
mapping. In: Proceedings of the 12th European Conference on Visual
Media Production. 2015, p. 5:1–5:10.

[21] Jin, Y, Shi, Z, Sun, J, Huang, J, Tong, R. Content-aware texture map-
ping. Graphical Models 2014;76:152–161. Proceedings of Computational
Visual Media Conference 2013.

[22] Lefebvre, S, Hoppe, H. Parallel controllable texture synthesis. ACM
Transactions on Graphics 2005;24(3):777–786.

[23] Mérillou, S, Ghazanfarpour, D. A survey of aging and weathering phe-
nomena in computer graphics. Computers & Graphics 2008;32(2):159–
174.

[24] Lu, J, Georghiades, AS, Glaser, A, Wu, H, Wei, LY, Guo, B, et al.
Context-aware textures. ACM Transactions on Graphics 2007;26(1):3.

[25] Pennec, X, Fillard, P, Ayache, N. A riemannian framework for tensor
computing. International Journal of Computer Vision 2006;66(1):41–66.



12 Preprint Submitted for review / Computers & Graphics (2020)

Appendix A. Computing the geometric tensor

We need to represent the geometric deformations consis-
tently over both time and space. To achieve this, we compute
a tangent frame (f̃x, f̃y) for each triangle, based on its parame-
terization. Then the 2D deformation tensors Tt are computed in
this basis.

Let us consider a mesh triangle, with u0, u1, u2 the texture
coordinates in R2 and x0, x1, x2 the positions in R3 of each of
its three vertices. The mapping from the parametric space to
the (tangent plane of) the 3D triangle is then given by x = Fu
where:

F = [x1 − x0, x2 − x0] [u1 − u0, u2 − u0]−1 (A.1)

The columns (fx, fy) of F form a basis of the tangent plane,
which is the mapping of the canonical basis of the parametric
domain. This basis is orthonormalized using the Gram-Schmidt
algorithm, resulting in f̃x and f̃y, which represent the tangent and
bi-normal vectors.

Let et
1 and et

2 denote the coordinates in (f̃x, f̃y) of the edge
vectors (x1 − x0) and (x2 − x0) at animation frame t. The tensor
Tt representing the triangle deformation between consecutive
frames t − dt and t is given by:

Tt =
[
et

1,
det

2

] [
et−dt

1 , det−dt
2

]−1
(A.2)

For rendering purposes, we need tensors linearly interpolated
along triangles so as to avoid discontinuities at edges during
deformation. Thus, tensors at vertices are first computed from
neighboring triangle tensors, either by a naive averaging ap-
proach or by a more elaborated scheme [25]. Linear interpola-
tion along triangles is then achieved by graphics hardware.

Appendix B. Computing the residual warping

The algorithm below details the computation at run time of
the residual warping W∗r(t)(u) = u + ~w∗r(t)(u). It is based on the
equations of Sections 5.1 and 6.

A key observation here is that, when the level changes, the
residual warping integration along ~v restarts from the non-
warped parameter u, not from W∗h(t)(u). Indeed, to write Equa-
tion (12) we need W∗r(t) and W∗h(t) to commute:

W∗t∗(t) = W∗r(t) ◦W∗
h(t) = W∗h(t) ◦W∗r(t). (B.1)

This is true because the integration step does not depend on
geometry or any time dependent parameter. This would be in-
correct for Wt in general.

Data: flow ~v and geometric deformation Tt for all pixels
u

Result: h(t) and ~w∗r(t) for all pixels u
~w[u] = 0 . stores ~wt(u)
~w∗[u] = 0 . stores ~w∗r(t)(u)
t∗[u] = 0 . stores t∗(t)
h[u] = 0 . stores h(t)
for any step t → t + dt do

dµ[u] = function of ~v(u + ~w[u]) and Tt(u)
t∗[u] += dµ[u]
~w[u] += dµ[u]~v(u + ~w[u])
~w∗[u] += dµ[u]~v(u + ~w∗[u])
if t∗[u] ≥ h[u] + 1 then

h[u] += 1
~w∗[u] = (t∗[u] − h[u])~v[u]

else if t∗[u] ≤ h[u] − 1 then
h[u] −= 1
~w∗[u] = (t∗[u] − h[u])~v[u]

end


	Introduction
	Related work
	Image retargeting
	Texture advection
	Texture warping for editing and synthesis
	Texture warping for dynamic deformations

	Texture deformation
	Motivation
	Deformation as a parametric warp
	Warping as an advection in a flow field

	Flow field generation
	Warping control
	Control by geometry deformation
	Control by texture mapping editing
	Control by environment parameters

	Re-sampling and detail synthesis
	Texture re-sampling
	Synthesizing details

	Results
	Detail synthesis
	Performances
	Discussion

	Conclusion
	Computing the geometric tensor
	Computing the residual warping

