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A b s t r a c t

Wireless video sensor networks (WVSN) are energy constrained systems where deployed video nodes
are capable of capturing the visual scene, performing local processing such as video compression, then
routing the results toward the destination. In this paper, we consider the problem of minimizing the
energy consumed by the video sensor node to encode and transmit the video stream under a defined
video quality constraint. In the present work, Intra-Only H.264/AVC is considered as video compression
scheme. Particularly, we propose to control at run-time both the energies consumed for video encoding
and transmitting, in addition to the video encoding distortion. Thus, we begin our study by profiling the
evolution of these quantities according to two coding parameters, namely the frame rate (FR) and the
quantization parameter (QP). Following an analysis of the obtained measurements, we propose empirical
parametric models in line with the observed behaviors, then validate them with different video sequences.
Finally, we introduce the Dynamic Adaptive Encoding Parameters’ values Selection (DAEPS) procedure
which relies on these models to solve the problem under consideration. Simulations show the advantage
of considering such an approach, which is capable, on the one hand, of extending the lifetime of the video
sensor node up to 2.3 times, when compared with state-of-the-art approaches, and on the other hand,
of complying with the defined end-to-end video quality constraint.
. Introduction

Wireless sensor networks (WSN) are offering a new solution for

called Wireless Video Sensor Networks (WVSN)s [5,6]. Recently,
the research in WVSNs gained high interest due to the multitude
of applications that are envisioned and could be developed [7].
onitoring indoor and outdoor environments [1,2]. They consist
f a large number of interconnected sensor nodes, and can collect
ata, process, then route them towards the destination using multi-
ops short range transmissions. Sensor nodes are battery powered
nits and replacing this component is in general difficult, and in
ome cases, impossible. Therefore, all possible efforts have been
ade to propose energy-efficient communication algorithms and

chemes in order to extend node lifetime as much as possible [3,4].
he recent advances in CMOS image and video processing tech-
ologies have allowed the sensor nodes to capture and process
isual information. Networks of such interconnected devices are
∗ Corresponding author at: LAPSSII, Ecole Supérieure de Technologie de Safi, Uni-
ersité Cadi Ayyad, Safi, Morocco.
-mail address: othmane.alaoui.fdili@gmail.com (O. Alaoui-Fdili).

https://doi.org/10.1016/j
In a WVSN, the collected visual information needs to be com-
pressed prior to transmission. Hence, new challenges have been
introduced to the WSN researchers community because of the par-
ticular features of this kind of data. Specifically, processing energy
was so far neglected in WSNs since it was considered a very sim-
ple operation [2]. However, the energy consumed for video data
processing has to be taken into account [8]. According to the exper-
iments presented in [9], conducted on Stargate/Telos video sensor
nodes, the computational energy depletion constitutes the major
portion (more than 90%) of the total energy consumption com-
pared to the bit transmission energy. Therefore, energy-efficient
compression schemes are needed since a large amount of energy is
drained during this phase.

The particularity of the context of the WVSN suggests designing
more adaptive solutions, that consider at every stage the various
indicators reflecting the current state of the node and its neighbor-
.suscom.2018.02.006 1



h
e
t
e
a
s
a
(
s
q
H
o
g
a
t
s
p
t
t

t
i
I
i
I
i
c
p
i
p
a
a
[
s
s
o
s
t
t
l
[

a
s
i
p

2

a
p
v
c
p
i
a
a
[
r
t
r
o
d
c

ood. In this paper, the considered indicators are the remaining
nergy (RE) of the video source node as well as the perceived
ransmission distortion. The key idea of the paper is to propose an
nergy-efficient and adaptive video encoding scheme that, given
user’s end-to-end desired video quality, an estimated transmis-

ion distortion and a current remaining energy budget, selects the
ppropriate configuration in terms of the quantization parameter
QP) and frame rate (FR) to preserve from useless energy con-
umption while meeting the specified desired end-to-end video
uality. The considered video encoding standard is the Intra-only
.264/AVC in its Baseline profile [10]. Practically, to reach our
bjective, we first investigate the behavior of the considered ener-
ies and distortion. Then, we propose empirical parametric models,
s functions of QP and FR, in line with the observed behaviors. Third,
he proposed models are validated using a different set of video
equences. Finally, we introduce the dynamic adaptive encoding
arameters’ values selection (DAEPS) procedure, which relies on
hese to perform energy saving while meeting the required end-
o-end video quality.

The choice of the Intra-only prediction mode is motivated by
he results of the experiments presented in [9,11], showing that
nter-coding consumes more than 10 times the energy drained by
ntra-coding. Hence, choosing Intra-only coding significantly lim-
ts the energy consumption of the resource-limited video nodes.
t might indeed be expected that the Intra-only coding results
n lower compression ratio, but the use of reduced frame rate
ompensates for this. Furthermore, Intra-only coding avoids error
ropagation across successive frames, hence preserving video qual-

ty. Our motivations behind the choice of QP and FR as controlling
arameters in this work are twofold: first, the QP and FR parameters
re used in all video encoding standards. Second, they are easy to
ccess on different industrial cameras, such as the LILIN IPD2220ES
12], offering controllable multiple FR and bit rates (i.e., QP). Con-
equently, the present proposition could be adapted for further
tandards and easily used by existing cameras or prototyped ones in
rder to extend their lifetime when used in an energy-constrained
ystem. An extension of this work to the case of ROI-oriented robust
ransmission, using three video encoding parameters, in addition
o an interactive original routing protocol, with node and network
evels evaluations, has been recently accepted for publication in
13].

The rest of this paper is organized as follows: Section 2 presents
review of the relevant approaches for sensor node lifetime exten-

ion. In Section 3, the main contributions of this paper are explained
n detail. Section 4 validates the proposed models then applies the
roposed DAEPS procedure. Finally, Section 5 concludes the paper.

. Related works

Due to the inherent features of the WSNs, which are known
s energy-constrained systems, many works have addressed the
roblem of network lifetime extension under the quality of ser-
ice constraints. In a typical WSN, with only scalar data, the energy
onservation is mainly performed only in the lower layers of the
rotocol stack, namely the network, MAC and physical layers. For

nstance, to decrease the energy consumed by idle listening, where
node listens for any possible incoming packets, many works have
dopted the technique of duty cycling as a solution [14]. In fact, in
15], the authors introduced the FTA-MAC protocol consisting of
apid adaptation of the receiving nodes wakeup interval according
o the source nodes sending rate, which leads to a reduction of the

eceiving nodes idle listening. Moreover, since the ISM bands are
ften crowded, the sensor node may decide to wake up upon false
etections of surrounding WiFi transmissions. This false wakeup
auses significant waste of energy. As a solution, the authors in [16]

https://doi.org/10.1016/j.sus
proposed the Adaptive Energy Detection Protocol, an application-
oriented protocol which is able to dynamically adjust a nodes
wakeup threshold to improve network reliability and duty cycle.
Energy efficiency could also be performed at the PHY layer by opti-
mizing modulation sizes and/or transmission durations in order
to minimize the total energy consumption, for example. This par-
ticular idea was investigated in [17], which focused on Gaussian
channels subject to the delay and peak power constraints, and in
[18], which considered fading channels subject to the bit-error-rate
(BER) constraints. On the other hand, the authors of [19] adopted
the adaptive power allocation idea to achieve network lifetime
extension. In fact, instead of transmitting at a fixed power, this last
could be adapted with respect to the observed signal to noise ratio
(SNR) for more energy saving. Other energy-efficient techniques
performed at the MAC and PHY layer, such as unequal protection
and retransmission, the distributed beamforming, contention free
techniques and the cross-layer design, are listed in surveys [20–22].

Routing is an additional energy consuming phase. To decrease
its energy consumption, many solutions could be adopted. One of
the most popular is using cluster architecture [23], consisting of
subdividing the network into clusters, where each one is managed
by a selected node known as the Cluster Head (CH). The CH node is
responsible of coordinating the members duty cycles, communica-
tions, and performing data aggregation. Thanks to this architecture,
the communication and the number of transmissions are reduced,
as is the consumed energy. This idea was adopted in several works
and proved its ability to decrease the consumed energy over the
network [24]. Another way to enhance energy efficiency during the
routing process is to consider the remaining energy of the interme-
diate nodes as a metric in the setup path phase. In fact, the proposed
routing protocol in [25] considered this information to establish the
next hops candidates scores. The simulation results demonstrated
that taking into account the residual energy of the forwarding nodes
could notably extend the sensor nodes’ lifetime while meeting the
quality of service requirements. Other techniques for performing
energy-efficient routing are highlighted in [26].

The introduction of visual information in the WSNs has
prompted researchers to think of more solutions to realize fur-
ther energy efficiency. Since the energy consumed during the
video/image processing, prior to transmission, is considerable, sev-
eral works have focused on the introduction of energy efficiency
during the video/image compression phase [27,28]. In [29], the
authors present a solution based on the correlation characteristics
of visual information in the sensor networks. In fact, energy effi-
ciency is achieved using a correlation-aware inter-node differential
coding scheme conducted by the H.264/ MVC video coding stan-
dard. Using the multiview concept, redundant data of overlapping
fields of views are encoded once.

In [30], the authors propose an energy-efficient and adaptive
video compression scheme dedicated to the WVSN. The energy effi-
ciency comes from the adoption of two modes, namely the standby
and the rush modes, conditioned by a low and high FR respectively.
In addition, a simple bit rate adaptation technique, called the fre-
quency selectivity (FS), is applied to the region of interest (ROI) and
the background (BKGD) respectively, in order to separately adjust
the bit rate of each scene area, hence decreasing the energy con-
sumed during the transmission process. However, the consumed
energy during the encoding process was not considered and the
selection of the encoding parameters’ values -particularly the FR
and the QP- was done in a static manner.

Lately, the idea of adapting the video encoding parameters’
values at run-time has been gaining more interest in the WVSN

context. An adaptive cross-layer framework for video transmis-
sion over the WSNs (ACWSN) is presented in [31] and used in [32].
ACWSN adapts the video encoding parameters, namely the group
of pictures (GOP) length (i.e., GL) and the number of B frames (i.e.,
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f), depending on the current wireless channel state, for maximiz-
ng only the video quality in terms of PSNR. The authors prove
hrough experiments that the GOP structure, if chosen properly
ithin given intervals, could decrease the perceived video distor-

ion. The authors of [33] present a study concerning the appropriate
arameters’ values for an optimal complexity of the H.264/AVC
ideo encoding standards in the wireless multimedia sensor net-
ork (WMSN) context. In fact, through an analytic study, only the
.264/AVC encoder energy consumption is expressed as a func-

ion of the search range (SR) and number of reference frames (NRF)
arameters. In comparison to these particular works, we address, in
his paper, the problem of decreasing both the encoding and trans-

ission energy consumption while considering a specified video
uality constraint. Furthermore, we are considering other encod-

ng parameters affecting the energy consumption as well as the
ideo quality, which are the QP and the FR.

. Description of the proposed DAEPS-based video encoder

The aim of this section is to describe the proposed energy
fficient video encoder and the different steps towards its estab-
ishment. Recall the main objective of this work is to enable the
ideo encoder to automatically select the optimal configuration in
erms of QP and FR to meet the desired end-to-end video quality on
ne hand, and on the other hand, to minimize as much as possible
he consumed energy to reach that quality.

Before going any further, let us see what the video stream is
xperiencing from the capture till the reception. When an event
ccurs, the concerned video sensor node starts capturing the scene.
rior to the transmission, the video stream is compressed according
o a given video compression algorithm or standard under a given
onfiguration. Here, an encoding energy (EE) is drained and a first
istortion of the original signal is observed, namely, the encoding
istortion (ED). The encoded stream is then packetized and routed
o the destination via multihops short-range transmissions. Here, a
ransmission energy (TE) is consumed by the video sensor node to
ransmit the video stream to the next hop, and a second distortion,
amely the transmission distortion (TD), is observed. In summary,
ith respect to the considered controlling parameters, the total

nergy (E) and distortion (D) could be formulated as follows:

(QP, FR) = EE(QP, FR) + TE(QP, FR) (1)

(QP, FR, PLR) = ED(QP, FR) + TD(PLR) (2)

here PLR refers to the estimated packet loss rate (PLR) responsible
or the transmission distortion.

The proposed video encoder selects the video encoding param-
ters, QP and FR, with respect to the observed transmission
istortion and the remaining energy of the node. In fact, the selected
P and FR are expected to offer a total distortion that does not
xceed the specified one while consuming a minimal total energy
(QP, FR). Therefore, we need to first derive empirical models
escribing the behavior of the consumed energies and the observed
istortions. Then, the dynamic adaptive encoding parameters’ val-
es selection (DAEPS) procedure that uses these models will be
xposed.

.1. Energy and distortion modelling

We adopt an operational approach for offline energy consump-
ion and distortion analysis and modelling, which can be applied to
eneric video encoders. It consists of a consideration of the param-

ters that are responsible for consuming more or less energy and
ltering the video quality during the video signal compression and
ransmission [11]. In the following, we profile the impact of FR and
P variations on the consumed energy as well as the occurred dis-

https://doi.org/10.1016/j
Fig. 1. The coverage of the considered video sequences over the spatial-temporal
information plane.

tortion. It is expected that the energy consumption decreases when
the QP increases and the FR decreases. On the other hand, it is
also expected that the distortion increases when the QP increases.
However, the question that we wish to answer is: how do the dis-
tortion and energy behave exactly with respect to QP and FR, and
specifically when Intra-only coding is used?

In order to derive appropriate models, extensive tests were car-
ried out for measurements using several video sequences. The ITU-T
[34] recommends the selection of appropriate video sequences to
consider the spatial and temporal perceptual information of the
scenes, defined in [34] and noted in the following SI and TI respec-
tively. In fact, these parameters reflect the compression difficulty
as well as the level of impairment that is suffered when the scene is
transmitted. Furthermore, it is important to choose sequences that
span a large portion of the spatial-temporal information plane [34].
Therefore, we use four video sequences, Hall and Soccer in QCIF res-
olution (176 × 144), City and Stefan in CIF resolution (352 × 288).
Fig. 1 illustrates the distribution of the chosen video sequences over
the spatial-temporal information plane. As can be seen, the consid-
ered set of sequences covers a large area, showing its SI-TI diversity.
In fact, according to Fig. 1, this set includes video sequences rep-
resenting contents with a moderate TI and SI ranging from low to
high (i.e., City and Stefan), while others represent contents with a
moderate SI and TI ranging from low to high (i.e., Soccer and Hall).

3.1.1. Energy consumption analysis and modelling
In [11], the impact of FR and QP variations on only the encod-

ing energy consumption of an Intra-only H.264/AVC encoder is
addressed, and for only QCIF video sequences. In the following, we
extend the study presented in [11] by including CIF video sequences
and investigating the impact of the FR and QP variations on both
encoding and transmission energy consumption.

(a) Encoding energy (EE) as function of QP:

The consumed energy for processing can be modelled as pre-
sented in [29] as a function of the number of clock cycles by:

EProc(N) = Ncyc · Ctotal · V2
dd + Vdd · (I0e

Vdd
nVT ) ·

(
Ncyc

f

)
(3)

where Ncyc is the number of clock cycles, Ctotal is the average capac-
itance switched per cycle, Vdd is the supply voltage, I0 is the leakage

current, f is the clock speed, VT is the thermal voltage and n a pro-
cessor dependent constant. On the other hand, since:

TProc = Ncyc

f
(4)

.suscom.2018.02.006 3
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Fig. 2. Measured (points) and predicted (curves) ˛EE(QP)

hen,

cyc = TProcf (5)

here TProc is the processing time, which is the encoding time in
ur case returned by the encoder.

The measured TProc in our case, is the sum of four major sub-tasks
nd hence can be written as follows:

Proc = TIP + TT + TQ + TEC (6)

here TIP is the intra prediction time, TT is the 4 × 4 DCT integer
ransform time, TQ is the time for the quantization operation and
EC is the time for the CAVLC entropy coding.

For reliable and accurate measurements, we control the run-
ing of the encoder to be in a real-time fashion and make it the
nly executed process in one microprocessor. Once the measure-
ents are converted to energies, using the model of Eq. (3), they

re normalized by the maximal consumed energy.
Points in Fig. 2 report the measured ˛EE(QP) that expresses the

ffect of the quantization on the normalized consumed energy
uring the encoding process. We can notice that the energy
ecreases slowly when the QP is increased. This can be explained
y increasing the QP, when the quantization becomes more severe,
enerating macroblocks with more zero quantized coefficients.
his result reduces the energy consumed during the CAVLC entropy
oding. Fig. 2 shows the behavior of a reduction factor that is
P-dependent. This factor reaches its maximum value of 1 at
P = QPmin = 0, then slowly decreases while the QP increases. Based
n the above mentioned arguments, we propose to model ˛EE(.) as
ollows:

(QP) = 2 − e−(a · QP) (7)
EE

here a is a content dependent coefficient. As shown in Fig. 2, the
roposed model in Eq. (7) can predict the reduction coefficients
EE(.) accurately with an average RMSE of 6%.

https://doi.org/10.1016/j.sus
es are predicted values by the proposed model of Eq. (7).

(b) Transmission energy (TE) as function of QP:

The energy consumed per bit during the transmission process
is given by the well-known model proposed in [23]:

ETx = Eelec + �fs · d2 (8)

where �fs is the energy consumed by the amplifier to transmit at
short distance, Eelec is the energy dissipated in the electronic circuit
to transmit and receive the signal, and d is the distance between
the transmitter and the receiver. The path loss exponent is set to
2. This value is quite reasonable for free space propagation model,
which is characteristics of most WSN applications. Based on this
model, the energy consumed for transmitting, at a given distance d
at a fixed �fs and Eelec, depends directly of the data rate generated
by the encoder.

Points in Fig. 3 report the measured ˛TE(QP), representing the
effect of the quantization on the normalized consumed energy dur-
ing the transmission process. As can be seen, ˛TE(.), similar to ˛EE(.)
reaches its maximum at QP = QPmin and its minimum at QP = QPmax.
However, ˛TE(.) decreases faster than ˛EE(.) and reaches minimal
values approaching 0. Therefore, we propose to model ˛TE(.) as an
exponentially decreasing function of QP, as follows:

˛TE(QP) = e−k · QP (9)

where k is a content-dependent coefficient obtained by minimiz-
ing the RMSE between measured and predicted data. As shown in
Fig. 3, the proposed model given by Eq. (9) can predict the reduction
coefficients ˛TE(.) accurately with an average RMSE of 4%.

(c) Impact of FR variation on EE and TE:
The FR is the second factor that we consider to predict the energy
consumption of our video encoder. We can change the FR in the
JM implementation of H.264/AVC by varying the parameter Frame

com.2018.02.006 4
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Fig. 3. Measured (points) and predicted (curves) ˛TE(QP)

kip (FSkip). The relation between these two parameters is given
s follows:

Skip =
⌈

FRmax

FR

⌉
− 1 (10)

here FRmax is the maximal FR allowed.
Points in Figs. 4 and 5 present the measured normalized energy,

or encoding and transmission respectively, while varying the
Skip. As can be seen, the impact of the FSkip parameter on the
ncoding and transmission energies is the same. In fact, the energy
onsumed decreases when increasing the FSkip and thus decreas-
ng the FR. This can obviously be explained by reducing the FR,

hen the FSkip is increased and hence, less frames are encoded
nd transmitted, leading to a considerable reduction of the con-
umed energy. Note that the FRmax of the tested video sequences is
0 fps, and using Eq. (10), one can deduce the tested FRs. Also, we
otice that an increment of the FSkip by 1 reduces the energy by
bout half and so on, which is an obvious and expected behavior.

Points in Figs. 4 and 5 show the behavior of a reduction factor
hat is FSkip-dependent. We name it �(FSkip). This factor reaches
ts maximum value of 1 at FSkip = FSkipmin = 0 and quickly decreases
o its minimal value at FSkip = FSkipmax = 29. In addition, this factor
oes not attain the zero value since there is at least one frame to be
ncoded. Based on the above mentioned arguments, we propose to
odel ˇ(.) as follows:

(FSkip) = 1
2FSkip

+ b (11)

here b is a content dependent parameter. As can be seen, the pro-
osed simple model of Eq. (11) is able to predict the coefficients
(.) with an average RMSE of 7%. Other analytical expressions, such

s 1

1+FSkip + b or 1
b∗FSkip+1 would lead to an enhancement of 3%

n terms of RMSE. However, they do not reflect immediately the
bove-mentioned physical reality of the FSkip parameters impact
n the consumed energy (i.e., the reduction by about the half).

https://doi.org/10.1016/j
es are predicted values by the proposed model of Eq. (9).

(d) Global models as functions of QP and FR:

The maximal energy consumed during the video signal encoding
and transmission is reduced by a QP-dependent reduction coef-
ficient, then by a FR-dependent reduction coefficient. Hence, the
global model for predicting the consumed energy during the video
signal encoding is given by:

EE(QP, FR) = EE(QPmin, FRmax) · ˛EE(QP) · �
(⌈

FRmax

FR

⌉
− 1

)
(12)

where EE(QPmin, FRmax) is the maximum energy consumed dur-
ing the video signal compression, corresponding to the pair (QPmin,
FRmax).

The global model for predicting the consumed energy during the
video signal transmission is given by:

TE(QP, FR) = TE(QPmin, FRmax) · ˛TE(QP) · �
(⌈

FRmax

FR

⌉
− 1

)
(13)

where TE(QPmin, FRmax) is the maximum energy consumed during
the video signal transmission, corresponding to the pair (QPmin,
FRmax).

3.1.2. Distortion analysis and modelling
In the following, we derive a model for video encoding distortion

(ED) prediction. Note that the distortion is expressed in terms of
mean squared error (MSE), and is given by:

MSE(X, Y) =
�m,n

i=1,j=1(Xi,j − Yi,j)
2

m · n
(14)

where X is the frame of original video sequence, Y is the frame of
compressed or received video sequence, and m and n are frame

width and height respectively. In what follows, as a first approach,
only the distortion due to the quantization process is considered.
The impact of FR variations on the perceived video quality will be
accounted for in a further study.

.suscom.2018.02.006 5



Fig. 4. Measured (points) and predicted (curves) �(FSkip) for the encoding. Curves are predicted values by the proposed model of Eq. (11).

Fig. 5. Measured (points) and predicted (curves) �(FSkip) for the transmission. Curves are predicted values by the proposed model of Eq. (11).

https://doi.org/10.1016/j.suscom.2018.02.006 6
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Fig. 6. Measured (points) and predicted (curves) ˛ED(QP).

The distortion introduced by the encoding process can be
xpressed as a function of the QP. Points in Fig. 6 report the nor-
alized measured encoding distortion. Unlike the encoding energy,

ncreasing the QP leads to an increase of the video distortion, which
s an obvious behavior. In fact, when the quantization is severe,

ore relevant information is lost. This directly affects the measured
uality that drops dramatically. Note that the normalization is done
y the maximal encoding distortion value, reached for QPmax.

Points in Fig. 6 report the measured ˛ED(QP), containing the
ffect of the quantization on the normalized distortion caused by
he encoding process. Unlike ˛EE(.), ˛ED(.) reaches its maximum
t QP = QPmax and its minimum at QP = QPmin. In addition, ˛ED(.)
bserves a quasi-stationary phase until a given QP is reached, where
ED(.) sharply increases. Therefore, we propose to model ˛ED(.) by:

ED(QP) =
(

QP

QPmax

)p

(15)

here p is a content-dependent coefficient obtained by minimiz-
ng the RMSE between measured and predicted data. As shown in
ig. 6, the proposed model in Eq. (15) can predict the reduction
oefficients ˛ED(QP) accurately with an average RMSE of 4%.

Finally, the proposed model for encoding distortion prediction
s function of QP is as follows:

D(QP) = ED(QPmax) · ˛ED(QP) (16)

here ED(QPmax) is the maximum encoding distortion measured
or QPmax.

The introduced transmission distortion is mainly dependent on
he adopted encoding methodology (e.g., inter or intra) as well as
he PLR. In our case, since Intra-only encoding is performed, there
s no temporal errors propagation. Therefore, for a given PLR, the

bserved transmission distortion could be predicted by a model
uch as proposed in [35] as follows:

SNR(PLR) = � · ln(1 − PLR) + � (17)

https://doi.org/10.1016/j
s are predicted values by the proposed model of Eq. (15).

where � and � model parameters.
Note that in this paper, the considered PLRs are those concerning

the video data packets. Finally, knowing the following relation, the
transmission distortion could be deduced in terms of MSE:

PSNR = 10log10

(
2552

MSE

)
dB (18)

considering images are coded on one byte per pixel.

3.2. Dynamic adaptive encoding parameters’ values selection
(DAEPS) procedure

In this section, we explain how the above presented models
perform the dynamic adaptive encoding parameters’ values selec-
tion (DAEPS), and hence improve energy efficiency while meeting
the desired video quality. The flowchart of Fig. 7 gives a detailed
step-by-step execution of the DAEPS procedure. As inputs, this pro-
cedure considers the user’s video distortion constraint, the node’s
remaining energy, the observed PLR, a range of allowed FRs [FRmin,
FRmax] and allowed QPs [QPmin, QPmax]. When a video node needs
to encode and transmit a video stream according to the DAEPS
procedure, the following steps are executed:

Step 1: Determination of the QPs satisfying the video quality
constraint

Given the PLR, the node could approach the transmission video
distortion using the model in Eq. (17). Consequently, using Eq. (2),
the allowed encoding distortion is deduced. Afterwards, thanks to
the encoding distortion model of Eq. (16), a solution set of QPs,
satisfying the encoding distortion constraint is constructed.

Step 2: Determination of the pair (QP,FR) minimizing the

energy consumption

First, the FR is initialized at FRmax. Then, each pair (QP,FR) is
evaluated in terms of energy consumption using the models of Eqs.
(12) and (13) for predicting the encoding and transmitting con-

.suscom.2018.02.006 7



Fig. 7. DAEPS procedure’s flowchart. ETh is th

Table 1
SI and TI of the considered sequences for the models validation.

Bus News Ice Foreman
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4
p

4

s
F
c

SI 149.8 126.8 118.7 105.6
TI 38.3 30.3 28.7 35.8

umed energies respectively. Afterwards, the video encoder selects
he pair minimizing the energy consumption.

Step 3: Checking the feasibility of the encoding and transmit-
ing

On the basis of the estimated total energy consumption of the
elected configuration, the video encoder decides whether or not
t could compress and transmit the stream. If the node’s remain-
ng energy is greater than the required energy for encoding, then
ransmitting using the selected pair by a given threshold, the energy
hreshold (ETh), the node may encode the video stream and relay
t to the network layer.

Whenever the remaining energy is insufficient for encoding and
ransmitting the video stream, the video encoder performs the
dapt and reevaluate step.

Step 4: Adapt and reevaluate
The video encoder decreases the adopted FR and goes to Step 2.

f the lower permitted FRmin is reached, and the node is still inca-
able of encoding and transmitting due to lack of energy, the video
ncoder increases the selected QP, then goes to Step 3 to check
he feasibility of the encoding and transmitting until the maximal
ermitted QPmax is attained.

Finally, if the node is still incapable of performing the encoding
nd the transmission, it turns off the video module and remains
s a relaying node. This is done to prevent holes in the network’s
opology that degrade the quality of service.

. Models validation and application of the DAEPS
rocedure

.1. Models validation
In this section, we validate the proposed models using another
et of video sequences: Bus and News in CIF resolution, Ice and
oreman in QCIF resolution. Table 1 reports the pairs (SI,TI) of each
onsidered sequence. Since the parameters of the proposed models

https://doi.org/10.1016/j.sus
e energy threshold discussed in Step 3.

are content dependent, we propose, as a first approach, to select
the models parameters’ values on the basis of the (SI,TI) index.
Consequently, for each video sequence, the corresponding models
parameters’ values of the nearest training video sequence in terms
of SI and TI are selected.

For energy measurements, we use a machine with an Intel
2.93 GHz Core 2 Duo processor. As stated earlier, by injecting the
encoding time returned by the encoder in Eq. (5), then injecting the
result in Eq. (3), we can measure the consumed energy by a given
processor for encoding a given video sequence, considering a given
configuration (FR,QP). The different coefficients of Eq. (3) concern-
ing the processor are available on Intel’s website [36]. We report in
Table 2 the different tested configurations, as well as the observed
prediction error in terms of RMSE of the proposed models in Eqs.
(12) and (13).

The distortion is measured in terms of MSE at the output of
the encoder. We measure the distortion for the different configura-
tions reported in Table 2. Thereafter, the accuracy of the proposed
model in Eq. (16) is evaluated in terms of RMSE, using the measured
encoding distortion and the predicted one.

The average prediction error of the proposed models in Eqs. (12),
(13) and (16) are, respectively, 7%, 5% and 5.25%, as can be deduced
from Table 2 columns RMSEEE, RMSEED and RMSETE respectively. The
occurred loss of accuracy of the proposed models, expressed by the
increase of the average RMSEEE (i.e., from 6% to 7%), the average
RMSEED (i.e., from 4% to 5%) as well as the average RMSETE (i.e.,
from 4% to 5.25%) is mainly due to the considered policy for the
selection of the model parameters’ values. In fact, in Section 3.1,
these values were selected using the curve fitting. While for valida-
tion, this selection is done on the basis of the SI and TI information,
the parameters’ values are not optimal. Nevertheless, the observed
prediction errors do not exceed 8%, even if this non-optimal policy
is used.

4.2. Application of the DAEPS procedure

In this section, we present an application example of the pro-

posed DAEPS procedure for energy consumption minimization
under an end-to-end video distortion constraint of 80 in terms of
MSE. We consider three identical video sensor nodes deployed at
the same distance, of 10 m, of the destination. Each of these nodes

com.2018.02.006 8



Table 2
Different tested configurations and the prediction errors of the proposed models.

Seq. Res. QP FR RMSEEE (Eq. (12)) RMSEED (Eq. (16)) RMSETE (Eq. (13))

Bus CIF 20 7.5 7% 6% 5%
News CIF 34 10 6% 5% 6%
Ice QCIF 14 15 7% 5% 6%
Fore-man QCIF 42 12 8% 4% 4%

Fig. 8. Total energy consumption.

Fig. 9. Run-time parameter values.

https://doi.org/10.1016/j.suscom.2018.02.006 9
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as an initial energy budget of 100 Joules and implements one of the
onsidered following video encoders. The first is the one presented
n [32], the second is presented in [30], while the third is a DAEPS-
ased encoder. To meet the end-to-end distortion constraint of 80,
he QP is set to 14 for both the encoders of [32] and [30]. The FR for
tandby and rush mode are set to 3.75 and 7.5 respectively, for the
ncoder presented in [30]. The DAEPS-based encoder adopts the
dea of using two modes as in [30] by adopting two different FRmax

n each mode, of 3.75 and 7.5 as well. The FRmin is set to 1.75 and
QPmin, QPmax] is set to [10,40]. In the following, the LinkState-aware
ideo encoder refers to the scheme of [32] and the energy-efficient
ideo encoder refers to the approach of [30].

The three video sensor nodes encode and transmit the same
ideo sequence with respect to the adopted encoding scheme, as
ong as there is energy. They are also subject to the same trans-

ission distortions ranging from 10 to 50 in terms of MSE. Hence,
e evaluate the performance of the video encoders in terms of the
umbers of successively transmitted video sequences, as well as
heir ability to comply with the required video quality constraint.
he video sequence Coastguard is used in QCIF spatial resolution at
0 fps with (SI,TI)=(126,34).

Fig. 8 shows how the energy decreases in each video sensor
ode, while successively encoding and transmitting the video sig-
al. As can be seen, the remaining energy of the video sensor node
sing the LinkState-aware video encoder [32], decreases faster than
ne of the video sensor node implementing the energy-efficient
ncoder [30], which decreases faster than one of the video sensor
ode adopting the proposed DAEPS-based video encoding scheme.

n fact, the first node was able to successively encode and transmit
0 video sequences, while the second and the third nodes per-
ormed that for 23 and 33 video sequences respectively, for the
ame initial energy budget. We report in Fig. 9 the adopted config-
ration by the proposed scheme at run-time.
The DAEPS-based encoder outperforms the other video
ncoders, thanks to its ability to adapt its configuration according
o the remaining energy. Hence, when needed, the node decreases
he encoder’s FR, and progressively increases the QP in order to

Fig. 10. Average end-to-end distor

https://doi.org/10.1016/j.sus
decrease the energy consumption and meet the desired quality.
In contrast, the LinkState-aware video encoder [32] adapts its
configuration with respect to only the current wireless channel
state. Furthermore, the energy-efficient [30] video encoder uses a
static configuration with no consideration to the current remaining
energy. The performed video sensor node lifetime extension using
the DAESP-based video encoder is about 2.3 times when compared
against the LinkState-aware encoder [32] and about 44% when com-
pared against the energy-efficient encoder [30].

Fig. 10 exposes the behavior of the measured average end-to-
end video distortion after concealment. While the energy-efficient
video encoder [30] uses constants QP and FR values, the proposed
DAEPS-based scheme adapts its configuration according to the
actual transmission distortion. In fact, we can observe an inter-
esting behavior of the DAEPS encoder, trying to meet the desired
quality constraint by decreasing the encoding distortion when the
transmission distortion increases (transmissions 4–20 for exam-
ple). The awareness of the LinkState-aware video encoder [32] of
the current channel state enables it to meet the required end-
to-end video quality. On the other hand, unlike the DAEPS-based
encoder, the energy-efficient video encoder [30] is not able to com-
ply with the constraint when the transmission distortion increases
and exceeds it from transmissions 6–20.

5. Conclusion

Video encoding is considered as a challenging task in energy-
constrained systems such as the WVSN. We have proposed a
dynamic adaptive encoding parameters’ values selection (DAEPS)
procedure for video node lifetime extension, while meeting a
desired end-to-end video quality. This procedure relies on derived
empirical models describing the behavior of the consumed energies
and the distortions of the encoding and the transmission phases as

functions of the quantization parameter (QP) and the frame rate
(FR). We first demonstrated through simulations, using a differ-
ent set of video sequences, the accuracy of the proposed models.
Then, we exposed the important lifetime extension, up to 2.3 times,

tion after loss concealment.

com.2018.02.006 10
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chieved by the DAEPS-based encoder under an end-to-end video
uality constraint, against a LinkState-aware and energy-efficient
tate-of-the-art video encoders.

As an extension to the presented work, we are working on the
mplementation of the proposed procedure on a Raspberry Pi 2
ased video sensor node. Together, we are working on the con-
ideration of the impact of FR variations on the perceived video
uality. One possible way that this the latter could be evaluated
mpirically instead, is to convert the low-frame-rate video back to
he original frame-rate, by repeating frames, then measure the MSE
ith the original high-frame-rate video, just like distortion is mea-

ured. Thus, frame-rate could be interpreted as a form of distortion.
inally, we are looking forward to extending the present study to
he High Efficiency Video Coding standard (HEVC/H.265).
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