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1. Introduction

Photonic Crystals (PCs) have attracted a great deal of attention 
during the last two decades [1–3] due to their potential applica-

tions in optoelectronic and optical communications [4–16]. They 
can be used in the fabrication of lasers [4,5], optical diodes [6,7], 
waveguides [8,9], filters [10], dielectric reflectors [11–14], sensors 
[15,16], etc. Research in PCs has known a tremendous expansion 
and covers a wide range of electromagnetic spectrum from mi-

crowaves to the visible. Several technological difficulties restrict 
the fabrication of three-dimensional (3D) PCs in the visible (VIS) 
and infrared (IR) regions, due to their small lattice constant, which 
should be comparable to the wavelength [17]. However, the com-
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plication associated with 3D PCs lead to the investigation of one-
dimensional (1D) periodic structures, which can be easily produced 
for this range of wavelengths, by using thin-film deposition tech-
niques.

For most applications, a defective PCs are more desired than 
the perfect ones. The physical properties of the localized or defect 
modes within the photonic band gaps (PBGs) has been increas-
ingly studied. According to such combination, several materials are 
used as the defect layer in the design of the photonic devices. Sev-
eral works have investigated the optical and microwave properties 
of defect modes in 1D isotropic dielectric PCs. Liu et al. [10] have 
studied a 1D PC structure consisting of alternate layers of Ta2O5

and MgF2 films with a defect layer in the visible region. They have 
shown that the number and the frequencies of the defect modes 
can be controlled in the visible range by adjusting the thickness of 
the defect layer. This structure can be useful in the design of blue–

We investigate theoretically the possibility to control the optical transmission in the visible and infrared regions by a defective one dimensional 
photonic crystal formed by a combination of a finite isotropic superlattice and an anisotropic defect layer. The Green’s function approach has 
been used to derive the reflection and the transmission coefficients, as well as the densities of states of the optical modes. We evaluate the delay 
times of the localized modes and we compare their behavior with the total densities of states. We show that the birefringence of an anisotropic 
defect layer has a significant impact on the behavior of the optical modes in the electromagnetic forbidden bands of the structure. The 
amplitudes of the defect modes in the transmission and the delay time spectrum, depend strongly on the position of the cavity layer within the 
photonic crystal. The anisotropic defect layer induces transmission zeros in one of the two components of the transmission as a consequence of 
a destructive interference of the two polarized waves within this layer, giving rise to negative delay times for some wavelengths in the visible and 
infrared light ranges. This property is a typical characteristic of the anisotropic photonic layer and is without analogue in their counterpart 
isotropic defect layers. This structure offers several possibilities for controlling the frequencies, transmitted intensities and the delay times of the 
optical modes in the visible and infrared regions. It can be a good candidate for realizing high-precision optical filters.
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Fig. 1. Schematic representation of a finite 1D superlattice composed of 2N cells with an anisotropic defect cavity: SbS I (layer C ) in the middle of the structure. The unit
cell of the perfect structure is composed by TiO2 (layer A) and SiO2 (layer B). The layers A, B and C are characterized by their thicknesses dA , dB and dC , respectively. The
principal axes of the defect layer are oriented by the azimuthal angle φC with respect to the laboratory axes (XY Z). d = dA + dB is the period of the SL. The input and 
output isotropic media are air and the incident electromagnetic wave is launched with an angle θi with respect to the normal to the superlattice.

Fig. 2. Variation of the transmittances T P (a, b) and T S (c, d) as a function of the wavelength λ for φC = 0◦ (a, c) and φC = 90◦ (b, d). The solid and dashed lines correspond 
to the perfect and defective structures, respectively. The black dots on the λ-axis represent the edges of the band gaps of the infinite isotropic SL. The incidence angle of the
incoming light is θi = 0◦ .

green color filters. The green and red color filters were studied by 
Xiang et al. [18].

Superconductor material and liquid crystal are among poten-
tial materials to serve as defect layers in tunable photonic devices, 
as their optical properties can be controlled by external excitation. 
Indeed, Wu and Gao [16] have studied the effect of the temper-

ature on the defect modes in a 1D dielectric PC heterostructure 
with a superconducting defect. They have shown that this struc-
ture has very high temperature sensitivity. Dadoenkova et al. [19]
have investigated PBG spectra of a 1D dielectric PC with a complex 

defect layer, consisting of ultrathin superconducting and dielectric 
sublayers. Recently, some research works [20–23] have investi-
gated the effect of an electric field on the defect modes induced 
by a liquid crystal defect layer (anisotropic medium) or by an 
Ag/LiNbO3/Ag sandwich structure into 1D PC [22,23]. Tang el al. 
[24] have explored the influence of the anisotropy of the single-
negative material on photonic band gaps and tunneling modes of 
1D PCs containing dispersive anisotropic single-negative metama-

terials. Penninck et al. [25] have studied the emission of light in 
uniaxially anisotropic thin film devices. This emission is performed 
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Fig. 3. Spatial representation of the local density of states (in units of d/c) of the modes labeled 1 and 2 in Fig. 2(c) at λ = 500.22 nm (a) and λ = 1497.83 nm (b), respectively.
The input S-polarized wave is launched normally to the SL and the azimuthal angle of the layer C is φC = 0◦ .

through a dipole antenna inserted inside a thin isotropic film sand-
wiched between two anisotropic layers. The whole structure is 
placed between glass and air.

1D birefringent photonic crystal based on anisotropic porous 
silicon layers has been designed to control simultaneous enhance-
ment of second and third harmonic generation [26]. The structure 
consists of 12 quarter wavelength pairs of layers separated by a 
half wavelength cavity spacer. Recently the chiral PCs with defects 
have been of particular interest due to their rich optical proper-
ties. Various types of defects have been considered, such as: a thin 
isotropic [27–29] or anisotropic [30–32] defect layers inserted be-
tween two chiral PCs. The properties of the defect modes induced 
by anisotropic dielectric layer in 1D birefringent photonic crystal, 
have been investigated theoretically by some of us [33].

In all the above works, only the reflectance and/or the trans-
mittance of defect modes have been explored. In this work, we 
are interested to some optical transmission properties of the de-
fect modes such as: the transmission delay times and the behavior 
of total densities of states (DOS) in the visible and infrared regions 
of a defective one dimensional photonic crystal constituted by a 
combination of a finite isotropic superlattice (SL) and a dielectric 
anisotropic defect layer. In particular, we analyze the delay times of 
the defect modes and compare their behavior with the total DOS. 
More especially, we show the possibility of existence of transmis-

sion zeros induced by the anisotropic defect layer, giving rise to 
negative delay times for some wavelengths in the visible and in-
frared regions. Let us recall that the existence of transmission zeros 
has been shown in 2D photonic crystals [34,35], however the pos-
sibility of existence of such forbidden transmission regions in 1D 
lamellar systems has not been investigated before. This property 

is a characteristic of the anisotropic defect layer and is without 
analogue in their counterpart isotropic layer. It is worth mention-

ing that transmission zeros and the corresponding negative delay 
times have been demonstrated in quasi-one dimensional circuits 
made of coaxial cables in the radio-frequency domain [36]. Also, 
we highlight the impact of the orientation of the principal axes 
of the defect layer with respect to the laboratory axes, on the 
behavior of the optical modes in the forbidden band-gap of the 
system. The effect of the position of the cavity layer within the 
photonic crystal on the transmittance and the delay time of the 
defect modes will be also investigated. In general, the main the-
oretical method adopted for the analysis of the 1D multilayered 
PCs, is the transfer matrix method [10,12,14]. In this paper, we use 
the Green’s function approach which enables to derive the trans-
mission and reflection coefficients, the dispersion curves, the delay 
times as well as the total and local DOS of electromagnetic modes 
propagating through the structure.

This paper is organized as follows: in section 2 we present 
the theoretical model and the method to derive the expressions 
of the reflection and transmission coefficients, the delay time and 
the densities of states, when S or P polarized waves is incident 
upon the interface separating the substrate and the SL. Section 3

gives the numerical results of the transmittance and the delay time 
of the optical modes with respect to the wavelength and their de-
pendence on the azimuthal angle and the position of the defect 
layer within the photonic crystal. The spatial behavior of electro-
magnetic modes along the z-axis of the SL, has been investigated 
through the local density of states. Finally, a summary of this work 
is presented in section 4.
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Fig. 4. Dependence of the peak wavelengths of the transmitted P - and S-polarized waves for φC = 0◦ (a, c) and φC = 90◦ (b, d) versus the incidence angle θi . The black 
triangles and dots denote the defect modes in PBGs. The dotted curves represent the edges of the band gaps (hatched areas) of the infinite isotropic SL.

2. Theoretical model

The geometrical structure is schematically illustrated in Fig. 1.
It is denoted by s1/(AB)NC (B A)N/s2 , where si (i = 1 or 2) means 
the semi-infinite substrates and N is the number of the AB bi-

layers (periods) at each side of the anisotropic defect layer C . The 
unit cell of the structure is composed of two dielectric isotropic 
layers A and B . All the interfaces of the layers are taken to be 
parallel to the (XY) plane of a cartesian (laboratory) coordinate sys-
tem and the Z axis is along the normal to the interfaces (Fig. 1). 
The thicknesses of the layers A, B and C are denoted dA , dB and 
dC , respectively. d = dA + dB is the period of the SL. The ma-

terials constituting the layers are assumed to be homogeneous 
and non-magnetic. The isotropic layers A and B are characterized 
by the dielectric constants ǫA and ǫB respectively, whereas the 
anisotropic layer is characterized by the diagonal dielectric tensor 
ǫ = (ǫx, ǫy, ǫz), where ǫx, ǫy and ǫz are the dielectric constants in 
the corresponding principal axes (xyz) of the crystal. For a given 
orientation of the crystal, its dielectric tensor with respect to the 
fixed (XYZ) coordinate system is described by using the Euler an-
gles [37,38] θ, φ and ψ . For the sake of simplicity and without 
loss of generality, we investigate in this study the effect of only 
the azimuthal angle φ and omit the effect of the two other an-
gles (θ = ψ = 0). The axes of the birefringent layer C are shown in 
Fig. 1.

Among different techniques used to study the propagation of 
electromagnetic waves in periodic structures, one can cite the 
transfer matrix [39,40] and the Green’s function methods [41]. 
Both techniques enable to calculate dispersion relations and trans-
mission and reflection coefficients. However, the Green’s function 

presents the advantage to deduce easily the densities of states as 
well as different scattering properties of the system [41]. An inter-
esting connection between Green’s functions and transfer matrices 
has been established by Velasco et al. [42] and El Boudouti et al. 
[43]. This combination yields to study of the physical properties of 
any composite system. In this work, we use a simple formulation 
of the Green’s function called interface response theory of contin-
uous media [44]. This technique is suitable for treating composite 
systems containing a large number of interfaces [41]. In this the-
ory, the Green’s function of a composite system can be written as 
[44]

g(DD) = G(DD) + G(DM){[G(MM)]−1g(MM)[G(MM)]−1

− [G(MM)]−1}G(MD), (1)

where D and M are respectively, the whole space and the space of 
the interfaces in the lamellar system. G is a block-diagonal matrix 
in which each block G i corresponds to the bulk Green’s function 
of the subsystem i. All the matrix elements g(DD) of the com-

posite material can be obtained from the knowledge of the matrix 
elements g(MM) in the interface space M . g(MM) is calculated 
from its inverse g−1(MM). The latter is formed out by a linear 
superposition of the surface matrix elements g−1

i (MM) of any in-
dependent film bounded by perfectly free interfaces with appro-
priate boundary conditions. The matrix elements g−1

i (MM) for an
anisotropic medium are given in previous works [33,45].

Within this theory, the reflected and transmitted waves u(D), 
resulting from a uniform plane wave U (D) incident upon a plane 
boundary between two different media, are given by [44]

4



Fig. 5. Variation of the transmissions T S S (a) and T P S (b) versus the wavelength λ for φC = 60◦ . (c) and (d) represent the dependence of peak heights T S S and T P S of the 
defect modes labeled 1 and 2 in (a) and (b) on the azimuthal angle φC , respectively. The incoming S-polarized light is launched normally to the SL.

u(D) = U (D) + G(DM)
{

[G(MM)]−1g(MM)[G(MM)]−1

− [G(MM)]−1
}

U (M). (2)

Let us mention that the incident wave, generated in the sub-
strate s, can have two different polarizations, namely, S or P . In 
general, each wave entering the anisotropic medium, generates 
two transmitted waves and two reflected waves with different po-
larizations. Let us call Ei S and Ei P the amplitudes of the S and P
components of the incident field respectively. Then, the amplitudes 
of the reflected and transmitted fields can be written as [33,45]:

ERS (z) = rS SEi S (z) + rS PEi P (z) , (3)

ET S (z) = tS SEi S (z) + tS PEi P (z) , (4)

ERP (z) = rP SEi S (z) + rP PEi P (z) , (5)

ET P (z) = tP SEi S (z) + tP PEi P (z) . (6)

The expressions of ri j and ti j in these equations (i, j = S or P ) for 
an anisotropic structure are given in the previous works [33,45]. 
Therefore, the total reflection coefficients for the P and S modes 
are given respectively by

R P = R P P + R S P =| rP P |2 + | rS P |2, (7)

R S = R S S + R P S =| rS S |2 + | rP S |2, (8)

and the total transmission coefficients for the P and S modes are 
given respectively by

T P = T P P + T S P =| tP P |2 + | tS P |2, (9)

T S = T S S + T P S =| tS S |2 + | tP S |2 . (10)

From the expressions of the ri j and ti j , one can deduce also the 
phases of the transmission and reflection coefficients. The deriva-
tives of these phases with respect to the pulsation ω, yield to an 
important physical quantity. This latter called the delay time, indi-
cates the times needed by the wave to complete the transmission 
or reflection process through the structure. Four different delay 
times can be defined for the transmission coefficients, namely

τss =
dφss

dω
; τps =

dφps

dω
; τpp =

dφpp

dω
; τsp =

dφsp

dω
(11)

where φss , φps , φpp , φsp are respectively the phases of the trans-
mission coefficients tss , tps , tpp , tsp . As mentioned above, the 
Green’s function enables to calculate the density of states, espe-
cially, one can determine the variation of the density of states 	n

between the structure s1/(AB)NC(B A)N/s2 and a reference system 
formed out of the same volumes of the bulk semi-infinite sub-
strates s1 and s2 and the finite SL. This quantity is given by [46]:

	n(ω) =
1

π

d

dω
arg

{

det

[

g(M0M0)

[gs1(0,0)gs2(L, L)]
1/2

]}

, (12)

where g(M0M0) is the Green’s function of the whole system at its 
both extremities M0 = {0, L}, whereas gs1 (0, 0) and gs2 (L, L) are 
the elements of the Green’s functions at the surfaces 0 and L of 
the two substrates (air).

In a previous work, some of us [47] have shown analytically a 
relation between the transmission delay time τT and the variation 
of the density of states 	n(ω) for isotropic layered media, namely 
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Fig. 6. Variation of the density of states 	n (in units of d/c) (a, b) and the delay time τS (c, d) of S incident polarized waves versus the wavelength λ for φC = 0◦ (a, c) and 
φC = 90◦ (b, d). The black dots on the λ-axis represent the edges of the band gaps of the infinite isotropic SL at normal incidence.

τT = π	n(ω). In the case of anisotropic media, the expressions of 
the different delay times (Eq. (11)) and 	n(ω) (Eq. (12)) are more 
complicated. Therefore, we limit ourselves to a numerical compar-

ison.

3. Numerical results and discussion

The perfect photonic crystal s1/(AB)N/s2 consists of two al-
ternating isotropic media: TiO2 (layer A) and SiO2 (layer B). The 
refractive indices of these materials are, respectively, nA = 2.35 and 
nB = 1.46. The thicknesses dA and dB of these layers are chosen 
in accordance with the quarter wave stack condition, i.e., nAdA =

nBdB =
λ0
4

where λ0 = 1550 nm, which leads to dA = 164.89 nm 
and dB = 265.41 nm, respectively. λ0 = 1550 nm is chosen for 
its use in optical communications. The number N of the AB bi-

layers (periods) of the PC is chosen equal to N = 6, for which 
the PBGs are well defined. Both substrates surrounding the PC are 
simply assumed to be air. The periodicity of the perfect SL is bro-
ken by inserting the defect layer C in the center of the structure 
as depicted in Fig. 1. The defect layer is made of an anisotropic 
dielectric material: SbS I , with its principal optical indices [39]: 
n

(C)
x = 2.7, n(C)

y = 3.2, n(C)
z = 3.8. The orientation of the principal 

axes of the layer C is characterized by the azimuthal angle φC , as 
illustrated in Fig. 1, and the thickness of this layer is chosen equal 
to dC = 263.50 nm, for which the defect modes are well defined 
in PBGs. In most of our numerical results, we study the behav-
ior of the optical modes in a defective 1D PC when the incoming 
light has S or P polarization. After multiple reflection and trans-
mission in the anisotropic layer C , the incoming wave produces 

two reflected and two transmitted waves with S and P polariza-

tions. For special cases when the principal axes of the defect layer 
are parallel or perpendicular to the fixed axes, the S and P polar-

ized waves remain uncoupled [45]. Therefore, a single incident S
or P polarized plane wave generates a single reflected R S or R P

polarized plane wave and a single transmitted T S or T P polarized 
plane wave, respectively.

We display in Fig. 2 the transmittances T P (Fig. 2(a), (b)) and T S

(Fig. 2(c), (d)) of the optical modes as a function of the wavelength 
λ for a perfect PC (solid lines) and a defective PC (dashed lines). In 
this illustration, we assume that the incident electromagnetic wave 
is launched normally (θi = 0◦) to the SL, and the principal axes of 
the defect layer C are parallel φC = 0◦ (Fig. 2(a), (c)), or perpendic-
ular φC = 90◦ (Fig. 2(b), (d)) to the fixed axes of the coordinates 
system (XY Z). It is shown that for these two values of the az-
imuthal angle φC , the defect modes appear inside the PBGs of the 
transmission spectrum. The localized modes in the electromagnetic 
forbidden bands of the structure arise due to the constructive in-
terference of incident and reflected waves in the defect layer. From 
the analysis of Fig. 2, it can be observed that when the princi-
pal axes of anisotropic defect layer were parallel to the fixed axes 
of the coordinates system, the defect modes (dashed curves) are 
localized at λV I S

P0
= 535.81 nm, λI R

P0
= 1611.47 nm in the visi-

ble (VIS) and infrared (IR) regions, respectively, for transmission 
spectrum of P -polarized wave (Fig. 2(a)). Moreover, when the az-
imuthal angle of the layer C is equal to 90◦ , both modes shift to 
shorter wavelengths and appear respectively at λV I S

P90
= 500.22 nm 

and λI R
P90

= 1497.83 nm (Fig. 2(b)). The comparison of the results 
for S (Fig. 2(c, d)) and P (Fig. 2(a, b)) polarized incident waves, 
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Fig. 7. Variation of the density of states 	n (in units of d/c) (a) and different delay times: τP P (b), τS S (c) and τP S = τS P (d), as a function of the wavelength λ for φC = 60◦ . 
The black dots on the λ-axis represent the edges of band gaps of the infinite isotropic SL and for normal incidence.

shows that the S-polarized defect modes for φC = 0◦ have the 
same behavior as the P -polarized defect modes when φC = 90◦ , 
i.e., λV I S

S0
= λV I S

P90
and λI R

S0
= λI R

P90
. Moreover, the same behavior of 

the localized modes in PBGs has been observed when the princi-
pal axes of defect layer are perpendicular to the fixed axes and the 
incoming light has S polarization, i.e., λV I S

S90
= λV I S

P0
and λI R

S90
= λI R

P0
. 

These results are in good accordance with those presented in 
Ref. [48]. In addition, the transmission amplitudes of these peaks 
reach approximately unity for φC = 0◦ and φC = 90◦ . The black 
dots on the λ-axis indicate the limits of the band gaps of the 
infinite isotropic SL. These findings clearly show that the orien-
tation of the principal axes of the anisotropic defect layer changes 
the properties of the defect modes within the VIS and IR regions 
band gaps. In order to understand the spatial distribution of the 
S-polarized defect modes labeled 1, 2 in Fig. 2(c) along the Z -axis 
of the SL, we have plotted in Fig. 3 the local density of states ver-
sus the reduced position Z/d for the azimuthal angle φC = 0◦ of 
the defect layer. This quantity reflects the spatial behavior of the 
square modulus of the electric field inside the structure. Figs. 3(a) 
and (b) show a strong localization of the defect modes 1 and 2 in 
the vicinity of the defect layer C and a decaying behavior on both 
sides of the interfaces of this layer. Similar behavior of the local-
ized mode can be observed for other orientations of the principal 
axes of the defect layer and also for P -polarized waves.

In the following, we consider (Fig. 4) the effect of the inci-
dence angle on the optical properties of the defect modes within 
the forbidden band gaps in the VIS and IR regions for φC = 0◦

and φC = 90◦ . Fig. 4 gives the dependence of the peak wave-

lengths on the angle of incidence, when the input light has P
(Fig. 4(a, b)) or S (Fig. 4(c, d)) polarization. One can notice that 
when the incidence angle increases, the position of P and S po-

larized defect modes shift towards the lower wavelengths inside 
the PBGs (hatched areas) as illustrated in Fig. 4. In addition, when 
the incidence angle is greater than 35◦ , the defect branch within 
the first gap for P polarization and φC = 0◦ (Fig. 4(a)) and for 
S polarization and φC = 90◦ (Fig. 4(d)), disappear at the higher 
edge of the forbidden gap and falls in the allowed band. Further-
more, the transmission amplitudes of these modes remain almost 
unity whatever the incidence angle for both cases (φC = 0◦ and 
φC = 90◦).

Till now, we have depicted only the properties of the defect 
modes in the transmission spectrum of the defective 1D PC when 
the orientation of the principal axes of defect layer are parallel 
or perpendicular with respect to the laboratory axes. Let us now 
consider the effect of other orientations of the axes of the layer 
C on the behavior of the defect mode when the incident elec-
tromagnetic wave is launched normally to the SL. We present in 
Fig. 5(a, b), the evolution of the transmission spectra T S S and T P S

7



Fig. 8. Variation of the transmittance T S and the delay time (τS ) of S polarized modes versus the wavelength for different positions of the cavity layer n (0 ≤ n ≤ 12) inside 
a finite PC composed of 13 cells. The curves are sketched in IR region and for φC = 90◦ . (b) and (d) represent the dependence of the transmission amplitude and the delay 
time of the defect modes as a function of the defect cavity position n.

of S-polarized wave as a function of the wavelength λ for the az-
imuthal angle φC = 60◦ . It is clear that the birefringence of the 
defect layer has a strong impact on the number and the mag-

nitudes of the defect modes inside the PBGs in the VIS and IR 
regions. For this azimuthal angle (φC = 60◦) of the layer C , two 
defect modes appear inside each PBGs as every incident plane 
wave with S or P polarization generates two reflected and two 
transmitted plane waves containing both S and P polarized plane 
waves. These two propagating waves are coupled, thus each mode 
is composed of two components of the transmission (T S S and T P S ) 
spectrum for the same wavelength. These results correlated with 
the results in our previous work [33], when the PC is composed 
only by anisotropic media.

Moreover, the intensities of the defect modes depend strongly 
on the azimuthal angle of the anisotropic defect cavity as illus-
trated in Fig. 5(c, d), where we have plotted the dependence of 
peak heights T S S (Fig. 5(c)) and T P S (Fig. 5(d)) of the modes la-
beled 1 and 2 in Figs. 5(a) and (b) versus the azimuthal angle φC . 
The results of Fig. 5(c) show that by adjusting φC , the intensities 
of the defect modes exhibit different behaviors inside the PBGs of 
the structure. Indeed, by increasing φC from 0◦ to 90◦ , the trans-
mission amplitudes of the mode 2 (indicated by the black dots) 
increase from 0 to 1, while the amplitudes of the mode 1 (in-

dicated by black triangles) decrease from 1 to 0. However, the 
transmitted P -polarized modes (Fig. 5(d)), exhibit similar behav-
ior. Their intensities gradually increase by rotating the azimuthal 
angle of the defect layer, reach a maximum value around φC = 45◦

and then decrease to vanish for φC = 90◦ . Also, both transmitted 

P - and S-polarized defect modes have identical magnitudes (0.25) 
around φC = 45◦ .

The Green’s function method enables us to derive other phys-
ical properties of the composite system under study, through the 
analysis of the transmission delay time τ and the total density of 
states 	n. The delay time describes the time needed for photons to 
complete the transmission process and provides information about 
the interaction of an incident wave with the modes confined in the 
anisotropic defect layer. In the following, we study these two quan-
tities and give a comparison between the total DOS and the delay 
time of the optical waves. We display in Fig. 6, the variation of DOS 
(π	n) (Fig. 6(a, b)) and the delay time τ (Fig. 6(c, d)) as a func-
tion of the wavelength for S-polarized incident wave and when 
the principal axes of defect layer are parallel or perpendicular to 
the fixed ones. It is clear that the delay time of the transmitted 
peaks in the VIS and IR regions are very sensitive to the azimuthal 
angle of the anisotropic defect layer. The frequencies of the de-
fect modes obtained from the total DOS (Fig. 6(a, b)) coincide with 
those given by the delay time (Fig. 6(c, d)) and the transmission 
coefficient (see Fig. 3(c, d)). In addition, the delay time τs ex-

hibits the same behavior as the DOS (π	n) for φC = 0◦ (Figs. 6(c) 
and (a)) and for φC = 90◦ (Figs. 6(d) and (b)). For these particular 
orientations of the principal axes of the defect layer, the density 
of states is directly proportional to the transmission delay time, 
i.e., τs = π	n(ω), in accordance with the results demonstrated for
isotropic PC [47]. These results remain also valid for P -polarized 
waves. However, for φC �= 0◦ and φC �= 90◦ , different transmission 
delay times (τss , τps) and (τpp , τsp) for S and P transmitted polar-
ized waves, respectively, show different behaviors in comparison 
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with the DOS as it is illustrated in Fig. 7. One can notice that 
the delay times spectrum for both S and P transmitted polarized 
waves show negatives peaks for some wavelengths in the VIS and 
IR regions. We have checked that the corresponding transmission 
amplitudes reach almost zero as a consequence of a destructive 
interference between S and P waves inside the anisotropic de-
fect layer. The negative peaks in τpp (Fig. 7(b)) and τss (Fig. 7(c)) 
spectra are localized between the two defect modes in both VIS 
and IR regions, whereas those in τsp and τps (Fig. 7(d)) appear at 
the vicinities of the PBG edges. It is worth mentioning that the 
negative delay times in 1D systems are generally observed by tak-
ing into account the absorption in these systems [36,49]. However, 
in the present system, the negative delta peaks are intrinsically 
broadened. Moreover, because of the symmetry of the structure, 
the delay time τsp presents the same behavior as τps . Indeed, ren-
dering the structure asymmetric, by moving for example the cavity 
layer C inside the PC, gives rise to τps �= τsp . Let us notice that the 
existence of transmission zeros in one of the two components of 
the transmission, may give rise also to Fano and electromagnetic 
induced transparency resonances [35] even though these proper-
ties have not been explored here and postponed to a future work.

To widen the scope of our findings, we have also investigated 
the effect of the position of the cavity layer within the PC on the 
optical properties of defect modes in the PBGs of the structure. We 
have plotted in Fig. 8, the transmittance Fig. 8(a, b) and the delay 
time Fig. 8(c, d) of the localized modes in the IR region for differ-
ent positions of the cavity layer within the PC and for φC = 90◦ . 
The PC is composed of 13 cells and the cavity layer can be in-
serted at different positions labeled n inside the PC (0 ≤ n ≤ 12). 
The transmission spectra are displayed for S-polarized waves. One 
can notice that the transmittance and the delay time of the defect 
modes depend strongly on the position of the cavity layer within 
the finite SL. The magnitudes of the filtered modes in the PBGs, 
reach their maximum value when the defect cavity is inserted in 
the middle of the structure (i.e., n = 6) and decreases gradually 
when the defect layer is moved far from the middle of the PC, as 
shown in Figs. 8(b) and (d). The transmittance and the delay time 
almost vanish when the cavity layer is placed at both extremities 
of the structure. These results remain also valid for other orienta-
tions of the principal axes of the defect layer and for P -polarized 
waves.

4. Conclusion

In summary, we have investigated theoretically the effect of 
an anisotropic defect cavity on the optical transmission proper-
ties in one-dimensional isotropic photonic crystal. This study is 
performed by means of the Green’s function approach, through 
an investigation of the transmission coefficients, the delay times 
and the DOS for electromagnetic modes in the finite structure. 
The transmittance and the delay times are discussed as a func-
tion of the azimuthal angle and the position of the anisotropic 
defect cavity within the PC. We have presented, for the first time 
to our knowledge, a comparison between the total DOS and differ-
ent transmission delay times in such systems. We have shown that 
the delay time reproduces exactly the DOS when the principal axes 
of the defect layer are parallel or perpendicular to the laboratory 
axes. However, far from these directions, the birefringence of the 
cavity layer induces, in addition to mode conversion, transmission 
zeros in one of the two components of the transmission, for some 
wavelengths in the VIS and IR regions, giving rise to negative delta 
peaks in the delay times. These properties are without analogue in 
their counterpart isotropic defect layers. This structure can be of 
potential interest in the fields of photonics and optoelectronics as 
a high-precision optical filter.
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