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From the distributions of times of interactions to

preys and predators dynamical systems

Vincent Bansaye∗ and Bertand Cloez†

March 29, 2021

Abstract

We consider a stochastic individual based model where each predator searches
during a random time and then manipulates its prey or rests. The time distributions
may be non-exponential. An age structure allows to describe these interactions and
get a Markovian setting. The process is characterized by a measure-valued stochastic
differential equation. We prove averaging results in this infinite dimensional setting
and get the convergence of the slow-fast macroscopic prey predator process to a two
dimensional dynamical system. We recover classical functional responses. We also
get new forms arising in particular when births and deaths of predators are affected
by the lack of food.
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1 Introduction

Functional responses are widely used to quantify interactions between species in
ecology. The way functional responses arise at the macroscopic level and describe
population dynamics or evolution is a fundamental issue for species conservation or sta-
tistical inference of parameters. Indeed, their form influences the stability properties of
dynamics, their long time behavior or speed of convergence. The link between individual
behavior and macroscopic dynamics has attracted lots of attention for chemical reactions
and population dynamics from the works of Michael and Menten.

Macroscopic derivation from individual based model rely in general on a large popula-
tion approximation of finite dimensional Markov processes describing the number of indi-
viduals of each species, possibly structured in status (searching, handling...), space or size.
In this setting, Kurtz and Popovic [KKP14] obtain the classical Michaelis Menten and
Holling functional responses in limiting dynamical systems and fluctuations of processes
around these limits. In our context of prey-pradators interactions, let us mention [DS13]
which starts from a stochastic individual based model. They derive a finite dimensional
Markov chain and convergence to ODEs involving the classical functional responses. In
[CKBG14], a simple decision tree based on game-theoretical approach response is devel-
oped. Similarly, random walks and Poisson type process are used in [AKF11] to describe
functional responses. The reduced model counting only the total number of preys and
the total number of predators, without distinguishing their status, is also classically de-
rived directly from the macroscopic ODEs [JKT02, BDBS96, HDB97]. Again, it uses
a slow-fast scaling and the associated quasi-steady-state approximation. These Markov
settings allow for justification of macroscopic equations in a context of absence of mem-
ory of interactions. Indeed, the time for associated interactions are then exponentially
distributed, potentially up to the addition of the relevant successive state to describe the
interaction.

Random times involved in ecological or biological interactions are in general non-
exponentially distributed, see [DKPvG15, BBC18] and references therein. Indeed,
handling or manipulation times may have small standard deviations compared to the
mean, while exponential distribution forces the value of variance once the mean is
fixed. Besides, as far as we see, these times seem to be distributed with one mode.
Finally, foraging suggests that the probability of finding a prey eventually increases
with searching time for a given density of preys. The aim of the paper is to consider
general distribution for the times describing interactions. We extend approximation
results relying on absence of memory and obtain a reduced model. We also obtain new
features due to the fact that mortality depends on prey consumption and life length is
not exponentially distributed. Following in particular [BBC18] and references therein,
we model the interaction by a renewal process for each predator, with two status. Each
predator successively searches during a random time and then manipulates during an
other random time, which may include rest or other interactions. We assume that
these time distributions admit a density with respect to Lebesgue measure and density
dependence. Extension of the current approach to more than two status for predators
would be straightforward.

Let us first describe informally the model. We write n1 ∈ N the number of preys
and n2 ∈ N the number of predators. Predators then search preys during a random time

2



distributed as a random variable TS(n1). Typically the more n1 is large, the smaller
TS(n1) should be. At the end of this time, one prey is caught and the population of preys
becomes n1 − 1. The predator changes its status and now manipulates during a time
distributed as TM (n1 − 1). Several predators follow simultaneously and independently
this dynamics, but they live with a common number of preys and impact each other
through this common resource. Besides, each predator gives birth and dies with respective
individual rates γr(u) and βr(u), which depends on their status r ∈ {S,M} and the time
u from which they are in this status. Typically, the fact that the predator does not find a
prey make its death rate βS(u) increase with u. Preys also give birth and die, with fixed
rates γ and β.
We assume that preys are at scale K1 and predators at scale K2 and that K1 ≫ K2.
That means that preys are much more numerous than predators. A slow-fast dynamic
is considered : the time scale of prey-predator interactions is short compared to the
time scale of birth and death of predators and preys. It means that each predator eats
many preys during its life and, if a prey is not eaten by a predator then its life length is
comparable to the ones of predators. After scaling, we show, that the couple of stochastic
processes describing the quantities of preys of predators converge in law in D([0,∞),R2

+)
asK1,K2 tend to infinity, to the unique solution (x, y) of an ordinary differential equation:

{
x′(t) = (γ − β)x(t) − y(t)φ(x(t)),
y′(t) = y(t)ψ(x(t)),

where

φ(x) =
1

E[TS(x) + TM (x)]
, (1)

and

ψ(x) =
E

[∫ TS(x)
0 (γS(u)− βS(u))du +

∫ TM (x)
0 (γM (u)− βM (u))du

]

E[TS(x) + TM (x)]
. (2)

This limit theorem will be illustrated both by classical and new functional responses in
Section 4. We observe that the response φ of preys due to predatory is only sensitive
to mean time of interactions. It thus extends the exponential case to more general
distribution. At this macroscopic scale, for the population of preys, the distribution of
times involved in interactions plays a role only through its mean. In contrast, the growth
rate ψ of the population of predators is in general sensitive to the other characteristics of
the distribution. We add that the distribution of time of interactions should also impact
the dynamics of the population of preys at a second order, i.e. for fluctuations. This is
relevant in particular when population are not too large and left for a future work.

The fact that the time of interactions is both density dependent and non-exponentially
distributed leads us to extend the state space. This procedure to get the Markov setting
is classical and consists here in an additional age structure. We then exploit the generator
and martingale problem and get also the age distribution of preys. The problem arising
is then an averaging in infinite dimension. The strategy of proof follows the techniques
developed in [KKP14] in finite dimension using the occupation measure. In infinite
dimension, much less work has been done up to our knowledge. Let us mention [MT12]
which considers averaging with an age structure and has also inspired this work. Two
main differences appear in our context : the age structure is due to interactions and the
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rates involved are not bounded, since tail distribution of times may for instance decrease
faster than exponentially.
We consider a punctual measure whose atoms give the status and the age of predators,
which is here the length of time since they have been in this status. Other relevant ages
could be added, in particular the time from the birth. However, it seems superfluous
at our stage. In our slow-fast dynamics, there is an averaging phenomenon and the
numbers of predators in each status are instantaneously at equilibrium. This enables to
reduce the infinite-dimensional model to a two-dimensional system of equations. The
averaging phenomenon in finite dimension is classical [KKP14, BKPR06, Cos16, MT12].
The reduction of the infinite setting to a finite one describing the number of preys
and predators may be less. Following [Kur92, KKP14], the occupation measure ΓK ,
given by ΓK([0, t]) =

∫ t
0 δY K

s
ds deals with the fast time component Y K , here the

predations. In our setting, Y K is the distribution of ages and status and is thus defined
as a punctual measure. Instead of considering a measure whose atoms are punctual
measures, we consider the mean measure ΓK([0, t]) =

∫ t
0 Y

K
s ds, which is enough for our

purpose. Consequently, our measure ΓK will not degenerate to some measure of the
form

∫ t
0 δf(Xs)ds, for some function f , but tends to some specific distribution.

The paper is structured as follows. In Section 2, we define the integer valued model
without any time or population size scaling. We characterize the process as the unique
strong solution of a stochastic differential equation and give first properties about its
semimartingale decomposition. In particular, the key technical point is the control of
the age distribution in our setting, by exploiting the local time associated to the renewal
procedure. In Section 3, we introduce the scaled process and state our main result,
Theorem 3.4. The result is proved by tightness and identification of the limit using the
occupation measure. Finally, we end our work through several examples in Section 4.

Notation. We write a∞ ∈ (0,+∞] the maximal age and

X = {S,M} × [0, a∞),

the state space of predators endowed with the product σ-algebra.
We denote by M(S) the set of finite measures on any topological space S endowed with
its Borel algebra. We endow M(S) with the narrow (or weak) topology: that is µn tends
to µ if and only if for every continuous and bounded function f on S,

lim
n→∞

∫

S
fdµn =

∫

S
fdµ.

For r ∈ {S,M}, we write r the complementary status of r, i.e. the unique element of
{S,M} \ {r}.
We finally denote by C1,b(X ) (resp. C1,b(U×X ) and C1,b([0, a∞))) the space of measurable
and bounded functions from {S,M}× [0, a∞) (resp. U ×{S,M}× [0, a∞) and [0, a∞)) to
R such that f is continuously differentiable with respect to its second (resp. third, resp.
first) variable, with bounded derivative.
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2 The stochastic individual based model

In this section, we define the discrete individual based model using stochastic differ-
ential equations with jumps. The accelerated normalized process and its approximation
will be studied in the next section using properties and estimates obtained here.
Each predator is characterized by a status r ∈ {S,M} and an age a ∈ [0, a∞) . To formal-
ize conveniently this modeling, we label each predator using classical Ulam-Harris-Neveu
notation and describe the associated genealogical tree. The set of individuals is

U = N× ∪k≥0{1, 2}k .

For short, we write u = u0u1 . . . uk ∈ U and u then corresponds to an individual living
in generation |u| = k and whose ancestor in generation i is u0 . . . ui for 0 ≤ i ≤ k. At
each reproduction event, we assume for simplicity that every predator u only gives birth
to one predator and we label the mother by u1 and its child by u2. The population of
predators alive at time t is denoted by P(t) and is a subset of U . For each predator
i ∈ P(t), we write ri(t) ∈ {S,M} its status at time t, which indicate respectively that it
searches or manipulates. We write ai(t) its age, namely the time from which it searches
or manipulates. Finally, we write X(t) ∈ N the number of preys at time t.
The state of the population is then given by the process

Z = (Z(t))t≥0 = (X(t), Y (t))t≥0,

where the measure Y describes the predators and is given for all t ≥ 0 by

Y (t) =
∑

i∈P(t)

δ(i,ri(t),ai(t)).

For any t ≥ 0, Y (t) ∈ M(U × X ), where we recall that X = {S,M} × [0, a∞). Besides,
for any U ⊂ U , the projected measure

Y (t, U, {r}, ·) =
∑

i∈P(t), ri(t)=r

δai(t)

gives the collection of ages of predators in status r at time t, whose labels belong to U .
The total number of predators at time t is then Y (t,U , {S,M},R+).

Let us now describe the population dynamic. For status r ∈ {S,M} and in the
presence of x ∈ N preys, we assume that the time for interaction Tr(x) is a random
variable with support [0, a∞). We also assume that it admits a density, with respect to
the Lebesgue measure, fr(x, ·). The associated jump rate α is defined for (a, x) ∈ X by

αr(a, x) =
fr(a, x)∫

[a,a∞) fr(u, x)du
,

It gives the rate at which a predator changes its status when its age in its current status
is equal to a and the number of preys is x. If the predator was searching, it provokes a
death of a prey. We do not assume that these interactions rates αr are lower and upper
bounded. Indeed, for instance in the case when the time of interaction has a finite support
(a∞ < ∞) or a subexponential tail, it is not upperbounded, even for a given number of
preys. Let us consider some classical distribution that will be captured in our setting:
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• Exponential law: f(a, x) = λ(x)e−λ(x)a and α(a, x) = λ(x), for some bounded
function λ.

• Log-normal distribution : f(a, x) = 1
aσ(x)

√
2π

exp
(
− (log(a)−µ(x))2)

2σ(x)2

)
and α has no

explicit form.

• Uniform law: f(a, x) = 1[0,1](a) and α(a, x) = (1− a)−11[0,1).

• Pareto law : f(a, x) = k(x)(z(x)k(x)/a)k(x)1a≥z(x) and α(a, x) = k(x)/a1a≥z(x), for
some bounded functions k : N → (0,+∞) and z : N → (1,+∞).

Finally, predators may give birth or die with respective measurable rates a 7→ γr(a)
and a 7→ βr(a) which depend on their status r ∈ {S,M} and their interaction age a. In
particular, lack of nutrition affects survival and reproduction and γS may be decreasing
and βS may be increasing. For sake of simplicity and realism, we assume these rates are
bounded. For the preys, birth and death rates are non-negative numbers denoted by γ
and β.

2.1 Existence and trajectorial representation

Following for instance [FM04, Tra06, BT10], we construct and characterize (Z(t))t≥0

as the unique strong solution of a stochastic differential equation. For every i ∈ U ,
we let N i be independent Poisson punctual point measures on R

2
+ with intensity the

Lebesgue measure. These measures provide the random times when a predator changes
its status between searching and manipulating. We introduce also independent Poisson
punctual point measures Mi and Q on R

2
+ with intensity the Lebesgue measure. They

are independent of (N i, i ∈ U) and describe births and deaths of preys and predators.
For convenience, we write

αi(s) = αri(s)(ai(s),X(s)), γi(s) = γri(s)(ai(s)), βi(s) = βri(s)(ai(s)).

We consider the following equation for the evolution of the number of preys for t ≥ 0,

X(t) = X(0) −
∫ t

0

∑

i∈P(s−)
ri(s−)=S

∫

R+

1{u≤αi(s−)} N i(ds, du)

+

∫ t

0

∫

R+

(
1{u≤γX(s−)} − 1{0<u−γX(s−)≤βX(s−)}

)
Q(ds, du). (3)

Indeed, the number of preys decreases when they are caught by a predator and also varies
independently by births and deaths. For every function f ∈ C1,b(U × X ), we consider

〈Y (t),f〉 = 〈Y (0), f〉 +
∫ t

0

∑

i∈P(s−)

∂af(i, ri(s−), ai(s−)) ds

+

∫ t

0

∑

i∈P(s−)

∫

R+

1u≤αi(s−)Df(i, s−)N i(ds, du)

+

∫ t

0

∑

i∈P(s−)

∫

R+

(
1u≤γi(s−)∆f(i, ri(s−), ai(s−)))

− 10<u−γi(s−)≤βi(s−) f(i, ri(s−), ai(s−))
)
Qi(ds, du), (4)
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where ∂af stands for the partial derivative of f with respect to the third variable and

Df(i, s) = f(i, ri(s), 0)−f(i, ri(s), ai(s)); ∆f(i, r, a) = f(i1, r, a)+f(i2,M, 0)−f(i, r, a).

Recall that r is the complementary status of r, i.e. the unique element of {S,M} \ {r}.
In this equation, status of new born are supposed to be in the manipulation state M .
This choice seems natural but may sound somewhat arbitrary. However, more complex
choices would require additional notations and should have no macroscopic impact.

Let us state the existence result and characterize the process using the previous
stochastic differential equation. For convenience, we make the following boundedness
and regularity assumptions, which are relevant for our purpose.

Assumption 2.1. There exists a0 ∈ (0, a∞) such that Y (0, {S,M}, [a0, a∞)) = 0 a.s.
Besides, for any r ∈ {S,M} and K > 0,

inf
x∈[0,K]

E(Tr(x)) > 0, sup
a∈[0,a∞)

(γr(a) + βr(a)) <∞

and a→ αr(a, x) is continuous on [0, a∞) for any x ∈ N.

Proposition 2.2. Let Z(0) = (X(0), Y (0)) with X(0) ∈ N and Y (0) being a punctual
measure in M(U × X ) a.s. Under Assumption 2.1, the system of stochastic differential
equations (3-4) admits a unique strong solution Z = (X,Y ) in D([0,∞),N×M(U ×X ))
with initial condition Z(0).

Proof. The construction of the process and its uniqueness can be achieved iteratively,
using the successive random times between each event, see for instance [BM15]. The proof
is classical and we just give its sketch. The only point to justify is that the successive
times where an event (change of status, birth or death) occur do not accumulate. For
that purpose, we proceed by a classical localization procedure and introduce the hitting
time TK = inf{t : X(t) ≥ K}. Before time TK , by Assumption 2.1, mean time of
change of status are lower bounded and birth and death rates of preys and predators
are upper bounded. So a.s. no accumulation of jumps occurs. We need now to justify
that TK tends a.s. to infinity as K → ∞. It is achieved by dominating the process
X by a pure linear birth process (Yule process) with birth rate per capita γ. The fact
that this latter does not explode is well known and can be derived for instance from the
finiteness of its first moment. Pathwise uniqueness of the system of stochastic differential
equations is also obtained by induction on the successive jumps, which are provided by
the common Poisson point measures. The argument above ensure that uniqueness holds
for any positive time. Let us finally note that the system (3-4) is closed, since P(t) and
(i, ri(t), ai(t)) are determined (uniquely) by the measure Y (t), which is itself determined
by its projections 〈Y (t), f〉 for f ∈ C1,b(U × X ).

2.2 First estimates and properties

We start by a sharp and useful bound on the first moment of the punctual measures
Y evaluated on tests functions which may be non bounded. For convenience, we write

Y(t, ·) = Y (t,U , ·) =
∑

i∈P(t)

δ(ri(t),ai(t))
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the projection of the measure Y (t) on X . We also introduce the exit time of the number
of preys of (1/K,K) for K > 0 :

τK = inf{t ≥ 0 : Xt 6∈ (1/K,K)}.
We consider the associated bounds on the rate of transitions for r ∈ {S,M},

αr(a,K) = sup
x∈(1/K,K)

αr(a, x), αr(a,K) = inf
x∈(1/K,K)

αr(a, x),

which are continuous by continuity of αr and

γ̄ = sup
r∈{S,M}, a∈[0,a∞)

γr(a).

Lemma 2.3. Under Assumption 2.1, there exists C > 0 such that for any continuous
function f : [0, a∞) → R+ and r ∈ {S,M} and K > 0,

E

[∫ T∧τK

0

∫

[0,a∞)
f(a)Y(s, {r}, da)ds

]
≤ C(1 + T )eγ̄T

∫

[0,a∞)
f(a)e−

∫ a

0 αr(u,K)du/2 da.

Proof. Fix T ≥ 0 and consider an increasing sequence an, where an+1 = an + tn and
(tn)n is a decreasing sequence of positive numbers fixed hereafter. For a predator i ∈ U ,
a status r ∈ {R,M} and a level n ∈ N, we set

ui,rn = E

[∫ τK∧T

0
1{i∈P(s), ri(s)=r, ai(s)∈[an,an+1)}ds

]
.

It is equal to the cumulative time spent by predator i, in status r and between ages an
and an+1. Let also

N i,r
n =

∑

s≤τK∧T
1{i∈P(s), ri(s)=r, ai(s)=an}

be the number of times that predator i ∈ U reaches age an while it is in status r. In
other words, writing b(i) the birth time of individual i, for every j ∈ N, we can define
iteratively

T i,r
j+1,n = inf{t > T i,r

j,n | i ∈ P(t), ri(t) = r, ai(t) = an},
for j ≥ 0, with T i,r

0,n = b(i). We get

N i,r
n =

∑

j≥1

1{T i,r
j,n≤τK∧T}.

With this notation and writing Tj = T i,r
j,n+1 for convenience, we have

ui,rn+1 ≤ E



N i,r

n+1∑

j=1

∫ Tj+tn+1

Tj

1{i∈P(s), ai(s)∈[an+1,an+2), ri(s)=r}1{∀u∈[0,s]:X(u)∈K}ds


 . (5)

Adding that (tn)n decreases, the status cannot change twice during time tn+1 and come
back at level an+1. So the process does not change at all during this time and for s ≤ tn+1,

E

[
1{ i∈P(Tj+s), ai(Tj+s)∈[an+1,an+2), ri(Tj+s)=r,∀u∈[0,s]:X(Tj+u)∈K}

∣∣Tj , (X(t))t≤Tj+s

]

= E

[
e−

∫ s

0 αr(an+1+u,X(Tj+u))du1{∀u∈[0,s]:X(Tj+u)∈K}
∣∣Tj, (X(Tj + u))u≤s

]

≤ e−
∫ s

0 αr(an+1+u,K)du,
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we get

ui,rn+1 ≤ E



N i,r

n+1∑

j=1

∫ tn+1

0
e−

∫ s

0
αr(an+1+u,K)du ds


 ≤ tn p

r
n E

[
N i,r

n+1

]
, (6)

where

prn =
1− e−αr

ntn+1

αr
ntn

, αr
n = inf{αr(a, x) : a ∈ [an+1, an+2], x ∈ (1/K,K)}.

Besides, as ages increase at rate 1, either predator i is born at an age between an+1 and
an+2 or it has exactly spent the time tn at level between ages [an, an+1). In any case,

E

[
N i,r

n+1

]
≤ P(Ai

n) +
ui,rn
tn
,

where
Ai

n = {b(i) ≤ T ∧ τK , ai(b(i)) ∈ [an+1, an+2)}.
Combining these inequalities, we obtain

ui,rn+1 ≤ prnu
i,r
n + tnp

r
nP(A

i
n),

which then gives, by induction,

ui,rn ≤ ui,r0

n−1∏

j=0

prj +

n−1∑

k=0

tkP(A
i
k)

n−1∏

j=k

prj .

Using now prj ≤
tj+1

tj

(
1− αr

j tj+1

2

)
and setting

Sn
k =

n−1∑

j=k

αr
jtj+1/2,

we get
∏n−1

j=k p
r
j ≤ tn

tk
e−Sn

k and then

ui,rn ≤ tn
t0
ui,r0 e

−Sn
0 + tn

n−1∑

k=0

P(Ai
k)e

−Sn
k .

To conclude, for any continuous function f , we set fn = supa∈[an,an+1) f(a) to have

E

[∫ t

0
f(ai(s)) 1i∈P(s),ri(s)=rds

]

≤
∑

n≥0

fnu
i,r
n

≤ P(b(i) ≤ T ∧ τK)
t0 ∧ 1

∑

n≥0

fntne
−Sn

0

(
T +

n−1∑

k=0

P(Ai
k | b(i) ≤ T ∧ τK)eS

k
0

)
,
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since ui,r0 ≤ T P(b(i) ≤ T ∧ τK). Choose now t0 < a∞ be a fixed constant and for n ≥ 1,
tn = thn any positive sequence, depending on a parameter h, in such a way

lim
h→0

sup
n≥1

thn = 0, lim
n→∞

ahn = lim
n→∞

n∑

k=0

thk = a∞.

For instance, we can choose thn = h when a∞ = +∞. Using the convergence of the
Darboux sum Sk

0 to
∫
[0,a) αr(u)du/2 when ahk → a, which comes from the continuity of α

and f , we get, by letting h→ 0,

E

[∫ τK∧T

0
f(ai(s))1{i∈P(s), ri(s)=r}ds

]

≤ CP(b(i) ≤ T ∧ τK)
∫

[0,a∞)
f(a)e

−
∫
[0,a)

αr(u,K)du/2
da

×
[
T + E

(
1{ai(b(i))≤a} exp

(∫ ai(b(i))

0
αr(u,K)du/2

))]
.

More precisely, the previous inequality is obtained using uniform continuity when f
is compactly supported over [0, a∞) and extended for every function by a truncation
argument and Fatou Lemma.

Recall that ai(b(i)) has a compact support in [0, a∞) by Assumption 2.1 and the fact
that newborns have age 0. So the last term is bounded by a constant. Summing over all
predators i yields the result since

∑

i∈U
P(b(i) ≤ T ∧ τK) ≤ E (#{i ∈ U : b(i) ≤ T ∧ τK}) ≤ eT γ

E [Y(0, {S,M}, [0, a∞))]

since #{i ∈ U : b(i) ≤ T ∧ τK} is dominated by a pure birth process at time T , with
individual birth rate γ.

We define Fg,f : R+ ×M(X ) → R by

Fg,f (x, µ) = g(x) + 〈µ, f〉, (7)

where g : R+ → R and f : X → R are measurable and bounded functions. We introduce

LFg,f (x, µ) = γx(g(x + 1)− g(x)) + βx(g(x − 1)− g(x))

+

∫

X

(
∂

∂a
f(r, a) + γr(a)f(M, 0) − βr(a)f(r, a)

)
µ(dr, da)

+

∫

X
αr(a, x)(1r=S (g(x− 1)− g(x)) + f(r, 0)− f(r, a))µ(dr, da).

The operator L is the generator of the Markov process (X(t),Y(t))t≥0. More precisely,
our SDE representation (3-4) ensures the following classical martingale problem.

Lemma 2.4. Assume that Assumption 2.1 holds and that for any K > 0 and r ∈ {S,M},
∫

[0,a∞)
αr(a,K)e−

∫ a

0
αr(u,K)du/2da <∞. (8)
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Let g : R+ → R be measurable and bounded and f ∈ C1,b(X ). Then (M(t))t≥0 defined for
t ≥ 0 by

M(t) = Fg,f (X(t),Y(t)) − Fg,f (X(0),Y(0)) −
∫ t

0
LFg,f (X(s),Y(s))ds

is a local martingale. Besides (M(t ∧ τK))t≥0 is a square-integrable martingale and its
bracket is given, for all t ≥ 0, by

〈M〉(t ∧ τK)

=

∫ t∧τK

0

(
γX(s)(g(X(s) + 1)− g(X(s)))2 + βX(s)(g(X(s) − 1)− g(X(s)))2

)
ds

+

∫ t∧τK

0

∑

i∈P(s)

αi(s)
(
1ri(s)=S(g(X(s) − 1)− g(X(s))) + (f(ri(s), 0) − f(ri(s), ai(s))

)2
ds

+

∫ t∧τK

0

∑

i∈P(s)

(
γi(s)f(M, 0)2 + βi(s)f(ri(s), ai(s))

2
)
ds.

Proof. The fact that M is a local martingale and the computation of its square variation
is derived from our SDE representation (3-4) . Indeed one can write the semi-martingale
decomposition of Fg,f (X,Y) using the Poisson point measure and its compensation, see
[IW14]. We only give details for the first component X:

g(X(t)) = g(X(0)) +

∫ t

0

∑

i∈P(s−)
ri(s−)=S

αi(s−)(g(X(s−) − 1)− g(X(s−)) ds

+

∫ t

0

∑

i∈P(s−)
ri(s−)=S

∫

R+

1{u≤αi(s−)}(g(X(s−) − 1)− g(X(s−)) Ñ i(ds, du)

+

∫ t

0
(γX(s−)((g(X(s−) + 1)− g(X(s−)) + βX(s−)(g(X(s−) − 1)− g(X(s−))) ds

+

∫ t

0

∫

R+

(
1{u≤γX(s−)}((g(X(s−) + 1)− g(X(s−))

+ 1{0<u−γX(s−)≤βX(s−)}(g(X(s−) − 1)− g(X(s−))
)
Q̃(ds, du),

where Ñ i and Q̃ are the compensated measures of N i and Q.
Finally, square integrability of (M(t ∧ τK))t≥0 is a consequence of Lemma 2.3 applied

to f = αr and Doob’s inequality and our integrability assumption (8).

3 Scaling and averaging

3.1 Approximation of the scaled process by a dynamical system

Let us now introduce our scaling parameters K = (K1,K2) ∈ (0,+∞)2 respectively
for the size of the populations of preys and the predators. These sizes are going to infinity.
Besides, in our scaling,

λK =
K1

K2

11



tends to infinity. The intial number of preys and predators satisfy

XK(0) = ⌊K1x0⌋, Y K(0,U , {S,M}, [0, a∞)) = ⌊K2y0⌋,

for some constants x0, y0 > 0. The rates for interactions are now density-dependent
(rather that population-size-dependent) and we set

αK
r (a, x) = αr(a, x/K1)

for r ∈ {S,M}, where αr is measurable on [0, a∞)×R+. Interactions occur at a fast time
scale which arises here through an acceleration of time. Birth and death of preys and
predators (but the deaths of preys due to predation) occur at a slower time scale and we
set

βKr (a) = λ−1
K βr(a), γKr (a) = λ−1

K γr(a), βK = λ−1
K β, γK = λ−1

K γ,

where βKr and γKr are non-negative, measurable and bounded functions and β, γ are
non-negative numbers. See Section 4.5 for a discussion on our scaling.

Assumption 3.1. There exists a0 ∈ (0, a∞) such that YK(0, {S,M}, [a0 ,∞)) = 0 a.s.
for all K ≥ 1. Besides, for any r ∈ {S,M} and K > 0,

inf
x∈[0,K]

E(Tr(x)) > 0, sup
a∈[0,a∞)

γr(a) + βr(a) <∞

and a→ αr(a, x) is continuous on [0, a∞) for any x ∈ R+.

Under this assumption, for eachK = (K1,K2) ∈ (0,+∞)2, Proposition 2.2 ensures ex-
istence and strong uniqueness of the solution ZK = (XK , Y K) of the system of stochastic
differential equations (3-4) with parameters αK

r , γ
K
r , β

K
r , γ

K , βK given above. We consider
the accelerated and scaled process defined, for all t ≥ 0, by

ZK(t) = (ΞK(t),YK(t, dr, da)) =

(
1

K1
XK(λKt),

1

K2
Y K(λKt,U , dr, da),

)
.

For every T > 0, Process (ZK(t), t ∈ [0, T ]) belongs to the space D([0, T ],R+) ×
M([0, T ] × X ). Space D([0, T ],R+) is the classical Skorokhod space with its usual
topology; see for instance [Bil13]. Space M([0, T ] × X ) is the space of finite positive
measures on [0, T ]× {S,M} × [0, a∞) embedded with narrow convergence.

Our result relies on the following assumption on the interaction rates. It is slightly
stronger than (8) and is involved in tightness proof to localize age in compact sets of
[0, a∞).
Analogously to the un-scaled setting, we set for r ∈ {S,M} and K > 0,

αr(a,K) = inf
x∈(−1/K,K)

αr(a, x), αr(a,K) = sup
x∈(−1/K,K)

αr(a, x),

and
γ̄ = sup

r∈{S,M}, a∈[0,a∞)
γr(a).
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Assumption 3.2. For any K > 0, there exists a continuous function V : [0, a∞) → [1,∞)
such that lima→a∞ V(a) = +∞ and for r ∈ {S,M},

∫

[0,a∞)
V(a) (1 + αr(a,K))e

−
∫
[0,a) αr(s,K) ds/2

da <∞.

For r ∈ {S,M}, we write for convience

pr(x, a) = e−
∫ a

0
αr(x,u)du (9)

the cumulative distribution of the interaction times. We define

φ(x) =
1∫

[0,a∞)(pS(x, a) + pM (x, a))da
(10)

and

ψ(x) = φ(x)

∫

[0,a∞)
(βS(a)pS(x, a) + βM (a)pM (x, a)) da. (11)

Let us refer to Equation (1) and (2) in introduction for an expression of φ and ψ in terms
of the random variables Tr and the demographic rates. Our last assumption concerns
uniqueness of the limiting equation and the fact that the limit does not reach a boundary.
For simplicity, we also assume here existence, but the limiting procedure we prove would
ensure existence up to this time when the process get close to the boundary.

Assumption 3.3. The following system of ordinary differential equations,

{
x′(t) = (γ − β)x(t) − y(t)φ(x(t)),
y′(t) = y(t)ψ(x(t)),

(12)

admits a unique global solution (x, y) ∈ C1(R+, (R
∗
+)

2) such that (x(0), y(0)) = (x0, y0).

The preceding assumption holds under classical regularity assumption and in partic-
ular, if φ and ψ are globally Lipschitz. Locally Lipschitz conditions are also sufficient
when the system does not explode in finite time. That is enough for our purpose. Our
main result can be stated as follows.

Theorem 3.4. Under Assumptions 3.1, 3.2 and 3.3, for every T > 0, the two following
assertions hold :

i) the process (ΞK(t),YK(t, {S,M}, [0, a∞))t∈[0,T ] converges in law to (x(t), y(t))t∈[0,T ]

in D([0, T ],R2
+),

ii) for each r ∈ {S,M}, the measure YK(t, {r}, da)dt converges in law to the measure

yr(dt, da) = y(t)pr(x(t), a)φ(x(t)) dt da

in the space M([0, T ] × [0, a∞)).

The fact that convergence of YK(t, dr, da) hold on the associated Skorokhod space is
left open.
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3.2 Proofs

The proof is based on standard tightness and uniqueness arguments involving the
occupation measures and averaging [Kur92, KKP14] and localization. The main new
difficulties lie in the infinite dimension in the averaging procedure due to the age struc-
ture combined with unboundedness of the interactions rates αr inherent in our framework.

First, Lemma 2.3 above directly implies the following counterpart for the scaled pro-
cess. It allows us to localize the age distribution. We set

τKK = inf{t ≥ 0 : ΞK
t 6∈ (1/K,K)}.

Lemma 3.5. Under Assumption 3.1, there exists C > 0 such that for any continuous
function f on [0, a∞) and r ∈ {S,M} and K > 0,

E

[∫ T∧τK
K

0

∫

[0,a∞)
f(a)YK(s, {r}, da)ds

]
≤ C(1 + T )eγ̄rT

∫

[0,a∞)
f(a)e

−
∫
[0,a) αr(u,K)du/2

da.

Proof. We have

E

[∫ T∧τK
K

0

∫

[0,a∞)
f(a)YK(s, {r}, da)ds

]

=
1

λKK2
E

[∫ λK(T∧τK
K

)

0

∫

[0,a∞)
f(a)Y K(s, {r}, da)ds

]
.

Adding that λKτ
K
K is the exit time of (K1/K,K1K) for XK and

Y K(0,U , {S,M}, [0, a∞)) = ⌊K2y0⌋ and γKr (a) = λ−1
K γr(a), the conclusion comes

from Lemma 2.3.

We now give the counterpart of the martingales of Lemma 2.4 for the scaled process.
Recalling that Fg,f (x, µ) = g(x) + 〈µ, f〉 where g : R+ → R is a bounded measurable
function and f ∈ C1,b(X ), we set

LKFf,g(x, µ) = K1x
(
γ(g(x + 1/K1)− g(x)) + β(g(x− 1/K1)− g(x))

)

+

∫

X
(γr(a)f(M, 0)− βr(a)f(r, a)) µ(dr, da)

+λK

∫

X

(
∂

∂a
f(r, a) + αr(a, x) (1r=S (g(x− 1/K1)− g(x)) + f(r, 0)− f(r, a))

)
µ(dr, da).

Lemma 3.6. Suppose that Assumptions 3.1 and 3.2 hold. Let g : R+ → R be a bounded
measurable function and f ∈ C1,b(X ). Then the process MK defined for t ≥ 0 by

MK(t) = Ff,g(ZK(t))− Ff,g(ZK(0)) −
∫ t

0
LKFf,g(ZK(s))ds,
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is a local martingale. Besides (MK(t ∧ τKK ))t≥0 is a square integrable martingale and

〈MK〉(t ∧ τKK )

=

∫ t∧τK
K

0
ΞK(s)

(
γ(g(ΞK(s) + 1/K1)− g(x))2 + β(g(ΞK(s)− 1/K1)− g(x))2

)
ds

+λK

∫ t∧τK
K

0

∑

i∈P(s)

αri(s)(ai(s),Ξ
K(s))

×
(
1ri(s)=S(g(Ξ

K(s)− 1/K1)− g(ΞK(s))) +
1

K2
(f(ri(s), 0)− f(ri(s), ai(s))

)2

ds

+

∫ t∧τK
K

0

∑

i∈P(s)

(
γri(s)(ai(s))

f(M, 0)2

K2
2

+ βri(s)(ai(s))
f(ri(s), ai(s))

2

K2
2

)
ds.

We introduce now the measures ΓK
K on R+ × {S,M} × [0, a∞) defined a.s. for every

bounded measurable functions H by

ΓK
K (H) =

∫

R+

∫

X
H(s, r, a)ΓK

K (ds, dr, da) =

∫ τK
K

0

∫

X
H(s, r, a)YK (s, dr, da)ds

We also set

ΞK
K (t) = ΞK(t ∧ τKK ), YK

K (t) = YK(t ∧ τKK , {S,M}, [0, a∞))

for the localized version of the processes counting preys and predators. Considering such
space-time measures for proving averaging results is inspired from [Kur92, KKP14]. How-
ever, we do not consider here the occupation measure of the fast variables YK(t, dr, da).

Lemma 3.7. For every K > 0 and T > 0, the sequence (ΞK
K ,YK

K ,Γ
K
K )K is tight in

D([0, T ],R+)
2 ×M([0, T ] × X ).

Proof. On the first hand, using a domination of the process YK(·, {S,M}, [0, a∞)) by a
linear birth process, we have

sup
K

E

(
sup
t≤T

YK(s, {S,M}, [0, a∞))

)
<∞. (13)

Then the first moment of (ΓK
K ([0, T ] × {S,M} × [0, a∞)))K is bounded and it is a tight

sequence in R.
On the second hand, we can combine Assumption 3.2 with Lemma 3.5 to obtain

sup
K≥1

E

[∫ τK
K

∧T

0

∫

[0,a∞)
V(a)YK(s, {r}, da) ds

]
< +∞. (14)

for r ∈ {S,M}. Then supK ΓK
K (H) < ∞, with H(r, a, s) = V(a)1s≤T tending to infinity

as a→ a∞, uniformly for s ≤ T . Lemma 1.1 of [Kur92] then entails the relative compact-
ness of the sequence (ΓK

K )K≥1 in the space of finite measures embedded with the weak
(narrow) topology.
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Now, we show that (ΞK
K )K≥1 is tight by using the Aldous-Rebolledo criterion.

Lemma 3.6 gives the semi-martingale decomposition

ΞK
K = ΞK

K (0) +AK +MK ,

where

AK(t) =

∫ t∧τK
K

0
(γ − β)ΞK

K (s)ds−
∫ t∧τK

K

0

∫

[0,a∞)
αS(a,Ξ

K
K (s))YK(s, {S}, da)ds,

〈MK〉(t) = 1

K1

∫ t∧τK
K

0
(γ + β)ΞK

K (s)ds+
1

K1

∫ t∧τK
K

0

∫

[0,a∞)
αS(a,Ξ

K
K (v))YK(v, {S}, da)ds.

Hence, writing T K the set of stopping times associated to ΞK
K , for any σ ∈ T K and h > 0,

E
[
|AK(σ)−AK(σ + h)|

]

≤ hK |γ − β|+ E

[∫ (σ+h)∧τK
K

σ∧τK
K

∫

[0,a∞)
αS(a,Ξ

K(v))YK(v, S, da)dv

]
.

Using again Assumption 3.2 and Lemma 3.5 with now f(a) = αS(a,K), we get

lim
b→a∞

sup
K≥1

E

[∫ τK
K

∧T

0

∫

[b,a∞)
αS(a,Ξ

K(v))YK(s, {S}, da)ds
]
= 0.

Using (13) and that αS is bounded on compacts sets of [0, a∞)× (0,∞) by continuity, we
obtain for any b ∈ [0, a∞),

lim
h→0

sup
K≥1,

σ∈T K , h≤δ

E

[∫ (σ+h)∧τK
K

σ∧τK
K

∫

[0,b]
αS(a,Ξ

K(v))YK(v, S, da)dv

]
= 0.

Combining these estimates yields

lim
δ→0

sup
K≥1,

σ∈T K , h≤δ

E
[
|AK(σ)−AK(σ + h)|

]
= 0. (15)

Proceeding analogously for the quadratic variation of MK and using [JM86, Theorem
2.3.2] ends the proof of tightness of (ΞK

K )K≥1. The proof of tightness of (YK
K )K≥1 is

similar since birth and death rates are bounded.

We proceed now with identification of limiting points. Recall that the survival function
of interaction times is denoted by pr in (9) and response for prey is φ, see (10).

Lemma 3.8. Let T > 0, K0 > 0 and consider a limiting point (ΞK0 ,ΓK0) of (ΞK
K0
,ΓK

K0
)

in D([0, T ],R+)×M([0, T ]×X ). For all but countably many K < K0, it satisfies for any
r ∈ {S,M}, and f continuous bounded on R+ × [0, a∞),
∫ τK

0

∫

[0,a∞)
f(s, a)ΓK0(ds, {r}, da)

=

∫ τK

0

∫

[0,a∞)
f(s, a)pr(ΞK0(s), a)φ (ΞK0(s)) ΓK0(ds, {S,M}, [0, a∞))da a.s.,

where
τK = inf {t ≥ 0 | ΞK0(t) /∈ (1/K,K)} .
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Proof. To avoid the use of a sub-sequence, we assume that the sequence (ΞK
K0
,ΓK

K0
)K

converges in law to (ΞK0 ,ΓK0) as K → ∞. Following the proof of [EK09, Theorem 4.1
p.354], for all but countably many K < K0, (τ

K
K )K converges in law to τK. Indeed, from

[JS13, Proposition 2.11, Chapter VI], the hitting time τKK is a continuous function of
the process ΞK

K0
, except for discontinuity points of ΞK

K0
. This set of points is at most

countable, see [JS13, Lemma 2.10 b), Chapter VI].
Consequently, for all but countably many K < K0 and r ∈ {S,M}, we have for any
continuous and bounded function f on [0, a∞),

lim
K→∞

∫ τK
K

0

∫

[0,a∞)
f(a)YK(s, {r}, da)ds =

∫ τK

0

∫

[0,a∞)
f(a)ΓK0(ds, {r}, da). (16)

Using arguments of [KKP14, Lemma 2.9], which can be applied thanks to integrability
condition of Assumption 3.2 and Lemma 3.5, this convergence already holds for con-
tinuous space-time function f : [0, T ] × [0, a∞) 7→ R which are dominated by (1 + αr).
Let us use Lemma 3.6 with g = 0 and f ∈ C1,b(X ) such that f(M, ·) = 0. Writing
f(S, ·) = f ∈ C1,b([0, a∞)),

MK(t) =
1

λK

{∫

[0,a∞)
f(a)YK

K0
(t ∧ τKK , {S}, da) −

∫

[0,a∞)
f(a)YK

K0
(0, {S}, da)

}

−
∫ t∧τK

K

0

∫

X
H(ΞK

K0
(s), r, a)ΓK

K0
(ds, dr, da)

+
1

λK

∫ t∧τK
K

0

∫

[0,a∞)
(γS(a)− βS(a))f(a)YK

K0
(s, {S}, da)ds,

is a square integrable martingale, where

H(x, S, a) = ∂af(a)− αS(x, a)f(a), H(x,M, a) = αM (x, a)f(0). (17)

Using (16) guarantees that we have the following convergence in law

lim
K→∞

∫ t∧τK
K

0

∫

X
H(ΞK

K0
(s), r, a)ΓK

K0
(ds, dr, da)

=

∫ t∧τK

0

∫

X
H(ΞK0(s), r, a)ΓK0(ds, dr, da).

Besides (13) ensures that

λ−1
K

∣∣∣∣∣

∫

[0,a∞)
f(a)YK

K0
(t, {S}, da) −

∫

[0,a∞)
f(a)YK

K0
(0, {S}, da)

∣∣∣∣∣ (18)

≤ C‖f‖∞
λK

sup
t≤T

YK
K0

(t, {S}, [0, a∞)),

which tends to 0, in probability, as K → ∞. Similarly, in probability,

lim
K→∞

1

λK

∫ t∧τK
K

0

∫

[0,a∞)
(γS(a)− βS(a))f(a)YK

K0
(s, {S}, da)ds = 0.
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Combining this three last convergence results, we obtain that MK converges in law
to M , given, for all t ≥ 0, by

M(t) = −
∫ t∧τK

0

∫

X
H(ΞK0(s), r, a)ΓK0(ds, dr, da).

Process M remains a martingale. It is also a.s. Lipschitz because function H is bounded.
Consequently, it is null. We have then proved that for every t ≥ 0 and f ∈ C1,b([0, a∞)),
we have ∫ t∧τK

0

∫ ∞

0
H(ΞK0(s), r, a)ΓK0(ds, dr, da) = 0 a.s. (19)

for H defined in (17). Now, thanks to [Kur92, Lemma 1.4], we can decompose
ΓK0(ds, {S}, da) as ΓK0(ds, {S}, da) = γK0(s, {S}, da)ΛS (ds). As (19) holds for every
t ≥ 0, focusing on functions f such that f(0) = 0, we obtain a.s. and for ΛS-almost all
s ≤ t ∧ τK, ∫ ∞

0
H(ΞK0(s), S, a)γK0(s, {S}, da) = 0.

In conclusion, for every f ∈ C1,b([0, a∞)) such that f(0) = 0 and for ΛS-almost all
s ≤ t ∧ τK, we almost surely have

∫

[0,a∞)
(∂afS(a)− αS(ΞK0(s), a)f(a))γK0(s, {S}, da) = 0. (20)

Let us show now that this functional equation imposes the form of γK0 through the
solutions of the associated Poisson Equation. We proceed with a fix realization of the
process and the results hold a.s. Consider s ≤ t∧τK. For any test function g ∈ C1

c ([0, a∞))
such that ∫ ∞

0
g(v)pS(ΞK0(s), v)dv = 0,

the function f defined by

f : a 7→ pS(ΞK0(s), a)
−1

∫ a

0
g(v)pS(ΞK0(s), v)dv

is well-defined for each fixed s and belongs to C1,b(X ). This function verifies f(0) = 0
and is solution of the Poisson equation:

∀a ∈ [0, a∞), ∂af(a)− αS(ΞK0(s), a)f(a) = g(a) a.s.

By (20), it yields ∫

[0,a∞)
g(a) γK0(s, {S}, da) = 0.

We extend this identity to g ∈ C1([0, a∞)) such that
∫∞
0 g(v)pS(ΞK0(s), v)dv = 0 by

an approximation argument. We can then apply this identity to g : a 7→ h(a) −∫
[0,a∞) h(v)pS(ΞK0(s), v)dv for any h ∈ C1([0, a∞)). We obtain that pS(ΞK0(s), ·) is the

density of the measure γK0(s, {S}, ·) with respect to Lebesgue measure. Hence,

ΓK0(ds, {S}, da) = γK0(s, {S}, [0, a∞))
pS(ΞK0(s), a)∫∞

0 pS(ΞK0(s), w)dw
ΛS(ds)da. (21)
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Similarly, we can prove

ΓK0(ds, {M}, da) = γK0(s, {M}, [0, a∞))
pM (ΞK0(s), a)∫

[0,a∞) pM (ΞK0(s), w)dw
ΛM (ds)da. (22)

Now, using (19) with f ≡ 1 yields for every t ≥ 0,

∫ t∧τK

0

∫

[0,a∞)
αS(a,ΞK0(s))ΓK0(ds, {S}, da) =

∫ t∧τK

0

∫

[0,a∞)
αM (a,ΞK0(s))ΓK0(ds, {M}, da).

This implies the following equality of measures
∫

[0,a∞)
αS(a,ΞK0(s))ΓK0(ds, {S}, da) =

∫

[0,a∞)
αM (a,ΞK0(s))ΓK0(ds, {M}, da).

Integrating (21) and (22) over [0, a∞) and using the previous equality, we obtain

γ(s, {S}, [0, a∞))∫∞
0 pS(ΞK0(s), w)dw

ΛS(ds) =
γ(s, {M}, [0, a∞))∫∞
0 pM (ΞK0(s), w)dw

ΛM (ds).

Finally, we have

γ(s, {r}, [0, a∞))Λr(ds) =

∫
[0,a∞) pr(s,w)dw

p(ΞK0(s))
ΓK0(ds, {S,M}, [0, a∞)),

and

Γ(ds, {r}, da) = pr(ΞK0(s), a)

p(ΞK0(s))
ΓK0(ds, {S,M}, [0, a∞)) da.

It ends the proof.

Let us now focus on the number of preys and the whole number of predators. We
prove that limiting points satisfy the ODE (12).

Lemma 3.9. Let T > 0 and K0 > 0 and (ΞK0 ,ΓK0) be a limiting point of (ΞK
K0
,ΓK

K0
)K

in D([0, T ],R+) × M([0, T ] × X ). For all but countably many K < K0, the measure
1s≤τKΓK0(ds, {S,M}, [0, a∞)) admits a density YK0 with respect to the Lebesgue measure,
which verifies, for all t ≥ 0,

ΞK0(t ∧ τK) = ΞK0(0) +

∫ t∧τK

0
((γ − β) ΞK0(s)− YK0(s)φ(ΞK0(s))) ds

YK0(t ∧ τK) = YK0(0) +

∫ t∧τK

0
YK0(s)ψ(ΞK0(s))ds.

Proof. As in Lemma 3.8, to avoid the use of sub-sequences, we assume that (ΞK
K0
,ΓK

K0
)

converges to (ΞK0 ,ΓK0) in law. We use again Lemma 3.6, with now f ≡ 0 and g ≡ Id. It
ensures that MK , defined for every t ≥ 0 by

MK(t) = ΞK
K0

(t ∧ τKK )− ΞK
K0

(0) +

∫ t∧τK
K

0
(γ − β) ΞK

K0
(s)ds

−
∫ t∧τK

K

0

∫ ∞

0
αS(a,Ξ

K
K0

(s))ΓK
K0

(ds, {S}, da),
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is a square integrable martingale. It then converges in law to M , defined for every t ≥ 0
by

M(t) = ΞK0(t ∧ τK) − ΞK0(0) +

∫ t∧τK

0
(γ − β) ΞK0(s)ds

−
∫ t∧τK

0
φ(ΞK0(s))ΓK0(ds, {S,M}, [0, a∞)).

Besides M is a local martingale. Similarly and as computed in the proof of Lemma 3.7,
the bracket of

(
MK

t∧τK
K

)
t≥0

converges to 0 in probability and then Mt∧τK = 0 a.s. It

proves the first part of the result.

We need now to describe ΓK0(ds, {S,M}, [0, a∞)). Again, we apply Lemma 3.6 but
now with f ≡ 1 and g ≡ 0, to obtain that MK defined for all t ≥ 0 by

MK(t) = YK(t ∧ τKK , [0, a∞))− YK(0, [0, a∞))

+

∫ t∧τK
K

0

∫

[0,a∞)
βS(a)Γ

K
K0

(ds, {S}, da) +
∫ t∧τK

K

0

∫

[0,a∞)
βM (a)ΓK

K0
(ds, {M}, da)

is a square integrable martingale and

〈MK〉(t) = 1

K2
2

∫ t∧τK
K

0

∑

i∈P(s)

(γ(ri(s), ai(s)) + β(ri(s), ai(s))) ds.

Using (13), it ensures that E(〈MK〉(t ∧ τKK )) converges to 0. Consequently, the process( ∫ t∧τK
0 MK(t)dt

)
t∈[0,T ]

tends in law to 0 in D([0, T ],R+) as K → ∞. It also tends to

0 = ΓK0([0, T ∧ τK], {S,M}, [0, a∞))− Y(0, [0, a∞))(T ∧ τK)

+

∫ T∧τK

0

∫

X
βS(a)ΓK0(ds, dr, da)dt.

Using Lemma 3.8 and the definition of ψ, it yields

ΓK0([0, T ∧ τK], {S,M}, [0, a∞))

= Y(0, {S,M}, [0, a∞))−
∫ T∧τK

0

∫ t

0
ψ (ΞK0(s)) ΓK0(ds, {S,M}, [0, a∞))dt.

This means that the measure 1s≤τKΓK0(ds, {S,M}, [0, a∞)) has a density Y with respect
to the Lebesgue measure defined for all t ≥ 0 by

Y(t) = Y(0, {S,M}, [0, a∞))−
∫ t

0
ψ (ΞK0(s))Y(s)ds.

It is the desired result.

Proof of Theorem 3.4. Let (x0, y0) ∈ (R∗
+)

2 be the initial condition of (x, y). Assump-
tion 3.3 guarantees that for any time horizon time T > 0, there exists K0 > 0 such that for
all t ≤ T , x(t) ∈ (1/K0,K0). Let (ΞK0 ,YK0 ,ΓK0) be any limiting values of (ΞK

K0
,YK

K0
,ΓK

K0
)

in D([0, T ],R+)
2 ×M([0, T ] × X ). By continuity of x, we can choose some K < K0 such
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that conclusion of Lemma 3.8 and Lemma 3.9 hold and x(t) ∈ (1/K,K) for any t ≤ T .
Consequently, (ΞK0 ,YK0) and (x, y) satisfy the same evolution equation (12) on time in-
terval [0, T ∧ τK]. Uniqueness guaranteed by Assumption 3.3 ensure that they coincide
up to time T ∧ τK. It follows that τK ≥ T because x(t) belongs to (1/K,K) for any t ≤ T .

By Lemma 3.8 and Lemma 3.9, we also have that

ΓK0(dt, {r}, da) = y(t)pr(x(t), a)φ(x(t)) dt da.

Besides, for any continuous and bounded function g, we have both

∫ T∧τK

0
g(t)YK

K0
(t)dt

K→∞−→
∫ T∧τK

0
g(t)YK0(t)dt

and ∫ T∧τK

0
g(t)YK

K0
(t)dt

K→∞−→
∫ T∧τK

0
g(t)y(t)dt.

since
∑

r∈{S,M}
∫ a∞
0 pr(x(t), a)φ(x(t)) da = 1. It ensures that

YK0(t) = y(t) for almost every t ≥ 0.

As trajectories are càdlàg, this identity holds for every t ≥ 0. Using now
Lemma 3.7, it ensures the convergence of (ΞK ,YK(·, {S,M}, [0, a∞)),ΓK) over [0, T ] to
(x, y(t)pr(x(t), a)φ(x(t)) dt da) in D([0, T ],R+)

2 ×M([0, T ] × X ).

4 Examples and comments

In this section, we illustrate and apply our convergence results to examples motivated
from ecology. We both recover classical limiting dynamical systems and functional re-
sponses and consider some new cases. We do not discuss of technical points here. Time
distributions of interactions considered in this section satisfy Assumption 3.2. It can be
checked by using V : a 7→ aǫ or V : a 7→ (a∞ − a)−(1+ǫ) for some ǫ > 0.

Let us first recall that TS(x) and TM (x) are the random time for searching and
manipulating when the density of preys is x preys. As expected and seen above, the
macroscopic death rate of preys induced by predation is

φ(x) =
1

E[TS(x)] + E[TM (x)]
.

Besides, writing
λS(a) = γS(a)− βS(a), λM = γM − βM

the growth rate of the population size of predators is

ψ(x) = φ(x)E

[∫ TS(x)

0
λS(a)da +

∫ TM (x)

0
λM (a)da

]
.
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4.1 Classical setting and functional responses : memory less interac-

tions

Let’s start by the classical case where memory less property is assumed for each com-
ponent of the dynamic (interaction, birth, death). Times involved are then exponential.
This assumption is probably not realistic for manipulating time in general. For searching
time it can be justified with the hypothesis of rapid mixing of the preys in the medium
where predators live. In this case, the growth rate ψ of predators simplifies as

ψ(x) =
λSE[TS(x)] + λME[TM (x)]

E[TS(x)] + E[TM (x)]
.

We recover some classical functional responses with usual supplementary assumptions :

i) No manipulation and search time inversely proportional to the density:

TM (x) = 0 E[TS(x)] =
1

cx
,

for some c > 0. This assumption is justified for instance where rapid mixing allows
to say that each prey meets independently the predator with a small probability
after an exponential time, since the minimum of independent exponential variables
is exponential distributed and its parameter is the sum of each parameter.
It leads to the classical Holling type I functional response and Lotka-Volterra form
for the consumption of preys (while its counterpart for predators is linear instead
of bilinear):

φ(x) = c x, ψ(x) = (γS − βS). (23)

Let us mention that in our framework we have assumed that E(TM (x)) is lower
bounded on compact set, which excludes the degenerated case TM = 0. But our
proofs extend directly to this situation (with a single status instead of two) or can
be obtained, at the limit, by letting E(T ε

M (x)) decrease to 0 as ε→ 0.

ii) Fixed mean manipulation time and search time inversely proportional to the density:

E[TM (x)] = t0 > 0, E[TS(x)] =
1

cx

for some c > 0. It leads to the classical Holling type II functional response and
Rosenzweig MacArthur / Monod model :

φ(x) =
cx

1 + t0cx
, ψ(x) = λS + (λM − λS)t0

cx

1 + t0cx
.

Constant (λM − λS)t0 is related to the ”yield constant” in microbial ecology, as in
the chemostat equation for instance.

iii) Fixed mean manipulation time and generalist predator. Another usual response
make the searching time of the prey increase faster with low density since the
predator may dedicate more time to other species. This can leads to assuming the
following assumption:

E[TM (x)] = t0 > 0, E[TS(x)] =
1

cx2
.

This ensures the Holling type III functional response. To describe this generalist
behavior of the predator more precisely, this would require to consider additional
species in our model, see also [BBC18] for instance.
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4.2 A first generalization : non-exponential time of interaction

In the models considered in the previous section, without fast mixing, we do not
expect that searching time is exponentially distributed. We refer e.g. [BBC18] for some
simple models where the law of the searching time is described or to [DKPvG15] for some
data.
For instance, if preys are spatially uniformly distributed with fixed positions, a toy model
[BBC18, Page 11] with motion towards the nearest prey leads to

E[TS(x)] =
c√
x
.

Besides, the manipulating is not expected to be exponentially distributed either.
A first consequence of our results is that we can extend the convergence results to

this non-exponentially distributed times. From the point of view of prey consumption
and at the first order of the macroscopic scale, the form of the distribution has no effect
(beyond its mean). Let us turn to new effects due to non-exponential laws.

4.3 Influence of distribution of time interaction

The consumption of prey at a first order macroscopic approximation is only sensitive
to mean time of interactions trough the function φ. The impact of predation on the
evolution of predators may be more subtle.

Let’s give an explicit example. Assume that the individual growth rate is linked to
the consumption of preys via the following age dependance

∀a ≤ 0, λS(a) = −A+Be−Ca.

for some A,B,C > 0. Assuming A+B > 0, it models the fact that the more a predator
is waiting for a prey, the less it (successively) reproduces and/or the fastest it dies. For
sake of simplicity and following Section 4.1, let us consider the case when TS(x) has
exponential distribution with mean 1/cx, we have

E

[∫ TS(x)

0
λS(u)du

]
= − A

cx
+

Bcx

Ccx+ 1
.

and, again in the setting of Subsection 4.1, this gives

i) Without manipulation, i.e. TM (x) = 0, we get

φ(x) = cx, ψ(x) = −A+B
(cx)2

Ccx+ 1
. (24)

In particular, ψ(x) → −A as x→ 0 and ψ(x) ∼x→∞ Bc
C x. That is ψ(x) behaves as

−A+B′x, with A < 0 as in the Lotka-Volterra model.

ii) With fixed positive manipulation, i.e. t0 = E(TM (x)) and λM (x) = λM :

φ(x) =
cx

1 + t0cx
, ψ(x) =

cx

1 + t0cx

(
− A

cx
+

Bcx

Ccx+ 1
+ λM t0

)

Thus is ψ(x) → A < 0 as x → 0 and ψ(x) → B
Ct0

+ cλM > 0 as x → ∞. Then it
behaves as classical Holling type II prey-predator model:

ψ(x) = −A+ µ
x

x+K
.
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We then recover here the two classic forms without directly assuming a conversion of prey
into predators.

4.4 About the behavior of the limiting ODEs

In this work, we show the relevance of dynamical system of the form :

{
x′(t) = (γ − β)x(t) − y(t)φ(x(t)),
y′(t) = y(t)ψ(x(t)).

Let us just give some hints on its long-time behavior, even if a large literature exists, for
the study of Lotka-Volterra type systems, in which these remarks are detailed in more
details.

On the first hand, when φ : x 7→ cx, for some c > 0, then it can be easily shown that,
whatever the function ψ, the function

t 7→ L(x(t), y(t))

is constant with the law conservation

L(x, y) = λ log(y)− cy −
∫ log(x)

1
ψ(eu)du.

In particular, when the curve L(x, y) = L(x(0), y(0)) is bounded then (x, y) is periodic,
this is for instance the case when (24) holds. In contrast, even if there is a conservation
law, the choice (23) leads the predator number going to infinity and prey number to 0.

On the second hand, in more generality, an equilibrium point (x⋆, y⋆) of this system
verifies

ψ(x⋆) = 0, y⋆ =
λx⋆

φ(x⋆)
.

Natural assumptions are decreasing rates a 7→ λS(a), a 7→ λM (a) and mean times of
interaction x 7→ E[TS(x)] and x 7→ E[TM (x)]. Unfortunately, under these assumptions,
we cannot state uniqueness of an equilibrium points.

Moreover the Jacobian at this equilibrium is equal to

J(x⋆,y⋆) =

(
(x⋆φ(x⋆)− φ′(x⋆))y⋆ −φ(x⋆)/x⋆

ψ′(x⋆)y⋆ 0

)
.

When (x⋆φ(x⋆) − φ′(x⋆))y⋆ 6= 0 (this naturally exclude φ : x 7→ cx) and ψ(x⋆) 6= 0 then
the associated equilibrium is unstable. In others cases, it is not exponentially stable.

4.5 Discussion, scaling and extensions

In this work, we are interested in cases where the number of preys is much larger than
the number of predators and the time for interactions is much shorter that the time to
give birth or the time to die for preys and predator. Besides the time for searching may
impact the survival of offsprings (via natality rate) or the death probability.
This seems reasonable for many interactions. For instance, fox-rabbit, wolf-deer/caribou,
white bear-seal, bear-fish, bird-worm, where the time for searching is of order of days or
a week, while reproduction is of order of a year for both (and several years for death).
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For most of the species mentioned above, extension of the model to several preys
for one predator and interference between several predators should be considered. Also
adding the biological age or non-exponential clock for birth and death (season effect,
maturity, menopause ...) are interesting points to address. We focused here on relaxing
the memory less of properties of interactions. Such extensions seems to be accessible via
the framework and techniques developed here even if technicalities may fast increase.

Determining stochastic fluctuations around the limiting deterministic system is a
challenging and interesting problem. It is relevant in particular when population sizes are
not very large.The variance of interaction times should appear to describe fluctuations
and may be much larger than in the exponential case. The averaging approach of
[KKP14] provides a natural path for this issue via Poisson equation. Adapting the
techniques to our infinite dimensional setting seems challenging.
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