
HAL Id: hal-03183518
https://hal.science/hal-03183518

Submitted on 27 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Putting Data Science Pipelines on the Edge
Ali Akoglu, Genoveva Vargas-Solar

To cite this version:
Ali Akoglu, Genoveva Vargas-Solar. Putting Data Science Pipelines on the Edge. 1st International
Workshop on Big data driven Edge Cloud Services, May 2021, Biarritz, France. �10.1007/978-3-030-
92231-3_1�. �hal-03183518�

https://hal.science/hal-03183518
https://hal.archives-ouvertes.fr


Putting Data Science Pipelines on the Edge

Ali Akoglu1 and Genoveva Vargas-Solar2?

1 ECE, University of Arizona
Tucson, AZ, USA

akoglu@arizona.edu
2 French Council of Scientific Research (CNRS), LIRIS-LAFMIA

69622 Villeurbanne, France
genoveva.vargas-solar@liris.cnrs.fr

Abstract. This paper proposes a composable ”Just in Time Architec-
ture” for Data Science (DS) Pipelines named JITA-4DS and associated
resource management techniques for configuring disaggregated data cen-
ters (DCs). DCs under our approach are composable based on vertical
integration of the application, middleware/operating system, and hard-
ware layers customized dynamically to meet application Service Level
Objectives (SLO - application-aware management). Thereby, pipelines
utilize a set of flexible building blocks that can be dynamically and au-
tomatically assembled and re-assembled to meet the dynamic changes
in the workload’s SLOs. To assess disaggregated DC’s, we study how to
model and validate their performance in large-scale settings.
Keywords: Disaggregated Data Centers · Data Science Pipelines · Edge
Computing.

1 Introduction

Data infrastructures such as Google, Amazon, eBay, and E-Trade are powered
by data centers (DCs) with tens to hundreds of thousands of computers and stor-
age devices running complex software applications. Since 2018, the word-wide
spending in big data solutions and public cloud infrastructure has increased by
12% and 24%, respectively [6]. Existing IT architectures are not designed to pro-
vide an agile infrastructure to keep up with the rapidly evolving next-generation
mobile, big data, and data science pipelines demands. These applications are
distinct from the ”traditional” enterprise ones because of their size, dynamic
behavior, and nonlinear scaling and relatively unpredictable growth as inputs
being processed. Thus, they require continuous provisioning and re-provisioning
of DC resources [5, 7, 15] given their dynamic and unpredictable changes in the
Service Level Objectives (SLOs) (e.g., availability response time, reliability, en-
ergy). Computer manufacturers, software developers, and service providers can-
not cope with the dynamic and continuous changes in applications and workload
types. Consequently, their offered services become unstable, fragile, and cannot
guarantee the required SLOs for other application classes.

? Authors list is given in alphabetical order.



2 A. Akoglu, G. Vargas-Solar

This paper targets the execution of data science (DS) pipelines 3 supported
by data processing, transmission and sharing across several resources executing
greedy processes. Current data science pipelines environments promote high-
performance cloud platforms as backend support for completely externalising
their execution. These platforms provide various infrastructure services with
compute resources such as general purpose processors (GPP), Graphics Pro-
cessing Units (GPUs), Field Programmable Gate Arrays (FPGAs) and Tensor
Processing Unit (TPU) coupled with platform and software services to design,
run and maintain DS pipelines. These one-fits-all solutions impose the complete
externalisation of data pipeline tasks that assume (i) reliable and completely
available network connection; (ii) can be energy and economically consuming,
allocating large scale resources for executing pipelines tasks. However, some tasks
can be executed in the edge, and the backend can provide just in time resources
to ensure ad-hoc and elastic execution environments.

Our research investigates architectural support, system performance met-
rics, resource management algorithms, and modeling techniques to enable the
design of composable (disaggregated) DCs. The goal is to design an innovative
composable “Just in Time Architecture” for configuring DCs for Data Science
Pipelines (JITA-4DS) and associated resource management techniques. DCs uti-
lize a set of flexible building blocks that can be dynamically and automatically
assembled and re-assembled to meet the dynamic changes in workload’s Ser-
vice Level Objectives (SLO) of current and future DC applications. DCs under
our approach are composable based on vertical integration of the application,
middleware/operating system, and hardware layers customized dynamically to
meet application SLO (application-aware management). Thus, DCs configured
using JITA-4DS provide ad-hoc environments efficiently and effectively meeting
the continuous changes in requirements of data-driven applications or workloads
(e.g., data science pipelines). To assess disaggregated DC’s, we study how to
model and validate their performance in large-scale settings. We rely on novel
model-driven resource management heuristics based on metrics that measure a
service’s value for achieving a balance between competing goals (e.g., comple-
tion time and energy consumption). Initially, we propose a hierarchical modeling
approach that integrates simulation tools and models.

The remainder of the paper is organised as follows. Section 2 discusses re-
lated work identifying certain drawbacks and issues we believe still remain open.
Section 3 JITA-4DS the just in time edge based data science pipeline execution
environment proposed in this paper. Section 4 describes preliminary results re-
garding JITA-4DS. Finally Section 5 concludes the paper and discusses future
work.

3 A Data Science Pipeline consists of a set of data processing tasks organised as a data
flow defining the data dependencies among the tasks and a control flow defining the
order in which tasks are executed.



Putting Data Science Pipelines on the Edge 3

2 Related Work

The work introduced in this paper is related to two types of approaches: (i)
disaggregated data centers willing to propose alternatives to one fits all archi-
tectures; and (ii) data science pipelines’ execution platforms relying on cloud
services for running greedy data analytics tasks.

Disaggregated data centers Disaggregation of IT resources has been pro-
posed as an alternative configuration for data centers. Compared to the mono-
lithic server approach, in a disaggregated data center, CPU, memory and storage
are separate resource blades interconnected via a network. The critical enabler
for the disaggregated data center is the network and management software to
create the logical connection of the resources needed by an application [14]. The
industry has started to introduce systems that support a limited disaggrega-
tion capability. For example, the Synergy system by Hewlett Packard Enterprise
(HPE) [1], and the Unified Computing System (UCS) [3] M series servers by
Cisco are two commercial examples of composable infrastructures. [14] proposes
a disaggregated data center network architecture, with a scheduling algorithm
designed for disaggregated computing.

Data Science Environments Data analytics stacks environments provide
the underlying infrastructure for managing data, implementing data processing
workflows to transform them, and executing data analytics operations (statistics,
data mining, knowledge discovery, computational science processes). For exam-
ple, the Berkeley Data Analytics Stack (BDAS) from the AMPLAb project is
a multi-layered architecture that provides tools for virtualizing resources, ad-
dressing storage, data processing and querying as underlying tools for big data-
aware applications. AsterixDB from the Asterix project is a full-fledged big data
stack designed as a scalable, open-source Big Data Management System (BDMS
https://asterixdb.apache.org).

Cloud based Data Science Environments provide tools to explore, engineer
and analyse data collections. They are notebook oriented environments 4 exter-
nalised on the cloud. They provide data labs and environments with libraries
for defining and executing notebooks. Examples of existing data labs are Kaggle
and CoLab from Google, and Azure Notebooks from Microsoft Azure. Platforms
for custom modelling provide a suite of machine learning tools allowing devel-
opers with little experience to train high quality models. Tools are provided as
services by commercial cloud providers that include storage, computing support
and environments for training and enacting greedy artificial intelligence (AI)
models. The main vendors providing this kind of platforms are Amazon Sage
Maker, Azure ML Services, Google ML Engine and IBM Watson ML Studio.
Machine Learning and Artificial Intelligence Studios give an interactive, visual
workspace to build, test, and iterate on analytics models and develop experi-

4 A notebook is a JSON document, following a versioned schema, and containing an
ordered list of input/output cells which can contain code, text (using Markdown
mathematics, plots and rich media.



4 A. Akoglu, G. Vargas-Solar

ments 5. An experiment has at least associated one data set and one module.
Data sets may be connected only to modules, and modules may be connected to
either data sets or other modules. All input ports for modules must have some
connection to the data flow. All required parameters for each module must be
set. Machine learning runtime environments provide the tools needed for execut-
ing machine learning workflows, including data stores, interpreters and runtime
services like Spark, Tensorflow and Caffe for executing analytics operations and
models. The most prominent studios are, for example, Amazon Machine Learn-
ing, Microsoft Artificial Intelligence and Machine Learning Studio, Cloud Auto
ML, Data Bricks ML Flow and IBM Watson ML Builder.

Discussion Data Analytics Stacks remain general solutions provided as ”one-
fits-all” systems with which, of course, big data can be managed and queried
through built-in or user-defined operations integrated into imperative or SQL
like solutions. In contrast, data labs’ objective is to provide tools for managing
and curating data collections, automatically generating qualitative and quanti-
tative meta-data. Curated data collections associated with a search engine can
be shared and used in target data science projects. Data labs offer storage space
often provided by a cloud vendor (e.g., users of CoLab use their google drive stor-
age space for data collections, notebooks and results). Execution environments
associate computing resources for executing notebooks that use curated data col-
lections. Machine learning studios address the analytics and data management
divide with integrated backends for dealing with efficient execution of analytics
activities pipelines allocating the necessary infrastructure (CPU, FPGA, GPU,
TPU) and platform (Spark, Tensorflow) services.

These environments provide resources (CPU, storage and main memory)
for executing data science tasks. These tasks are repetitive, process different
amounts of data and require storage and computing support. Data science projects
have life cycle phases that imply in-house small scale execution environments,
and they can evolve into deployment phases where they can touch the cloud
and the edge resources. Therefore, they require underlying elastic architectures
that can provide resources at different scales. Disaggregated data centers solu-
tions seem promising for them. Our work addresses the challenges implied when
coupling disaggregated solutions with data science projects.

3 JITA-4DS: Just in time Edge Based Data Science
Pipelines Execution

The Just in Time Architecture for Data Science Pipelines (JITA-4DS), illus-
trated in Figure 1, is a cross-layer management system that is aware of both the
application characteristics and the underlying infrastructures to break the bar-
riers between applications, middleware/operating system, and hardware layers.
Vertical integration of these layers is needed for building a customizable Virtual

5 An experiment consists of data sets that provide data to analytical modules, con-
nected together to construct an analysis model.



Putting Data Science Pipelines on the Edge 5

Data Center (VDC) to meet the dynamically changing data science pipelines’
requirements such as performance, availability, and energy consumption.

Fig. 1. Just in Time Architecture for Data Science Pipelines - JITA-4DS

JITA-4DS fully exploits the virtualization from the virtual machine (VM)
level into the VDC level (e.g., fine-grain resource monitoring and control capa-
bilities). For the execution of data science pipelines, JITA-4DS can build a VDC
that can meet the application SLO, such as execution performance and energy
consumption. The selected VDC, then, is mapped to a set of heterogeneous com-
puting nodes such as GPPs, GPUs, TPUs, special-purpose units (SPUs) such as
ASICs and FPGAs, along with memory and storage units.

DS pipelines running on top of JITA-4DS VDC’s apply sets of big data pro-
cessing operators to stored data and streams produced by the Internet of Things
(IoT) farms (see the upper part of Figure 1). In the JITA-4DS approach, the
tasks composing a data science pipeline are executed by services that implement
big data operators. The objective is to execute as just in time edge-based pro-
cesses (similar to lambda functions), and they interact with the VDC underlying
services only when the process to execute needs more resources. This means that
services are running on the edge, on processing entities with different comput-
ing and storage capacities. They can totally or partially execute their tasks on
the edge and/or on the VDC. This in turn, creates the need for novel resource
management approaches in streaming-based data science pipelines. These ap-
proaches should support and satisfy the data management strategy and stream
exchange model between producers and consumers, invoke tasks with the under-
lying exchange model constraints on the compute and storage resources in the
suitable form and modality and meet multi-objective competing performance
goals. Next we describe the architecture of big data operators and we show how



6 A. Akoglu, G. Vargas-Solar

Fig. 2. Architecture of a Big data/stream processing service

they interact with the VDC. Later we will introduce our resource management
approach for JITA-4DS.

Big Data/Stream producing and processing services We assume that services
that run on the edge produce and process data in batch or as streams. Data and
stream processing services implement operators for supporting the analysis (ma-
chine learning, statistics, aggregation, AI) and visualization of big data/streams
produced in IoT environments. As shown in Figure 1, data and stream producing
services residing on edge rely on underlying message-based communication lay-
ers for transmitting them to processing and storage services. These services can
reside on edge or a VDC. A data/stream service implements simple or complex
analytics big data operations (e.g., fetch, sliding window, average, etc.). Figure
2 shows the general architecture of a stream service.

The service logic is based on a scheduler that ensures the recurrence rate in
which the analytics operation implemented by the service is executed. Stream/data
processing is based on unlimited consumption of data ensured by the compo-
nent Fetch that works if streams are notified by a producer. This specification
is contained in the logic of the components OperatorLogic and Fetch. As data is
produced, the service fetches and copies the data to an internal buffer. Then,
depending on its logic, it applies a processing algorithm and sends the data to
the services connected to it. The general architecture of a service is specialized in
concrete services implementing the most popular aggregation operations. These
services can process data and streams on edge or on a VDC.

Since RAM assigned to a service might be limited, and in consequence its
buffer, every service implements a data management strategy by collaborating
with the communication middleware and with the VDC storage services to ex-
ploit buffer space, avoiding losing data, and processing and generating results on
time. Big stream/data operators combine stream processing and storage tech-
niques tuned depending on the number of things producing streams, the pace



Putting Data Science Pipelines on the Edge 7

at which they produce them, and the physical computing resources available for
processing them on-line (on edge and VDC) and delivering them to consumers
(other services). Stores are distributively installed on edge and on the VDC.

Edge based Data Science (DS) Pipelines are expressed by a series of data process-
ing operations applied to streams/data stemming from things, stores or services.
A DS pipeline is implemented by mashing up services implementing operators
based on a composition operation that connects them by expressing a data flow
(IN/OUT data). Aggregation (min, max, mean) and analytics (k-means, linear
regression, CNN) services can be composed with temporal windowing services
(landmark, sliding) that receive input data from storage support or a continuous
data producer, for instance, a thing. The connectors are Fetch, and Sink services
that determine the way services exchange data from/to things, storage systems,
or other services (on-demand or continuous). Services can be hybrid (edge and
VDC) services depending on the number of underlying services (computing,
memory, storage) required. To illustrate the use of a JITA-4DS, we introduce
next a use case that makes full use of edge and VDC services configured ad-hoc
for the analysis requirements.
Use Case: Analysing the connectivity of a connected society The experiment
scenario aims at analyzing the connectivity of the connected society. The data
set used was produced in the context of the Neubot project6. It consists of
network tests (e.g., download/upload speed over HTTP) realized by different
users in different locations using and application that measures the network
service quality delivered by different Internet connection types7. The type of
queries implemented as data science pipelines were the following:

EVERY 60 seconds compute the max value of download_speed

of the last 3 minutes

FROM cassandra database neubot series speedtests and streaming

RabbitMQ queue neubotspeed

EVERY 5 minutes compute the mean of the download_speed

of the last 120 days

FROM cassandra database neubot series speedtests and streaming

rabbitmq queue neubotspeed

For deploying our experiment, we built an IoT farm and implemented a dis-
tributed version of the IoT environment on a clustered version of RabbitMQ.
This setting enabled to address a scaleup setting in terms of several data produc-
ers (things) deployed on edge. We installed aggregation operators as services dis-
tributed on the things and an edged execution environment deployed on servers
deployed in different devices. The challenge is to consume streams and create a
history of connectivity information and then combine these voluminous histories
with new streams for answering the queries. Depending on the observation win-
dow size, the services access the observations stored as post-mortem data sets

6 Neubot is a project on measuring the Internet from the edges by the Nexa Center
for Internet and Society at Politecnico di Torino (https://www.neubot.org/)

7 The Neubot data collection was previously used in the context of the FP7 project
S2EUNET.



8 A. Akoglu, G. Vargas-Solar

from stores at the VDC level and connect to on-line producers that are currently
observing their connections (on edge). For example, the second query observes a
window of 10 days size. Our services could deal with histories produced in win-
dows of size 10 days or even 120 days. Such massive histories could be combined
with recent streams and produce results at reasonable response times (order of
seconds).

4 Preliminary experimental results

4.1 Value of Service based Scheduling and Resource Management

JITA-4DS encourages a novel resource management methodology that is based
on the time-dependent Value of Service (VoS) metric [12] to guide the assignment
of resources to each VDC and achieve a balance between goals that usually
compete with each other (e.g., completion time and energy consumption). VoS
allows considering the relative importance of the competing goals, the submission
time of the task (e.g., peak vs non-peak period), or the task’s nature as a function
of task completion time. A primary difference of our VoS metric from earlier
studies on ”utility functions” (e.g., [9, 4, 8]) is the fact that we combine multiple
competing objectives and we consider the temporal value of performing resource
management at a given instant of time. This ability is crucial for meeting the SLO
of edge-based data science pipeline execution, where the nature and amount of
the data change dynamically among streams of data arriving from heterogeneous
and numerous sets of edge devices.

Fig. 3. General formulation for value vs.
objective and thresholds.

In our earlier work [13], we de-
fined the value for a task as a
monotonically-decreasing function of
an objective (i.e., completion time,
energy), illustrated in Figure 3. The
soft threshold parameter specifies the
limit on an objective (Thsoft) un-
til which the value earned by a task
is maximum (vmax). Beyond the soft
threshold, the value starts decreas-
ing until the objective reaches the
hard threshold. The hard threshold
(Thhard) specifies a limit on a given
objective (vmin), beyond which zero value is earned. The linear rate of decay
between vmax and vmin can be replaced by other functions if shown to provide
an accurate representation.

In Equation 1, Task value (V (Taskj , t)) represents the total value earned
by completing task j during a given period t. It is the weighted sum of earned
performance and energy values based on Figure 3. The wp and we coefficients
are used for adjusting the weight given to the performance and energy values.
The importance factor γ(Taskj) expresses the relative importance among tasks.
If either the performance function or energy function is 0, then the VoS is 0.



Putting Data Science Pipelines on the Edge 9

V (Taskj , t) = (γ(Taskj))(wp ∗ vp(Taskj , t) + we ∗ ve(Taskj , t)) (1)

The VoS function, defined by Equation 2, is the total value gained by n tasks
in the workload that are completed during a given time period t.

V oS(t) =

n∑
j=1

V (Taskj , t) (2)

The design of resource management heuristics for the JITA-4DS is a chal-
lenging problem. Resources must be interconnected and assigned to VDCs in
a way that it will maximize the overall system VoS as defined in Equation 2.
Towards this goal, we designed a simulation environment and evaluated various
heuristics by experiments for a homogeneous environment much simpler than the
JITA-4DS design illustrated in Figure 1. In the simplified environment, we stud-
ied the allocation of only homogeneous cores and memories from a fixed set of
available resources to VMs, where each VM was for a single dynamically arriving
task. Each task was associated with a task type, which has estimated execution
time and energy consumption characteristics (through historical information or
experiments) for a given number of assigned cores and assigned memory. To
predict each application type’s execution time and energy consumption, we use
statistical and data mining techniques [12, 10, 11], which represent the execution
time and energy consumption as a function of the VDC resources. As an exam-
ple, one of the heuristics was Maximum Value-per-Total Resources (Maximum
VPTR). Its objective function is ”task value earned / total amount of resources
allocated,” where the total amount of resources (TaR) for a task depends on
the task execution time duration (TeD), the percentage of the total number of
system cores (Cores) used and the percentage of the total system RAM used:

TaR = TeD × [(%Cores) + (%RAM)] (3)

We compare the VPTR (Value Per Total Resources) algorithm with a simple
scheduling algorithm when applied to a workload that starts during peak usage
time. For 80 cores, VPTR is able to have an improvement of almost 50% in
energy value and 40% in performance value as shown in Figures 4 (a) and 4 (b),
respectively. Figure 4 (c) shows the VoS when we combine both performance and
energy values. Because the workload involves a peak system period, the Simple
heuristic cannot efficiently utilise the resources, resulting in VPTR having up to
71% increase in normalized VoS.

In general, each of these percentages can be weighted for a given system,
depending on factors such as the relative cost of cores and memory or relative
demand for cores versus memory among applications in typical workloads. Each
time the heuristic is invoked, it considers tasks that have arrived in the system
but have not been assigned resources. For each task, independently, for each
of its allowable resource configurations that will provide non-zero task value,
we find the cores/memory that maximizes the task’s VPTR. Then, among all
mappable tasks, we select the task with the maximum VPTR, call this task m,



10 A. Akoglu, G. Vargas-Solar

Fig. 4. Value gain comparison of the VPTR over the simple heuristicTable 1. NAS benchmarks used in this study.

Benchmark Description MPI MPI+OpenMP
CG conjugate gradient 3 7

EP embarrassingly parallel 3 7

FT Fourier transform 3 7

IS integer Sort 3 7

MG multi-grid 3 7

LU lower-upper Gauss-Seidel solver 3 3

BT block tri-diagonal solver 3 3

SP scalar penta-diagonal solver 3 3

and make that assignment of resources to task m, or if the allocation is for a
future time, we create a place-holder for task m. We then update the system
state information based on this assignment or place-holder and remove task m
from the list of mappable tasks.

4.2 JITA-4DS Simulation

Because a composable system is a tightly integrated system, it will create new
challenges in modeling application performance and designing resource alloca-
tion policies to maximize productivity. This creates the necessity for creating
a simulation environment to experiment and evaluate composable systems and
use them to design new resource allocation policies. We validated our simulation
framework’s functionality against emulation-based experiments based on a sys-
tem composed of 64 nodes. Each compute node is a dual-socket with 125 GB of
memory and InfiniBand QDR for the network interface. Each socket on the node
has a CPU (Ivy Bridge-EP) with twelve cores and a maximum frequency of 2.40
GHz. The TDP of each CPU is 115 watts in our system. We access the power-
specific registers on each CPU to monitor and control the CPU power consump-
tion. On this system, we collect empirical power-performance profiles for our test
applications and create models. We use the publicly available benchmarks from
the NAS parallel benchmark suite (NPB) [2]. In our study, a synthetic workload
trace is a list of jobs in the order of arrival time. We use the benchmarks listed in
Table 1 to form a job in the workload trace. Each job entry in the workload trace
consists of job arrival time, job name, maximum job-value, job’s input problem
size, iteration count, node configuration range, soft threshold, and hard thresh-
old. We experimentally select the sampling range for these parameters to ensure
our unconstrained HPC system is oversubscribed. We create offline models for
each hybrid benchmark by using the modeling technique discussed in [10].



Putting Data Science Pipelines on the Edge 11

(a) system-value from simulation (b) system-value from emulation

Fig. 5. Comparing the simulation and emulation results.

Similar to our emulation HPC prototype, we simulate a system composed
of 64 nodes. We use a similar set of hybrid benchmarks and their models to
create workload traces. For the simulation study, we create 50 workload traces,
and each trace is composed of 1000 jobs in the order of their arrival time. Each
trace simulates a workload of approximately 50 hours at three different system-
wide power constraints (55%, 70%, and 85%). While simulating a workload trace
under a given power constraint, we assume our model prediction error is zero
for each benchmark. In Figures 5(a) and 5(b), we compare the system-value
earning distribution from our emulation and simulation studies respectively us-
ing a set of value-based heuristics covering Value-Per-Time (baseline-VPT) and
its variations [10, 11] Common Power Capping (VPT-CPC), Job-Specific Power
Capping (VPT-JSPC), and hybrid that combines VPT-CPC and VPT-JSPC.
Even though our power-aware algorithms’ normalised system-value earnings is
higher in the simulations compared to the emulations, we observe a similarity
in the pattern of the system-value earnings of the algorithms as the power con-
straint is relaxed from 55% to 85%. The reason for differences in the magnitudes
of system-value earnings can be attributed to our simulation study, assuming all
the system’s CPUs are identical.

Discussion In the JITA-4DS environment, the resource management problem is
much more complex and requires the design of new heuristics. The computing re-
sources allocated to the VDC for a given class of applications are a heterogeneous
mixture of different types of processing devices (different CPUs, different GPUs,
different accelerators, etc.) with various execution performance and energy con-
sumption characteristics. They depend on each of the specific applications being
executed by that VDC. For example, several aspects remain open, like the ad-
hoc design of the JITA-4DS resource management system for a VDC built from
a fixed set of components. The design of a JITA-4DS instance is determined by
the execution time and energy consumption cost, and resources requirements of
a data science pipeline. Therefore, it is necessary to identify the configuration
choices for a given pipeline and define VDC resources’ effective resource alloca-
tion strategies dynamically. In general, for determining the dynamic resources
requirements of data science pipelines at runtime, it is necessary to consider



12 A. Akoglu, G. Vargas-Solar

two challenges. First, calculate a VDC-wide VoS for a given interval of time,
weigh individual values of various instances of pipelines. Second, propose objec-
tive functions that can guide heuristics to operate in the large search space of
resource configurations. The objective is to derive possible adequate allocations
of the shared and fixed set of VDC resources for several instances of data science
pipelines.

We have observed that regarding the resource management system for JITA-
4DS, decisions must be made to divide the shared, fixed resource pool across
different VDCs to maximize the overall system-wide VoS. All of the above single
VDC challenges still apply and interact across VDCs. Additional problems, such
as determining when resources should be reallocated across VDCs and do so
in an on-line fashion, must be addressed. This includes the methodologies for
reassigning resources that do not interfere with currently executing applications
on different VDCs affected by the changes and measuring and accounting for the
overhead of the establishment of new VDC configurations.

5 Conclusion and Future Work
This paper introduced JITA-4DS, a virtualised architecture that provides a dis-
aggregated data center solution ad-hoc for executing DS pipelines requiring elas-
tic access to resources. DS pipelines process big streams and data coordinating
operators implemented by services deployed on edge. Given that operators can
implement greedy tasks with computing and storage requirement beyond those
residing on edge, they interact with VDC services. We have set the first simula-
tion setting to study resources delivery in JITA-4DS.

We are currently addressing challenges of VDCs management on simpler
environments, on cloud resource management heuristics, big data analysis, and
data mining for performance prediction. To simulate, evaluate, analyze, and com-
pare different heuristics we will build simulators for simpler environments and
combine open source simulators for different levels of the JITA-4DS hierarchy.

References

1. HPE Synergy, https://www.hpe.com/us/en/integrated-systems/synergy.html
2. NAS-NPB, https://www.nas.nasa.gov/publications/npb problem sizes.html
3. Unified Computing, http://www.cisco.com/c/en/us/products/servers-unified-

computing/index.html
4. Briceno, L.D., Khemka, B., Siegel, H.J., Maciejewski, A.A., Groër, C., Koenig, G.,

Okonski, G., Poole, S.: Time utility functions for modeling and evaluating resource
allocations in a heterogeneous computing system. In: International Symposium on
Parallel and Distributed Processing Workshops and Phd Forum. pp. 7–19 (May
2011)

5. Chen, H., Zhang, Y., Caramanis, M.C., Coskun, A.K.: Energyqare: Qos-
aware data center participation in smart grid regulation service reserve pro-
vision. ACM Trans. Model. Perform. Eval. Comput. Syst. 4(1) (Jan 2019).
https://doi.org/10.1145/3243172, https://doi.org/10.1145/3243172

6. IDC: Forecasts Revenues for Big Data and Business Analytics Solutions (April
2019)



Putting Data Science Pipelines on the Edge 13

7. Kannan, R.S., Subramanian, L., Raju, A., Ahn, J., Mars, J., Tang,
L.: Grandslam: Guaranteeing slas for jobs in microservices execu-
tion frameworks. EuroSys ’19, Association for Computing Machinery,
New York, NY, USA (2019). https://doi.org/10.1145/3302424.3303958,
https://doi.org/10.1145/3302424.3303958

8. Kargahi, M., Movaghar, A.: Performance optimization based on analytical model-
ing in a real-time system with constrained time/utility functions. In: IEEE Trans-
actions on Computers. vol. 60, pp. 1169–1181 (Aug 2011)

9. Khemka, B., Friese, R., Pasricha, S., Maciejewski, A.A., Siegel, H.J., Koenig, G.A.,
Powers, S., Hilton, M., Rambharos, R., Poole, S.: Utility maximizing dynamic re-
source management in an oversubscribed energy-constrained heterogeneous com-
puting system. In: Sustainable Computing: Informatics and Systems. vol. 5, pp.
14–30 (Mar 2015)

10. Kumbhare, N., Akoglu, A., Marathe, A., Hariri, S., Abdulla, G.: Dynamic power
management for value-oriented schedulers in power-constrained hpc system. Par-
allel Computing 99, 102686 (2020)

11. Kumbhare, N., Marathe, A., Akoglu, A., Siegel, H.J., Abdulla, G., Hariri, S.: A
value-oriented job scheduling approach for power-constrained and oversubscribed
hpc systems. IEEE Transactions on Parallel and Distributed Systems 31(6), 1419–
1433 (2020)

12. Kumbhare, N., Tunc, C., Machovec, D., Akoglu, A., Hariri, S., Siegel, H.J.: Value
based scheduling for oversubscribed power-constrained homogeneous hpc systems.
In: 2017 International Conference on Cloud and Autonomic Computing (ICCAC).
pp. 120–130. IEEE (2017)

13. Machovec, D., Khemka, B., Kumbhare, N., Pasricha, S., Maciejewski, A.A., Siegel,
H.J., Akoglu, A., Koenig, G.A., Hariri, S., Tunc, C., Wright, M., Hilton, M., Ramb-
haros, R., Blandin, C., Fargo, F., Louri, A., Imam, N.: Utility-based resource man-
agement in an oversubscribed energy-constrained heterogeneous environment exe-
cuting parallel applications. In: Parallel Computing. vol. 83, pp. 48–72 (Apr 2019)

14. Papaioannou, A.D., Nejabati, R., Simeonidou, D.: The benefits of a dis-
aggregated data centre: A resource allocation approach. In: 2016 IEEE
Global Communications Conference (GLOBECOM). pp. 1–7 (2016).
https://doi.org/10.1109/GLOCOM.2016.7842314

15. Xu, X., Dou, W., Zhang, X., Chen, J.: EnReal: An energy-aware resource allocation
method for scientific workflow executions in cloud environment. IEEE Transactions
on Cloud Computing 4(2), 166–179 (Sep 2015)


