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We investigate theoretically and numerically the possibility of existence of Fano and acoustic-induced

transparency (AIT) resonances in a simple though realistic one-dimensional acoustic structure made of solid-fluid

layers inserted between two fluids. These resonances are obtained by combining appropriately the zeros of

transmission (antiresonance) induced by the solid layers and the local resonances induced by the solid or combined

solid-fluid layers with surface free boundary conditions. In particular, we show the possibility of trapped modes,

also called bound states in continuum, which have recently found a high renewal interest. These modes appear as

resonances with zero width in the transmission spectra as well as in the density of states (DOS). We consider three

different structures: (i) a single solid layer inserted between two fluids. This simple structure shows the possibility

of existence of trapped modes, which are discrete modes of the solid layer that lie in the continuum modes of the

surrounding fluids. We give explicit analytical expressions of the dispersion relation of these eigenmodes of the

solid layer which are found independent of the nature of the surrounding fluids. By slightly detuning the angle

of incidence from that associated to the trapped mode, we get a well-defined Fano resonance characterized by

an asymmetric Fano profile in the transmission spectra. (ii) The second structure consists of a solid-fluid-solid

triple layer embedded between two fluids. This structure is found more appropriate to show both Fano and

acoustic-induced transparency resonances. We provide detailed analytical expressions for the transmission and

reflection coefficients that enable us to deduce a closed-form expression of the dispersion relation giving the

trapped modes. Two situations can be distinguished in the triple-layer system: in the case of a symmetric structure

(i.e., the same solid layers) we show, by detuning the incidence angle θ , the possibility of existence of Fano

resonances that can be fitted following a Fano-type expression. The variation of the Fano parameter that describes

the asymmetry of such resonances as well as their width versus θ is studied in detail. In the case of an asymmetric

structure (i.e., different solid layers), we show the existence of an incidence angle that enables to squeeze a

resonance between two transmission zeros induced by the two solid layers. This resonance behaves like an AIT

resonance, its position and width depend on the nature of the fluid and solid layers as well as on the difference

between the thicknesses of the solid layers. (iii) In the case of a periodic structure (phononic crystal), we show that

trapped modes and Fano resonances give rise, respectively, to dispersionless flat bands with zero group velocity

and nearly flat bands with negative or positive group velocities. The analytical results presented here are obtained

by means of the Green’s function method which enables to deduce in closed form: dispersion curves, transmission

and reflection coefficients, DOS, as well as the displacement fields. The proposed solid-fluid layered structures

should have important applications for designing acoustic mirrors and acoustic filters as well as supersonic and

subsonic materials.

DOI: 10.1103/PhysRevB.97.024304

I. INTRODUCTION

In several physical problems, the interaction of an incident

wave with the scattering centers in a composite material

gives rise to resonances as a consequence of constructive

interference of the waves. The well-known one is the Breit-

Wigner [1] resonance following a Lorentzian shape. However,

some systems may show a resonance followed by an antires-

onance (as a consequence of destructive interference of the

waves) giving rise to an asymmetric line shape. This kind

*Corresponding author: elboudouti@yahoo.fr

of resonance is known as Fano resonance [2,3]. When the

resonance falls between two antiresonances, the latter is called

electromagnetic-induced transparency (EIT) resonance [4,5].

Fano and EIT resonances are originally described as quantum

phenomena. Indeed, Fano resonance is defined as the result

of constructive and destructive interferences of a discrete state

with a continuum background [2,3], while EIT resonance is

the phenomenon where a sharp transparent window (enhanced

transmission) associated with steep dispersion is introduced

into an opaque medium [4,5]. In addition to Fano and EIT

resonances, trapped modes also called bound in continuum

(BIC) states have been the subject of several studies [6–

15]. These modes appear as resonances with zero width in
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the transmission spectra as well as in the density of states

(DOS). Therefore, they remain confined in some parts of the

system even though they coexist with a continuous spectral

range of radiating waves that can transport energy away.

This is a counterintuitive idea which was originally proposed

several decades before [16], but found a high amount of

interest in the recent literature [17] because it became possible

to propose different realistic or technologically interesting

structures displaying such a phenomenon. Indeed, because of

their high-Q factor, BIC modes can be used for narrow-band

filtering, chemical or biosensing, and low-threshold lasing

[17]. These modes without leakage have been found as discrete

modes in the band structure of a periodic system, or as a

consequence of the transformation of Fano and EIT resonances

into hidden resonances with practically infinite lifetimes when

their linewidths are reduced to zero [6–15,17].

Although all these resonances were first proposed in quan-

tum mechanics, it was demonstrated that such phenomena can

be extended to classical systems such as plasmonic materials

and planar metamaterials [18–24], photonic crystal waveg-

uides coupled to cavities [25–29], coupled microresonators

[30–35], photonic crystal slabs [14,15], and photonic circuits

[36,37]. However, little work has been devoted to acous-

tic counterpart systems [38–49]. A first paper [38] dealing

with a theoretical demonstration of trapped, Fano, and EIT

resonances in acoustics has been published by some of us

in a simple one-dimensional (1D) structure made by two

side-detuned resonators grafted at two sites on a tube. These

results have been confirmed experimentally in some recent

papers showing the possibility to support Fano [41], EIT

[39–41], and EIA [42] (electromagnetic-induced absorption)

phenomena. Different Fano resonances have been treated also

in two-dimensional (2D) locally resonant sonic crystals [46],

surface hypersonic crystals [47], pillared acoustic metasurface

[48], and acoustical duct cavity [43] as a consequence of the

existence of trapped modes [50]. The acoustic analog of EIT

resonance has been shown in 2D phononic crystals made of a

periodic array of poly(methyl methacrylate) (PMMA) square

rods immersed in water [44] and coupled-pipe resonators [45].

In this paper, we propose a realistic though simple platform

constituted by alternating solid-fluid layers to show the possi-

bility of such phenomena. Although these structures have been

the subject of many works for their acoustic applications, the

existence of Fano, acoustic-induced transparency (AIT), and

trapped modes have not been reported before. We demonstrate

theoretically that a simple acoustic structure made of a single

solid layer or a solid-fluid-solid triple layer immersed in a

fluid may support trapped, Fano, and AIT resonances. These

resonances are shown through an analysis of the transmission

coefficient (amplitude and phase) and DOS obtained using the

Green’s function method [51]. First, we show the possibility of

existence of trapped modes as a consequence of the combina-

tion of the transmission zeros induced by the solid layers and

discrete modes induced either by a single solid layer or a triple

solid-fluid-solid layer with free surfaces for a given incidence

angle θ0. Then, a small shift of the incidence angle from θ0

enables to separate the resonance from the transmission zero

(antiresonance) giving rise to a Fano resonance in the case of

a symmetric structure. Also, breaking properly the symmetry

of the structure by detuning for example the thicknesses of

the two solid layers enables to squeeze a resonance between

two transmission zeros induced by the two different solid

layers, giving rise to an AIT resonance. The dependence of

these resonances on the nature of the solid and fluid layers

is discussed. Finally, we show that in a periodic multilayer

solid-fluid structure (i.e., 1D phononic crystal), the trapped

modes give rise to a totally flat band with zero group velocity,

whereas when they are transformed into Fano resonances, the

latter develop into nearly flat bands with nearly zero positive

or negative group velocities.

It is worth mentioning that the propagation of acoustic

waves in solid-fluid layered media have been designed to

demonstrate different phenomena such as Bragg, non-Bragg,

and omnidirectional band gaps [52], Bloch oscillations [53],

super-wide-angle propagation phenomena about the second

critical angle [54], tunable acoustic filter [55,56], one-way

acoustic transmission [57,58], and sensors [59].

The paper is organized as follows: In Sec. II, we give a brief

review of the method of calculation used in this work which is

based on the Green’s function method [51]. In Sec. III, we give

an analytical demonstration of the so-called trapped mode and

we show numerically the possibility of existence of asymmetric

Fano resonances in a single solid layer sandwiched between

two fluids. Section IV is devoted to a triple solid-fluid-solid

layer. Here also, we give analytical expressions of the trapped

modes as well as the conditions behind the existence of the

so-called Fano and AIT resonances. In Sec. V, we study the

propagation of acoustic waves in solid-fluid periodic structures

(1D phononic crystal) where the trapped modes and Fano

resonances give rise, respectively, to flat bands with zero group

velocity and nearly flat bands with positive or negative group

velocities. The conclusions are presented in Sec. VI.

II. THEORETICAL MODEL

The method of calculation used in this study is based

on the interface response theory [51] of continuous media

which allows us to calculate the Green’s function of any

composite system. Let us notice that the Green’s function

method has the ability of providing in a compact form several

dynamical properties of the system such as dispersion curves,

transmission/reflection coefficients, densities of states (DOS),

displacement fields. In what follows, we very briefly present

the basic concepts and the fundamental equations of this theory

[51,60], then give the useful relations for the application of the

method to the study of the solid-fluid structure. Let us consider

a composite material contained in its space of definition D.

This system contains different subsystems i connected together

by their interface domains Mi . The whole interface space of

the system is labeled M = ∪Mi . The elements of the Green’s

function g(DD) of any composite material can be obtained

from [51,60]

g(DD) = G(DD) − G(DM)G−1(MM)G(MD)

+G(DM)G−1(MM)g(MM)G−1(MM)G(MD),

(1)

where G(DD) is the Green’s function of a homogeneous

continuous medium and g(MM) is the Green’s function of

the composite system in the space M of the interfaces. D is the
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whole space of the system and M is the space of interfaces. As

we are interested in elastic waves in solid and fluid media, the

corresponding Green’s function G(DD) can be derived from

the equation of motion of the displacement field as explained in

Refs. [51,60]. The inverse of the Green’s function in the space

of interfaces M [g(M,M)]−1 is obtained as a superposition

of the different g−1
i (Mi,Mi) for each constituent i of the

composite system [51,60]. The knowledge of g(MM) allows

us to obtain the eigenmodes of a composite system through the

relation [51,60]

det[g−1(MM)] = 0, (2)

U (D) being an eigenvector of the reference system [60].

Equation (2) leads to the eigenvectors u(D) of the composite

material as

u(D) = U (D) − U (M)G−1(MM)G(MD)

+U (M)G−1(MM)g(MM)G−1(MM)G(MD).

(3)

ln Eq. (3), U (D), U (M), and u(D) are row vectors. If U (D)

is a bulk wave launched in one homogeneous piece of the

composite material, then Eq. (3) enables the calculation of all

the waves reflected and transmitted by the interfaces, as well

as the reflection and transmission coefficients of the composite

system [60].

In this paper, we are interested in the propagation of acoustic

waves polarized in the sagittal plane defined by the normal to

the interfaces (x3 direction) and the wave vector k‖ (parallel

to the interfaces). We choose k‖ along the x1 direction without

loss of generality. We consider a nonviscous fluid layer for

which the viscous skin depth σ = (2η/ρω)1/2 is much smaller

than the fluid layer thickness df over a very broad frequency

range (η and ρ are the viscosity and the density of the fluid).

It is useful to know the surface elements of its elementary

constituents, namely, the Green’s function of an ideal fluid

of thickness df , sound speed vf , and mass density ρf and

an elastic isotropic solid characterized by its thickness ds ,

longitudinal speed vℓ, transverse speed vt , and mass density ρs .

In addition, the calculations of the transmission and reflection

coefficients can be deduced only from the knowledge of the

components of the Green’s functions g−1(MM). Let us recall

that the inverse Green’s function of an ideal fluid layer in the

space of the two surfaces Mf = {−df /2, + df /2} of the layer

is given by [60]

[gf (Mf Mf )]−1 =

(

af bf

bf af

)

, (4)

where

af = −F
Cf

Sf

, bf =
F

Sf

, (5a)

Cf = cosh(αf df ), Sf = sinh(αf df ), (5b)

F = ρf

ω2

αf

and αf = −j

(

ω2

v2
f

− k2
//

)
1
2

. (5c)

The inverse Green’s function of the elastic solid layer in the

space of the two surfaces Ms = {−ds/2, + ds/2} of the layer

is given by [60]

[gs(MsMs)]
−1 =

(

as bs

bs as

)

, (6)

where

as = −γ
Cℓ

Sℓ

− β
Ct

St

, bs =
γ

Sℓ

+
β

St

, (7a)

γ = −ρ
v4

t

ω2αℓ

(

k2
‖ + α2

t

)2
, β = 4ρ

v4
t

ω2
αtk

2
‖, (7b)

Ct = cosh(αtds), Cℓ = cosh(αℓds),

St = sinh(αtds), Sℓ = sinh(αℓds), (7c)

and α2
t = k2

‖ −
ω2

v2
t

, α2
ℓ = k2

‖ −
ω2

v2
ℓ

. (7d)

The inverse Green’s function of a semi-infinite fluid char-

acterized by the longitudinal velocity of sound v0 is given

by [60]

g−1
f (0,0) = −F0, (8)

where F0 is defined by Eq. (5c):

F0 = ρ0

ω2

α0

and α0 = −j

(

ω2

v2
0

− k2
‖

)

1
2

. (9)

It is worth noticing that the parameters af , bf [Eq. (5a)] and

as, bs [Eq. (7a)] are real quantities, whereas F0 [Eq. (9)] is a

pure imaginary quantity for frequencies above the longitudinal

sound line in the fluid. From the above results, we shall present

analytical and numerical calculations of dispersion curves,

transmission and reflection coefficients, phase, delay time,

displacement field, and densities of states of acoustic waves

in a given solid-fluid structure. In particular, we show in the

next two sections the possibility to realize trapped modes as

well as Fano and AIT resonances from single- and triple-layer

structures. These resonances are obtained by combining ap-

propriately the zeros of transmission (antiresonance) induced

by the solid layers and the local resonances induced by either a

single solid layer or a combined solid-fluid-solid layer with free

surface boundary conditions. Let us mention that the zeros of

transmission are the consequence of destructive interference

of transverse and longitudinal waves inside the solid layers,

leading to the cancellation of the transmitted waves [52,61].

III. SINGLE SOLID LAYER

Even though the problem of a single solid layer inserted

between two semi-infinite fluids has been the subject of several

studies [62], however, to our knowledge the possibility of

existence of trapped (or BIC) modes and Fano resonances

in such systems has not been treated before. In this section,

we will show that a single solid layer inserted between two

fluids may exhibit such modes. We first present the analytic

demonstration and then give practical illustrations. The reader

not directly interested by the demonstrations may skip the first

part and go directly to the illustrations.
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FIG. 1. Schematic representation of a solid layer of thickness ds

sandwiched between two semi-infinite fluids F0. θ is the angle of

incidence.

A. Analytical results

Consider a single solid layer of thickness ds inserted

between two semi-infinite fluids (Fig. 1). The inverse Green’s

function g(MM)−1 of the whole system in the space of

interfaces M ≡ {0,ds} can be obtained as a linear superposition

of the matrix [Eq. (6)] describing the solid layer and the scalar

[Eq. (8)] describing the surrounding fluids, namely,

[gs(MsMs)]
−1 =

(

as − F0 bs

bs as − F0

)

. (10)

An incident plane wave launched from the left (Fig. 1) gives

rise to reflection and transmission waves. The expressions

giving these two quantities can be obtained from Eqs. (3) and

(10) as [51]

r = 1 + 2F0g(0,0) =
a2

s − b2
s − F 2

0

(as − bs − F0)(as + bs + F0)
(11)

and

t = 2F0g(0,ds) =
2F0bs

(as − bs − F0)(as + bs + F0)
. (12)

In what follows, we shall concentrate on the transmission

coefficient. From Eqs. (7a) and (7b), the expression of t

[Eq. (12)] can be written explicitly as

t =
F0(γ S ′

tC
′
t + βS ′

lC
′
l )

[γClS
′
t + βS ′

lC
′
t + F0S

′
lS

′
t ][γC ′

tS
′
l + βS ′

tC
′
l + F0C

′
lC

′
t ]

,

(13)

where C ′
t = cosh(αtds/2), C ′

ℓ = cosh(αℓds/2), S ′
t = sinh(αt

ds/2), and S ′
ℓ = sinh(αℓds/2).

It is clear from Eq. (13) that the transmission zeros are

given by

γ S ′
tC

′
t + βS ′

lC
′
l = 0. (14)

Also, the symmetrical and antisymmetrical modes of the

system are given by the zeros of the denominator of t

[Eq. (13)], namely,

γClS
′
t + βS ′

lC
′
t + F0S

′
lS

′
t = 0 (15)

and

γC ′
tS

′
l + βS ′

tC
′
l + F0C

′
lC

′
t = 0. (16)

The left-hand sides of Eqs. (15) and (16) are complex

quantities. Poles of t [Eq. (13)] or equivalently the Green’s

functions [Eqs. (11) and (12)] refer either to resonances

or to bound states. The imaginary parts in Eqs. (15) and

(16) are responsible of the broadening of resonances in the

transmission coefficient [Eq. (13)]. The real parts give the

Lamb modes of the solid layer of thickness ds with free stress

surface boundary conditions. However, if real and imaginary

parts of Eqs. (15) and (16) vanish at the same frequency, then

we get trapped modes (bound states), i.e., resonances with

zero width falling in the continuum, the so-called bound in

continuum (BIC) states. One can notice that Eqs. (15) and

(16) lead, respectively, to the following simple equations:

S ′
t = 0 and S ′

l = 0 (17)

and

C ′
t = 0 and C ′

l = 0, (18)

giving the poles of the Green’s function or equivalently the

transmission and reflection coefficients [Eqs. (11)–(13)], and

thereby the BIC modes. These modes are independent of the

nature of the fluids surrounding the solid layer. The above

conditions [Eqs. (18) and (17)] occur for

ω = vt

√

k2
‖ +

(

mπ

ds

)2

= vl

√

k2
‖ +

(

nπ

ds

)2

, (19)

which gives the coordinates of the angular frequency ωm,n and

the wave number k
m,n
‖ , respectively, as

ωm,n =
vl

√

(

vl

vt

)2
− 1

π

ds

√

m2 − n2 (20)

and

k
m,n
‖ =

π

ds

√

√

√

√

m2 − n2
(

vl

vt

)2

(

vl

vt

)2
− 1

, (21)

where m and n are both odd or even integers. Let us mention

that the incidence angle θ (Fig. 1) is related to the parallel

wave vector k‖ by the expression k‖ = ω
v0

sin(θ ).

Equations (20) and (21) are well known as the coordinates

of the crossing points of the uncoupled dilatation and shear

modes of the solid layer [63]. The corresponding incidence

angles are given by

sin(θ ) =
v0

vl

⎛

⎝

m2 − n2
(

vl

vt

)2

m2 − n2

⎞

⎠. (22)

It is worth noticing that when Eqs. (17) and (18) hold,

the numerator and denominator of the transmission coefficient

[Eq. (13)] vanish, however, one can show after some tedious

calculations (not given here) that a Taylor expansion of t around

ωm,n and k
m,n
‖ gives well-defined values of t . In particular, we

obtained a complete transmission rate T = |t |2 = 1 for any

combination (m,n �= 0) and T < 1 for the pair (m,n = 0) (see

below).

Another interesting quantity that can be deduced from the

Green’s function (10) is the density of states (DOS), especially
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TABLE I. Velocities of sound and mass densities of Plexiglas,

PMMA, alcohol, and water.

ρ(Kg/m3) vt (103m/s) vℓ(103m/s)

Plexiglas 1200 1.38 2.7

PMMA 1190 1.4 2.8

Alcohol 786.51 1.103

Water 1000 1.49

one can determine the variation of the density of states �n

between the structure in Fig. 1 and a reference system formed

out of the same volumes of the decoupled semi-infinite fluids

and the solid layer. This quantity is given by [64]

�n(ω) =
1

π

d

dω
Arg det

{

g(M0M0)

[gf (0,0)gf (ds,ds)]1/2

}

, (23)

where g(M0M0) is the Green’s function of the whole system

at its both extremities M0 = {0,ds}, whereas gf (0,0) and

gf (ds,ds) are the elements of the Green’s functions at the

surfaces 0 and ds of the two semi-infinite fluids. In Eq. (23),

we have subtracted the discrete modes of the finite solid

medium [65].

B. Numerical illustrations

Consider, for example, the case of a Plexiglas layer of

thickness ds inserted in water. Table I gives the numerical

values of velocities of sound and mass densities of the materials

used in the calculation.

It is well established [52] that when a solid layer is inserted

between two fluids, there exists a critical angle θc above

which the transmission never reaches zero. In the case of

Plexiglas solid layer immersed in water θc = 39◦. Figure 2

gives the variation of the transmission amplitude (with color

scale) versus the dimensionless frequency 
 = ωds

v0
and θ .

FIG. 2. Transmission coefficient (in color scale) versus the di-

mensionless frequency 
 and the angle of incidence θ . White dotted

curves represent the frequencies of the transmission zeros (total

reflection), whereas black and cyan curves are associated to symmetric

and antisymmetric modes of the free surface solid layer, respectively.

The white dots give the positions of the transmission zeros

[Eq. (14)]. As mentioned above, these transmission zeros

occur for θ < θc ≃ 39◦. The circles labeled I and II represent

BIC modes; they are solutions of Eqs. (20) and (22) for

(n = 0,m = 2) and (n = 1,m = 3), respectively. The corre-

sponding coordinates are, respectively, (θI = 33.49◦, 
I =

6.77) and (θII = 26.34◦, 
II = 9.5). Black and cyan curves

correspond, respectively, to symmetric and antisymmetric

modes of the solid layer with free stress surfaces (i.e., Lamb

modes). As it is demonstrated in Sec. III A, BIC modes can

be also understood as the intersection of Lamb modes of the

solid layer with the transmission zeros as it is the case around

points I and II. Now, when the solid layer (Plexiglas) is inserted

in water, the Lamb modes will become resonances, however,

because of the small impedance of water in comparison with

Plexiglass layer, the positions of the resonances become close

to those of the Lamb modes, and when the latter fall near to

the transmission zeros, they will give rise to Fano resonances

(see below).

In order to show the behavior of the trapped modes and Fano

resonances in the transmission amplitude around θ = θI =

33.49◦ and 
 = 
I = 6.77, we have plotted in Figs. 3(a)–3(c)

the transmission versus 
 for θ = 33.2◦ < θI , θ = θI , and

θ = 33.8◦ > θI , respectively. The filled circles on the abscissa

of Figs. 3(b), 3(e), and 3(h) indicate the position of the trapped

mode. Figures 3(a) and 3(c) clearly show the existence of a

Fano-type resonance around 
I for θ < θI [Fig. 3(a)] and

θ > θI [Fig. 3(c)], respectively. This resonance is characterized

by an asymmetric line shape (i.e., a resonance close to an

antiresonance). The Fano resonance disappears (collapses) for

θ = θI [Fig. 3(b)] giving rise to a zero width resonance. This is

a characteristic of a trapped mode, i.e., a discrete mode falling

in the continuum modes (radiating modes) of the surrounding

fluids. As indicated in Sec. III A, when the resonance collapses,

the transmission rate T reaches a constant value lower than

unity [T ≃ 0.6, Fig. 3(b)]. Ladron de Guevara et al. [66]

called these hidden resonances “ghost Fano resonance” as they

collapse in the transmission amplitude. Similar results have

been found by Voo and Chu [67] for the electron ballistic

transport through a mesoscopic two-lead ring and Shipman

and Venakides [68] for electromagnetic waves in periodically

structured slabs in the presence of nonrobust guided slab

modes.

Figures 3(d)–3(f) give the variation of the phase of the

transmission for the same values of θ as in Figs. 3(a)–3(c),

respectively. Figures 3(d) and 3(f) clearly show a noticeable

increasing of the phase by an amount of +π around the position

of the Fano resonance followed by a phase drop of −π due

to the transmission zero. However, when the Fano resonance

and the transmission zero fall at the same frequency [see

Fig. 3(e) around 
I = 6.77], then we obtain a cancellation

of both phases leading to a monotonic increasing of the phase.

To characterize better the Fano and trapped modes, we have

plotted in Figs. 3(g), 3(h), and 3(k), the DOS versus 
 for the

same values of θ as in Figs. 3(a), 3(b), and 3(c), respectively.

Figures 3(g) and 3(k) clearly show the existence of a very

thin resonance around 
I = 6.77, its width decreases as far

as θ tend to θI and collapses for θ = θI . However, the other

resonances (around
 = 5.5 and 10.5) exhibit broad linewidths

for all values of θ around θI .
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FIG. 3. Variation of the transmission coefficient (a), phase (d), and DOS (in arb. units) (g) versus the dimensionless frequency 
 = ωds

v0
for

the structure depicted in Fig. 1 for θ = 33.2 < θI = 33.49◦. The phase is represented in the restricted frequency domain around 
I = 6.77.

(b), (e), (h) Represent the same curves as (a), (d), (g) but for θ = θI = 33.49◦. (c), (f), (k) Represent the same curves as (a), (d), (g) but for

θ = 33.8 > θI = 33.49◦.

In the above illustrations, we have neglected the dissipa-

tion effects. However, acoustic absorption in the constituting

materials may affect the shape of the Fano (and later AIT)

resonances depending on the material properties and frequency

range under consideration. We give a discussion of the dis-

sipation effects in the Appendix. Qualitatively speaking, the

acoustic absorption will broaden the narrow resonances, and at

high dissipation, the peaks may even lose their Fano shape. So,

to observe the Fano resonance behavior, it would be necessary

either to work with materials with very low acoustic absorption

or choose the angle of observation a little shifted with respect

to the BIC states to deal with broader resonant effect.

Another example of the existence of Fano and trapped

modes for n �= 0 is given in Figs. 4(a)–4(c) for θII = 26.34◦

and 
 = 9.5. These solutions correspond to n = 1 and m = 3

in Eqs. (18) and (17). Figures 4(a) and 4(c) clearly show the

existence of an asymmetric Fano line-shape resonance for

θ = 24◦ and 27.5◦, respectively. These resonances collapse

for θ = 26.34◦ giving rise to a trapped mode. As mentioned

above, one can show analytically using Taylor expansion

around 
 = 9.5 that the transmission reaches unity where the

Fano resonance disappears. These results are confirmed also in

the DOS spectra [Figs. 4(d)–4(f)] where the Fano resonances

at θ = 24◦ [Fig. 4(d)] and θ = 27.5◦ [Fig. 4(f)] collapse at

θ = 26.34◦, giving rise to a BIC mode.

IV. SOLID-FLUID-SOLID TRIPLE LAYER

In this section we consider a triple layer composed of

alternate solid-fluid-solid layers inserted between two semi-

infinite fluids (Fig. 5). In general, the nature of the two solids

and the fluids can be similar or different from each other. This

structure exhibits more degrees of freedom in comparison with

the single solid layer. In particular, we show that in addition

to the Fano resonances displayed by one solid layer (Sec. III),

there are other types of Fano and AIT resonances that can be

induced by the new structure.

A. Fano resonance

As mentioned above, the Fano resonance is characterized

by an asymmetric line shape where a resonance falls near

an antiresonance (or a transmission zero) in the transmission

spectrum. As indicated in Sec. III, the transmission zeros are

induced by the solid layer inserted between two fluids and are

a characteristic of the solid layer which plays the role of a

resonator. Therefore, we shall first consider the case where

the solid layers are identical, i.e., a symmetric triple layer

(Fig. 5 with S1 identical to S2) in order to get the trans-

mission zeros induced by both solid layers at the same

frequency.
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FIG. 4. (a)–(c) Variation of the transmission coefficient versus the dimensionless frequency 
 = ωds

v0
for the structure depicted in Fig. 1 for

θ = 24◦ < θII = 26.34◦, θ = θII , and θ = 27.5◦ > θII = 26.34◦, respectively. (d)–(f) Characterize the DOS (in arb. units) versus 
 for the

same values of θ as in Figs. 3(a)–3(c), respectively.

Figure 5 shows the schematic representation of the triple

layer made of a fluid layerF of thickness df sandwiched by two

solid layers S1 and S2 of thicknesses ds1 and ds2, respectively.

The whole system is inserted between two fluids F0. As

mentioned above, in order to realize a Fano resonance, we

should consider the solid layers identical (i.e., ds1 = ds2 = ds).

In order to calculate the transmission and reflection coefficients

using the Green’s function method, we need to construct

first the inverse Green’s function [g(MM)]−1 of the whole

system in the space of interfaces M ≡ {0,ds,ds + df ,2ds +

df }. This matrix is obtained as a linear superposition of the

matrices given by Eqs. (4) and (6), namely,

[g(MM)]−1 =

⎛

⎜

⎝

as − F0 bs 0 0

bs as + af bf 0

0 bf af + as Bs

0 0 bs as − F0

⎞

⎟

⎠
.

(24)

An incident plane wave launched from the left (Fig. 5) gives

rise to reflection and transmission waves. The expressions

giving these two quantities can be obtained as in Sec. III,

namely,

r =

[

(as + af )(as − F0) − b2
s

][

(as + af )(as + F0) − b2
s

]

− b2
f (as − F0)(as + F0)

�
(25)

and

t = 2F0

bf b2
s

�
, (26)

where

� = det[g−1(MM)] =
[

(as − F0)(as + af − bf ) − b2
s

]

×
[

(as − F0)(as + af + bf ) − b2
s

]

(27)

is the determinant of the matrix g−1(MM) given in Eq. (24).

The eigenmodes of the whole system are given by Eq. (2) or,

equivalently,

� = 0. (28)

Equation (26) clearly shows that the transmission zeros are

given by

bs = 0, (29)

where bs is given by Eq. (7a). In addition, the eigenmodes

of the triple layer with free boundary conditions are given by

Eqs. (27) and (28) by taking F0 = 0, namely,

[as(as + af − bf ) − bs2][as(as + af + bf ) − bs2] = 0.

(30)

Therefore, if Eqs. (29) and (30) hold simultaneously, then

Eq. (27) vanishes (� = 0), leading to the eigenmodes of the

triple layer independently of the nature of the surrounding

fluids (i.e., F0). These modes can be qualified as BIC modes

as they represent eigenmodes falling in the continuum of the

surrounding fluids without radiating their energy. Also, these

modes do not contribute to the transmission [Eq. (26)] and

are characterized by an infinite lifetime as the full width

at half maximum (FWHM) of these resonances vanishes

(see below).

Consider, for example, the case of a water layer inserted

between two identical Plexiglas layers. The thicknesses of all
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FIG. 5. Schematic representation of a triple-layer structure made

of a fluid layer F of thickness df sandwiched between two solids

S1 and S2 of thicknesses ds1 and ds2, respectively. The whole system

is inserted between two fluids F0. θ is the angle of incidence and

L = df + ds1 + ds2 is the total length of the triple layer.

the layers are supposed to be the same ds1 = ds2 = ds = df

and the whole layers are immersed in water. The solutions of

Eqs. (29) and (30) for the incidence angle θ less than the critical

angle θc and for the dimensionless frequency 
 =
ωdf

vf
<

4 give the two following trapped modes: (θ = 32.6◦, 
 =

3.51) and (θ = 37.6◦, 
 = 1.85). In the following, we shall

concentrate on the resonance around θ0 = 32.6◦ and 
0 =

3.51. Figure 6(a) gives the transmission versus the dimen-

sionless frequency 
 =
ωdf

vf
for θ = θ0. One can notice the

existence of a trapped (hidden) resonance around 
0 = 3.51

indicated by an open circle on the abscissa of Fig. 6(a)

where the transmission vanishes. Indeed, a signature about

the existence of such a resonance can be observed in the

phase of the transmission [Fig. 6(b)] where the latter shows

a phase drop by π instead of 2π because of the existence

of two antiresonances (transmission zeros) and one resonance

falling exactly at the same frequency. Now, in order to show the

existence of a Fano resonance, the incidence angle θ should be

taken slightly different from θ0. This is shown in Figs. 6(c) and

6(e) for θ = 30.8◦ < θ0 and θ = 34.4◦ > θ0, respectively. One

can notice the existence of a Fano-type resonance with different

shapes in both cases. The Fano parameter that characterizes

the asymmetry of each resonance changes sign around θ = θ0

(see below). The phase of the transmission [Figs. 6(d) and 6(f)]

clearly shows the existence of a 2π drop at the two transmission

zeros (antiresonance) induced by the identical solids and a

π enhancement at the resonance induced by the triple layer.

Also, we have analyzed the behavior of the DOS as in Fig. 3

and found that the latter presents well-defined resonances with

nonzero width for θ ≃ θ0 (Fano resonances) and a BIC mode

FIG. 6. (a) Variation of the transmission coefficient versus the dimensionless frequency 
 =
ωdf

vf
for the structure depicted in Fig. 5. The

width of the layers is taken such as ds = df . The modes I at 
 = 
0 = 3.52 correspond to the trapped mode where two transmission zeros

induced by the two solid layers coincide with the hidden Fano resonance. (b) The same as (a) but for the variation of the phase. (c), (e) The

same as (a) but for θ = 30.8 ◦ and 34.4 ◦ with their phases (d) and (f), respectively. Modes 1 and 3 correspond to Fano resonances, whereas

modes 2 and 4 correspond to the transmission zeros.
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FIG. 7. Transmission coefficient versus the dimensionless fre-

quency 
 and the angle of incidence θ . Color areas indicate the

magnitude of the transmission rate. White dotted curves represent

the frequencies of the transmission zeros (total reflection).

for θ = θ0. A discussion about the effect of dissipation is given

in the Appendix.

In order to get a better insight about the behavior of the

Fano resonance as a function of the incidence angle θ and

the frequency 
, we plotted in Fig. 7 the variation of the

transmission amplitude (with color scale) versus 
 and θ .

The white dots give the positions of the transmission zeros

[Eq. (29)]. As mentioned above, these transmission zeros occur

for θ < θc ≃ 39◦. Around (θ = 32.6◦, 
 = 3.51) and (θ =

37.6◦, 
0 = 1.85), one can notice particular points where

the maxima of transmission (red areas) become very thin

before crossing transmission zeros and giving rise to trapped

modes (i.e., resonances with zero width) labeled I and II. As

mentioned above, these modes are given by Eqs. (29) and

(30). Around θ = 32.6◦, the resonance line (red curve) falls

below (above) the transmission zero curve as it is illustrated in

Fig. 7. The modes labeled 1, 2, 3, and 4 in Figs. 6(c) and 6(e)

are indicated in Fig. 7 around the crossing point I where the

resonance and the antiresonance fall at the same frequency. The

same behavior occurs for the trapped mode II around θ = 37.6◦

and 
 = 1.85. It is worth noticing that other trapped modes

like those discussed in Fig. 2 above 
 = 4 exist also in the

triple-layer structure as these modes are an intrinsic property

of solid layers. We have avoided discussing these modes in

Fig. 7.

The Fano resonance depends on the nature of the fluid

inserted between the solid layers. We have checked the case

where we have replaced water layer by alcohol layer (Table I),

keeping the other parameters the same as in Fig. 7. We have

found almost the same results as in Fig. 7, but the Fano

resonance falls at lower frequencies and becomes slightly

larger.

In order to show the stopping and filtering of the waves by

the triple layer, we have plotted in Fig. 8 the spatial localization

of the displacement field for the modes labeled I, 1, and 2

in Figs. 6(a), 6(c), and 7. Figure 8(a) gives the displacement

field for the mode labeled 2 [Fig. 6(c)] which is associated to

the transmission zero. As predicted, this mode is blocked by

the first solid layer it encounters. However, the mode labeled

1 [Fig. 6(c)] associated to the Fano resonance remains well

confined in the triple layer, especially in the central fluid layer,

and continues its propagation in the fluid at the right side. As

concerns the mode labeled I [Fig. 6(a)] associated to a BIC

mode, it is well confined in the triple layer and vanishes at

its both extremities [Fig. 8(c)]. Even though this mode can be

excited from the fluid at the left side, it behaves as a stationary

mode without interacting with the surrounding semi-infinite

fluids. Indeed, the incident wave launched in the fluid at the

left side of the system [Fig. 8(c)] does not propagate at the right

side and remains confined in the triple layer.

In order to show that the resonances in Figs. 6(c) and 6(e)

are of Fano type with an asymmetric shape, the latter should

follow the Fano formula, namely [3],

T = A
(ω − ωR + qŴ)2

(ω − ωR)2 + Ŵ2
, (31)

where A = 1
q2 , ωR , and Ŵ are the standard parameters that

denote the position and the width of the resonance, respectively.

q is the so-called Fano parameter [2] which describes the

degree of asymmetry of the resonance. Figure 9 gives a

comparison between the exact results of the transmission

coefficient (solid curve) and the curve obtained for Eq. (31)

(open circle) for θ = 32.6◦. A good fit is obtained with the

following parameters q = 10.763 and Ŵ = 0.038 (in units of

df /vf ).

In order to get a better insight about the dependence of the

Fano parameter q and the width Ŵ or equivalently the quality

factor Q = 
R

Ŵ
of the Fano resonance upon the incidence angle

θ , we plotted in Figs. 10(b) and 10(c) the variation of q and

x3/df

-2 -1 0 1 2 3 4
0

1
S1 F S2

x3/df

-2 0 2 4

0

1
S1 S2

F

x3/df

-2 -1 0 1 2 3 4

|U3|2

0

1
S1 S2F

Mode 1 Mode IMode 2

(b) (c)(a)

F FF FFF

FIG. 8. (a) Square modulus of the displacement field versus the space position for the mode labeled 2 (transmission zero) in Figs. 6(c) and

7. (b) The same as in (a) but for the mode labeled 1 (Fano resonance) in Figs. 6(c) and 7. (c) The same as in (a) but for the mode labeled I (BIC

mode) in Figs. 6(a) and 7.
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FIG. 9. Comparison between the transmission curves associated

to exact results (solid line) and fitted results (open circles) obtained

from Eq. (31) versus the dimensionless frequency 
 for ds = df and

θ = 32.6◦.

Q versus θ , for θ close to θ0 = 32.6◦. Figure 10(a) recalls the

dispersion curves of the Fano resonance (dashed curves) and

the transmission zero (full curve) versus θ as in Fig. 7. At

the crossing point I, the Fano parameter q [Fig. 10(b)] which

is responsible of the asymmetric Fano profile of the resonance

diverges and changes sign around θ0 = 32.6◦. Also, the quality

factor Q [Fig. 10(c)] diverges around θ0 as the width of the Fano

resonance vanishes at the incidence angle θ0.

B. AIT resonance

Unlike the asymmetric Fano resonance, in order to show the

possibility of existence of the AIT resonance (symmetric Fano

resonance), it is sufficient to take the thicknesses of the two

solid layersds1
andds2

(Fig. 5) slightly different from each other

for a particular angle of incidence. Our goal consists to squeeze

a resonance between two transmission zeros induced by the two

solid layers. In what follows, we shall give the transmission and

reflection coefficients for an asymmetric triple-layer structure.

The inverse of the Green’s function g−1(MM) in the inter-

face space M = {0,ds1,ds1 + df ,ds1 + ds2 + df } of the whole

system is obtained as a juxtaposition of the three different

layers and the surrounding semi-infinite fluids. The parameters

of the two different solid layers are given by Eq. (7) where

we should add subscripts 1 and 2 in order to distinguish the

FIG. 10. (a) Variation of the dimensionless frequency 
 of the

Fano resonance and the transmission zero versus θ as in Fig. 7.

(b), (c) Variation of the Fano parameter q and the quality factor Q

versus θ .

left and right solid-layer parameters, respectively. Therefore,

g−1(MM) is given by

[g(MM)]−1 =

⎛

⎜

⎝

as1
− F0 bs1

0 0

bs1
as1

+ af bf 0

0 bf af + as2
bs2

0 0 bs2
as2

− F0

⎞

⎟

⎠
.

(32)

The transmission (t) and reflection (r) coefficients are given

as in Sec. III [Eqs. (11), (12), and (32)]. We get the following

expressions for t and r , respectively:

t = 2F0

bf bs1
bs2

�′
(33)

and

r =

[(

af + as2

)(

as2
− F0

)

− b2
s2

][(

af + as1

)(

as1
+ F0

)

− b2
s1

]

− b2
f

(

as2
− F0

)(

as1
+ F0

)

�′
, (34)

where �′ is the determinant of the matrix given in Eq. (32):

�′ =
[(

af + as2

)(

as2
− F0

)

− b2
s2

][(

as1
+ af

)(

as1
− F0

)

− b2
s1

]

− b2
f

(

as1
− F0

)(

as2
− F0

)

. (35)

In order to get the AIT resonance whatever the solid layer thicknesses, we start from the situation where the structure exhibits

a trapped mode (Sec. IV A), namely, ds1 = ds2 = df and θ = θ0, then we shift slightly ds1 and ds2 by a small amount ǫ from df

(for example, ds1 = df − ǫ and ds2 = df + ǫ) in order to separate the two transmission zeros induced by the two solid layers.

In the next step, we search for the angle θ that enables to get an antireflection (total transmission). This angle is obtained by

vanishing simultaneously the real and imaginary parts of the reflection coefficient [Eq. (34)], namely,

a2
s1
as2

α′ − b2
s1
β ′ − b2

s2
a2

s1
+ af as1

(

a2
s2

− b2
s2

)

− f 2af

(

as1
+ as2

)

− f 4 = 0, (36a)

as2
γ ′ − as1

β ′ + af

[(

a2
s1

− b2
s1

)

−
(

b2
s2

− b2
s2

)]

+ F 2
(

as1
− as2

)

= 0, (36b)
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FIG. 11. (a) Comparison between exact results (solid line) and

fitted results (open circles) obtained from Eq. (38) of the transmission

coefficient versus 
 for a triple layer characterized by the thicknesses

ds1
= 1.1df and ds2 = 0.9df . The incidence angle is fixed to θ =

32.6◦. The insets in (a) give the transmission for θ = 32◦ and 33◦.

(b), (c) The same as in (a) but for the phase and the delay time,

respectively.

where

α′ = as2
+ af , (37a)

β ′ =
(

as2
+ af

)

as2
− b2

s2
, (37b)

γ ′ =
(

as1
+ af

)

as1
− b2

s1
. (37c)

To illustrate the above analytical results, we have chosen

ds1 = 1.1df and ds2 = 0.9df . The solid and fluid media are

Plexiglas and water, respectively. The solutions of Eqs. (36a)

and (36b) in the frequency domain 
 < 4.2 give θ = 32.6◦

and 37.6◦. An example of the transmission amplitude is given

in Fig. 11(a) for θ0 = 32.6◦ (solid line). One obtains a well-

defined EIT resonance around 
 = 3.5; this resonance labeled

I is squeezed between two transmission zeros indicated by open

circles 1 and 2 on the abscissa. Contrary to the behavior of

the Fano resonance (Fig. 6), the amplitude of the transmission

coefficient falls down rapidly to zero when θ shifts slightly

from θ0 = 32.6◦ as it is shown in the inset of Fig. 11(a)

for θ = 32◦ and 33◦. In order to show that the transparent

window is followed by a steep dispersion, we have plotted in

Fig. 11(b) the phase of the transmission. As predicted, the two

transmission zeros give rise to two phase drops of π , whereas

the phase enhances by π around the AIT resonance at 
 = 3.5;

this behavior is a characteristic of the AIT resonance [3,4].

From the phase ϕ, one can deduce also the delay time defined

as τ =
dϕ

dω
[65,69,70]. Figure 11(c) clearly shows this negative

delay time associated to transmission zeros and a positive delay

time associated to the AIT resonance. The negative and positive

delay times lead, respectively, to fast and slow sound around

the given frequencies where the triple-layer material can be

used as supersonic and subsonic materials.

In order to confirm that the resonance in Fig. 11(a) follows

the AIT shape, we have sketched in the same figure by open

circles the fitted curves obtained from the expression [5]

T = B
(
 − 
R + q1Ŵ)2(
 − 
R + q1Ŵ)2

(
 − 
R)2 + Ŵ2
, (38)

where B = 1
(q1q2Ŵ)2 . q1 = 7.21 and q2 = −11.94 are the Fano

parameters and Ŵ = 0.052 (in units of df /vf ) is the width of

the AIT resonance lying at 
R = 3.5. We can notice a very

good agreement between the exact results (solid curve) and

the fitted results (open circles) obtained from Eq. (38).

An analysis of the displacement field versus the space

position (Fig. 12) clearly shows that the modes labeled 1 and

2 in Fig. 11(a) are prohibited from propagation outside the

first and the second solid layers, respectively, as it is shown

in Figs. 12(a) and 12(b), whereas the AIT mode I [Fig. 12(c)]

is well confined inside the triple layer and propagates in the

whole structure.

In order to give a better insight about the variation of the

transmission rate versus 
 and θ , we have plotted in Fig. 13 the

transmission amplitude (color scale) as well as the dispersion

curves of the transmission zeros (white dotted lines) versus


 and θ . One can see clearly the existence of only one AIT

resonance labeled I squeezed between two transmission zeros

labeled 1 and 2 at θ = 32.6◦. Similarly, we found a very sharp

AIT resonance labeled II around θ = 37.6◦.

Finally, in Fig. 13, we would like to make a comment

when the incidence angle is small. Indeed, one can notice the

existence of a broad resonance between the transmission zeros

for small values of the incidence angle. Indeed, for θ = 0◦

(normal incidence) the transmission zeros disappear as there is

no interaction between transverse and longitudinal waves in the

solid layers [62]. In this case, we obtain a large Breight-Wigner

(B-W) resonance as it is shown in Fig. 14(a). For θ close

to 0◦, Fig. 14(b) shows two abrupt transmission zeros that

break the shape of the B-W resonance. However, the latter

resonance cannot be qualified either as AIT resonance or as

Fano resonance as it cannot be fitted by an equation similar to

Fano [Eq. (31)] or AIT formula [Eq. (38)].

In what follows, we shall study the effect of the nature of

the solid and fluid layers on the AIT resonance. Indeed, the

position, amplitude, and width of the AIT resonance depend on

the thickness of the solid layers as it is illustrated in Fig. 15 for

ds2 = 0.9df fixed whereas ds1 is variable. The incidence angle

is fixed at θ = 32.6◦. Starting from the thickness ds1 = 1.1df

where the transmission reaches unity [blue curve in Fig. 15(a)],

one can notice that as far as ds1 increases the position of the AIT
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FIG. 12. (a), (b) Square modulus of the displacement field versus the space position for the modes labeled 1, 2 (transmission zeros) in

Fig. 11(a). (c) The same as in (a) and (b), but for the mode labeled I (AIT resonance) in Fig. 11(a).

resonance shifts to lower frequencies, its amplitude decreases

and its width increases as the separation between the two

transmission zeros increases [Fig. 15(a)]. Indeed, the position

of the transmission zero induced by the solid layer of thickness

ds2 = 0.9df falls at the frequency indicated by the open circle

on the abscissa, whereas the transmission zeros associated to

the solid layers of thickness ds1 = 1.1df , 1.2df , and 1.3df

shift to lower frequencies as far as ds1 increases. However, by

using Eqs. (36a) and (36b), one can find the appropriate angle

for each thickness ds1 of the first solid layer that enables to

realize a complete transparency. This is illustrated in Fig. 15(b)

where the resonances are brought back to unity for the angles

indicated in the inset.

The nature of the fluid layer inserted between the solid

layers may also affect considerably the AIT resonance. An

example is given in Fig. 16(a) where the thicknesses of the

layers are the same as in Fig. 11(a). We can see that changing

the water layer (solid curve) by the alcohol layer (dashed curve)

shifts the AIT resonance to lower frequencies. In addition, the

AIT resonance in the case of water layer transforms to a Fano

resonance in the case of alcohol layer as the latter falls below

FIG. 13. (a) Variation of the transmission coefficient as a function

of 
 and the angle of incidence θ . Color areas denote different

transmission rates. The white dotted curves show the positions of

the transmission zeros (total reflection) induced by the first and

second solid layers with thicknesses ds1
= 1.1df and ds2

= 0.9df ,

respectively. The solid and fluid media are composed of Plexiglas

and water, respectively.

the two transmission zeros induced by the solid layers. From

Eqs. (36a) and (36b), one can find the appropriate incidence

angle (θ = 35.6◦) that enables to bring the resonance to unity

as it is shown in Fig. 16(b) (dashed curve). In addition, the

resonance becomes thinner.

Also, the nature of the solid layers constituting the triple

layer may affect the profile of the AIT resonance. An example

is given in Fig. 17(a) where we have compared the results of

the structure with Plexiglas layers of thicknesses ds1
= 1.1df

and ds2
= 0.9df on both sides and the case were the Plexiglas

layer of thickness ds2
= 0.9df at the right side is replaced by

a PMMA layer. The incidence angle is fixed at θ = 32.6◦.

We notice a significant decrease of the amplitude of the AIT

resonance from 1 in the case of Plexiglas (solid curve) to 0.25

in the case of PMMA layer (dashed curve) and its shift to

higher frequencies. By the help of Eqs. (36a) and (36b), one can

determine easily the appropriate incidence angle that enables

to bring the AIT resonance to unity in the case of PMMA layer

as it is shown in Fig. 17(b) (dashed curve). Let us mention that

the effect of dissipation on AIT resonances will be discussed

in the Appendix.

FIG. 14. Transmission coefficient versus 
 for θ = 0 ◦ (a) and

θ = 4 ◦ (b). The structure is the same as in Fig. 13.
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FIG. 15. Variation of the transmission coefficient versus the

dimensionless frequency 
 for ds2 = 0.9df fixed whereas ds1 is

variable: ds1 = 1.1df (full curve), ds1 = 1.2df (dashed curve), and

ds1 = 1.3df (dashed-dotted curve). The incidence angle is fixed at

θ = 32.6 ◦. (b) The same as in (a) but the AIT resonances are brought

back to unity by choosing appropriately the angles of incidence

as indicated in the inset. The open circle on the abscissa indicates

the position of the transmission zero induced by the solid layer of

thickness ds2 = 0.9df .

V. SOLID-FLUID MULTILAYERED STRUCTURE

The results presented above on Fano and AIT resonances

may have interesting consequences for understanding the

band-gap structures and the transmission properties in periodic

solid-fluid layers. We shall consider a 1D phononic crystal

composed of alternating solid and fluid layers and we shall

FIG. 16. (a) Variation of the transmission coefficient versus the

dimensionless frequency 
 for the same structure as in Fig. 11 (full

curve) and when the water layer is replaced by an alcohol layer

(dashed curve). (b) The same as in (a) but the Fano resonance in (a) is

brought back to a unitary AIT resonance by choosing appropriately

the incidence angle θ = 35.6◦.

FIG. 17. Same as in Fig. 16, but one Plexiglas layer is replaced

by a PMMA layer.

demonstrate how the trapped modes and Fano resonances may

give rise to flat and nearly flat bands in the band structures.

Let us first recall the expressions of the dispersion relation

and the transmission coefficient for a solid-fluid phononic

crystal. Consider an infinite superlattice (SL) made of a

periodic repetition of solid-fluid layers. The Green’s function

is obtained by a linear juxtaposition of the 2 × 2 matrices

[Eqs. (4) and (6)] at the different interfaces. A tridiagonal

matrix can thus be obtained. By using the Bloch theorem and

Eq. (2), we obtain the following expression for the dispersion

relation of an infinite SL [52]:

cos(KD) = −

(

a2
s − b2

s + a2
f − b2

f + 2asaf

)

2bsbf

, (39)

where K is the Bloch wave vector and D = ds + df is the

period of the SL. On the other hand, the transmission coefficient

along a finite structure composed of N solid-fluid bilayers can

be written as follows [52]:

tN = 2F
b(N )

a2(N ) − b2(N ) + F 2 − 2Fa(N )
, (40)

where

a(N ) =

(

Y1

as + af

)[

1 − bsbf

(

t −
1

t

)

Y1

�

]

, (41a)

b(N ) = bsbf

(

t −
1

t

)

Y1Y2

as + af

tN−1, (41b)

with � = Y 2
1 − Y 2

2 t2(N−1), Y1 = b2
f − a2

f − af as + bsbf t,

Y2 = af bs − asbf t and t = ejKD. (41c)

Figure 18 gives the dispersion curves (hatched areas) for

an infinite SL made of Plexiglas and water layers. In this

figure, we plotted the dimensionless frequency 
 = ωdf /vf

as a function of the incidence angle θ . The thicknesses of solid

and fluid layers are assumed to be equal ds = df . The dotted

lines inside the allowed bands represent the dispersion curves

obtained from the peaks of transmission (i.e., zero reflection)

for a finite SL composed of N = 6 solid layers. The blue circles
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FIG. 18. Dispersion curves 
 versus the incidence angle θ for an

infinite superlattice (SL) made of Plexiglas and water layers (hatched

areas). The thin solid curves show the dispersion curves obtained from

the maxima of the transmission (zero reflection), whereas the open

circles give the position of the total reflection (transmission zero).

give the positions of the transmission zeros (total reflection).

One can notice a shrinking of the discrete branches and pass

bands when they intercept the transmission zero branch around

(θ = 32.6◦, 
 = 3.5) and (θ = 37.2◦, 
 = 1.85) labeled I

and II, respectively. This property of the shrinking of the modes

is a characteristic of solid-fluid SLs and is without analog in

their counterpart solid-solid SLs [52].

Indeed, at the crossing points I and II, there is a degener-

acy of the modes (N = 5 times in this case) giving rise to

dispersionless flat bands with zero group velocity (vg = 0)

around 
 = 3.5 and 1.85 for θ = 32.6◦ and 37.2◦, respectively.

Figures 19(a) and 19(b) give the variation of the transmission

coefficient versus 
 for a finite SL composed of N = 2

[Fig. 19(a)] and N = 4 [Fig. 19(b)]. The position of the BIC

mode (Fig. 6) is indicated by a filled circle on the abscissa of

Figs. 19(a) and 19(b). One can notice that when N increases,

the width of the gap around 
 = 3.5 increases [Fig. 19(b)].

The transmission gap coincides with the band-gap structure of

the infinite SL [Fig. 19(c)] where the BIC mode leads to a zero

bandwidth around 
 = 3.5 in the first Brillouin zone. For θ >

θ0 [Figs. 19(d)–19(f)], the Fano resonance obtained for N = 2

[Fig. 19(d)] transforms to three modes within a narrow band for

N = 4 [Fig. 19(e)] and a nearly flat band with positive group

velocity (vg > 0) in the case of an infinite SL [Fig. 19(f)]. If

θ < θ0, Figs. 19(g), 19(h), and 19(k) give the same behaviors as

in Figs. 19(d), 19(e), and 19(f) but with a nearly flat band with

negative group velocity (vg < 0) [Fig. 19(k)]. These results

clearly show that one can change the shape of the dispersion

curves by detuning the incidence angle around θ0 = 32.6◦.

Therefore, solid-fluid multilayers can be designed to exhibit

forward or backward slow-sound propagation. Let us mention

that the existence of zero-bandwidth property has been also

studied in photonic crystals [71].

FIG. 19. Variation of the transmission coefficients as a function of 
 for a finite SL composed of N = 2 [(a), (d), and (g)] and N = 4 [(b),

(e), and (h)] periods. The left, middle, and right panels correspond to incident angles: θ = 32.6◦, 34◦, and 30◦, respectively. (c), (f), (k) Give

the dispersion curves (i.e., 
 versus the dimensionless Bloch wave vector KD) inside the first Brillouin zone (i.e., 0 < KD < π ).
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VI. CONCLUSION

We have investigated theoretically and numerically the

possibility of existence of the acoustical analog of Fano and

EIT resonances in simple structures made of a single solid

layer or a solid-fluid-solid triple layer inserted between two

fluids. This study has been performed by means of the Green’s

function method which enables to determine analytically the

transmission and reflection coefficients as well as the dis-

persion relations, density of states, and displacement fields.

We have demonstrated analytically that these structures may

exhibit a bound state in continuum for a given incidence

angle as a consequence of the combination of the transmission

zeros induced by the solid layers and the eigenmodes of a

symmetric solid layer or a triple solid-fluid-solid layer with

free boundary conditions. This trapped mode is independent

of the surrounding fluid media and behaves as a standing mode

of the system without leakage. By adjusting the incidence

angle and the width of the solid layers, one can create a

sharp asymmetric resonance (transparency window) at the

vicinity of a transmission zero, the so-called Fano resonance

or a sharp resonance squeezed between two transmission

zeros, the so-called AIT resonance. These two resonances

have been written following a Fano-type form which enables

to deduce the Fano parameter that describes their asymme-

try. The dependence of these resonances on the nature of

the solid and fluid layers is also discussed. In addition to

the transmission amplitude, we have also studied the phase

of the transmission which enabled us to determine the delay

time. In particular, we have shown that transmission zeros give

rise to phase drops of π and therefore negative delay times

leading to supersonic phenomena. Whereas, the resonances

give rise to an enhancement of the delay time and therefore

subsonic phenomena. Finally, we have shown that trapped

modes give rise to flat bands with zero group velocity in a

solid-fluid phononic crystal and Fano resonances give rise to

nearly flat bands with positive or negative group velocities.

These structures may have interesting applications in designing

acoustic mirrors and acoustic filters as well as supersonic and

subsonic materials.

In all the above results, we have considered lossless ma-

terials. However, the effect of absorption can affect consid-

erably the shape of Fano and AIT resonances. This point

has been addressed in the Appendix where the intensity

and width of the resonances can change significantly for

lossy media. However, the shape of these resonances still

remains visible for low-absorbing media. The shapes of the

resonances (see Appendix) are similar to those we have

obtained recently in photonic crystals based on lossy coaxial

cables [36,37].

APPENDIX: EFFECT OF ABSORPTION

In this appendix, we shall consider the effect of absorption

on Fano and AIT resonances discussed in Secs. III and IV.

The dissipation can be included by adding a small imaginary

part to the transverse and longitudinal velocities of sound

in solid layers such that C
′

t = Ct (1 + ε) and C
′

l = Cl(1 + ε)

[55,56]. The dissipation induced by water layers is negligible
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FIG. 20. Variation of the transmission coefficients as a function of


 = ωds

v0
for the structure depicted in Fig. 1 for θ = 32.5◦ (blue curve)

and θ = 34.5◦ (red curve). The curves are plotted for a Plexiglas layer

without absorption (a), small absorption (b), and high absorption (c).

if we assume to work in the MHz range with millimeter-size

layers [55,56]. Figure 20 gives the transmission coefficients
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FIG. 21. Variation of the transmission coefficients as a function

of 
 =
ωdf

vf
for a solid-fluid-solid triple layer (Fig. 5) where the

thicknesses of the layers are chosen such that ds1
= ds2 = df . The

incidence angle is taken as θ = 25◦ (blue curve) and θ = 35◦ (red

curve). The curves are plotted for a Plexiglas layer without absorption

(a), small absorption (b), and high absorption (c).
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FIG. 22. Variation of the transmission coefficients as a function

of 
 =
ωdf

vf
for a solid-fluid-solid triple layer (Fig. 5) where the

thicknesses of the layers are chosen such that ds1
= 1.2df and ds2 =

0.8df . The incidence angle is taken as θ = 32.2◦. The curves are

plotted for a Plexiglas layer without absorption (red curve), small

absorption (blue curve), and high absorption (black curve).

as a function of 
 = ωds

v0
for a single solid layer inserted in a

fluid (Fig. 1) for θ = 32.5◦ (blue curve) and θ = 34.5◦ (red

curve). The curves are similar to those in Figs. 3(a) and 3(c),

but the incidence angles are chosen slightly far from the BIC

mode in order to broaden the Fano resonances. In Fig. 20, the

Plexiglas layer is considered without absorption [i.e., ε = 0,

Fig. 20(a)], small absorption [i.e., ε = 10−3, Fig. 20(b)], and

high absorption [i.e., ε = 410−3, Fig. 20(c)]. One can notice

that as far as the absorption increases, the intensity of Fano

resonances around 
 = 7 decreases and their width increases.

In particular, the shape of Fano resonances undergoes alteration

for high dissipation [Fig. 20(c)].

Figure 21 gives the transmission coefficients as a function

of 
 =
ωdf

vf
for a solid-fluid-solid triple layer inserted in a fluid

(Fig. 5) for θ = 25◦ (blue curve) and θ = 35◦ (red curve). The

thicknesses of the layers are chosen such that ds1
= ds2 = df .

The curves are similar to those in Figs. 6(c) and 6(e), but

the incidence angles are chosen slightly far from the BIC

mode in order to broaden the Fano resonances. In Fig. 21, the

Plexiglas layer is considered without absorption [i.e., ε = 0,

Fig. 21(a)], small absorption [i.e., ε = 10−3, Fig. 21(b)], and

high absorption [i.e., ε = 410−3, Fig. 21(c)]. Even though the

intensity of Fano resonances decreases when the dissipation

increases, their shape remains of Fano type even for high

dissipation [Fig. 21(c)].

Figure 22 shows the effect of absorption on AIT resonance.

The triple layer is similar to the one studied in Fig. 9, but

the thicknesses of the layers are chosen such that ds1
= 1.2df

and ds2 = 0.8df in order to enlarge the AIT resonance. The

incidence angle is fixed to θ = 32.2◦. The curves are plotted

for a Plexiglas layer without absorption (red curve), small

absorption (blue curve), and high absorption (black curve).

Here, also, we remark that even though the intensity of the

AIT resonance decreases when the dissipation increases, its

shape remains of AIT type even for high dissipation [black

curve in Fig. 22(c)]. It is worth mentioning that experimental

value of dissipation ε in the case of Plexiglas layers is around

410−3 (see Ref. [55]).

[1] G. Breit and E. Wigner, Phys. Rev. 49, 519 (1936).

[2] U. Fano, Phys. Rev. 124, 1866 (1961).

[3] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod.

Phys. 82, 2257 (2010).

[4] S. E. Harris, Phys. Today 50(7), 36 (1997).

[5] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod.

Phys. 77, 633 (2005).

[6] Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A.

Szameit, and M. Segev, Phys. Rev. Lett. 107, 183901 (2011).

[7] E. N. Bulgakov and A. F. Sadreev, Phys. Rev. B 78, 075105

(2008).

[8] M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, Phys.

Rev. Lett. 108, 070401 (2012).

[9] D. C. Marinica, A. G. Borisov, and S. V. Shabanov, Phys. Rev.

Lett. 100, 183902 (2008).

[10] S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko,

A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and

Y. S. Kivshar, Phys. Rev. Lett. 111, 240403 (2013).

[11] G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S.

Longhi, Phys. Rev. Lett. 111, 220403 (2013).

[12] J. Mur-Petit and R. A. Molina, Phys. Rev. B 90, 035434 (2014).

[13] R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real, C.

Mejía-Cortés, S. Weimann, A. Szameit, and M. I. Molina, Phys.

Rev. Lett. 114, 245503 (2015).

[14] C. W. Hsu, Bo Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D.

Joannopoulos, and M. Soljačić, Nature (London) 499, 188
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