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Oxygen plasma is a widely used treatment to change the surface properties of organic layers. This treatment is 

particularly interesting to enable the deposition from solution of poly(3,4-ethylenedioxythiophene)-
poly(styrenesulfonate) (PEDOT:PSS) on top of the active layer of organic solar cells or photodetectors. However, 
oxygen is known to be detrimental to organic devices, as the active layer is very sensitive to oxygen and photo-

oxidation. In this study, we aim to determine the impact of oxygen plasma surface treatment on the performance 
of organic photodetectors (OPD). We show a significant reduction of the sensitivity as well as a change in the 
shape of the external quantum efficiency (EQE) of the device. Using hole density and conductivity measurements, 

we demonstrate the p-doping of the active layer induced by oxygen plasma. Admittance spectroscopy shows the 
formation of trap states approximately 350 meV above the highest occupied molecular orbital of the active organic 
semiconductor layer.  Numerical simulations are carried out to understand the impact of p-doping and traps on the 

electrical characteristics and performance of the OPDs. 

1. Introduction 

Organic photodetectors (OPDs) have achieved characteristics that compete with those of amorphous silicon 

devices, and can be partially or fully processed using solution printing techniques on transparent and flexible 

substrates [1–3]. The major challenges organic devices still face include stability and processing issues, which 

need to be solved to target large-scale industrialization. The first organic photodetectors and solar cells were 

developed according to a standard structure [4], whereby electrons and holes are collected at the top and bottom 

electrodes, respectively. The electron transport layer (ETL) is typically made of a low work-function material, 

which is sensitive to oxygen and moisture [5,6]. The hole transport layer (HTL) is usually made of poly(3,4-

ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), which is known to degrade the underlying indium 

tin oxide (ITO) layer due to its acidic nature [7]. To overcome those issues, the structure has been inverted and 

PEDOT:PSS is deposited on top of the active layer [8]. 

_____________________________ 
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The main challenge of the inverted structure is the HTL processing. Water-based PEDOT:PSS presents the 

advantage of solution processing, but is incompatible with the hydrophobic properties of most organic active 

layers. To allow PEDOT:PSS deposition from solution on organic layers, additives need to be used (e.g. Surfynol 

[9]) or surface treatments need to be carried out on the active layer to change its surface tension. Among those 

treatments, O2 plasma is the most used technique [10,2], as it improves the active layer wettability by creating 

functional groups at the surface [11]. 

However, it is widely reported that oxygen is detrimental to the performances of organic devices because of 

photo-oxidation processes [12–15]. Oxygen is known to p-dope organic semiconductors, increasing their 

conductivity [16] but also introducing gap states [17–20]. Oxygen-related degradations are currently one of the 

major issues in ageing studies of organic photodetectors and solar cells [12]. It is then crucial to understand the 

impact of oxygen on the device initial performances when used as surface treatment on top of the active layer. 

The group of Baierl et al. [21] compared an inverted structure processed with O2 plasma treatment with a 

standard structure processed without treatment. In their study, they show that O2 plasma does not lead to 

performance deterioration of organic photodiodes, explaining the reduction of the EQE at 500 nm by the different 

transmission of gold and ITO. However, the EQE spectra were not fully analyzed and the current density in the 

direct regime could not be directly compared due to different injection barriers. In the present work, we process 

the same inverted structure with and without O2 plasma treatment, enabling direct evaluation of plasma impact. 

We combine electrical characterization with simulations to determine and understand the influence of the O2 

plasma. 

2. Experimental methodology 

Two devices are processed, one without and one with O2 plasma treatment. The diodes are processed on 

ITO-coated glass substrates. Polyethylenimide (PEIE) is used to reduce the ITO work function. The active layer 

consists of poly[(4,8-bis-(2-ethylhexyloxy)-benzo(1,2-b:4,5-b’)dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno 

[3,4-b]thiophene-)-2-6-diyl)] (PBDTTT-c) and phenyl-C61-butyric acid methyl ester (C60-PCBM) as donor and 

acceptor materials, respectively. This structure is detailed and characterized elsewhere [22]. Depending on the 

structure studied, an O2 plasma treatment precedes the PEDOT:PSS deposition. The surface treatment is carried 

out for 60 s with a power of 500 W, a pressure of 1.5 bar and a flow of 200 sccm. The plasma exposure time is 

chosen to offer the best wettability of the active layer [23]. The samples are covered with a metallic grid during the 

plasma treatment. The PEDOT:PSS Orgacon HIL 1005 purchased from Agfa is deposited by lamination following 

the process described by Gupta et al. [10]. PEDOT:PSS is spin-coated on an O2 plasma treated PDMS stamp. 

The plasma treatment is required to change the surface tension of the stamp from hydrophobic to hydrophilic. The 
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PDMS stamp covered with PEDOT:PSS is then left in air for 20 min drying. After bringing the PEDOT:PSS and 

active layer into contact with the active layer, the full stack is annealed at 85°C for 5 min to reverse the PDMS 

surface to hydrophobic. The PDMS stamp is carefully removed after cooling down the substrate to ambient 

temperature. The devices are encapsulated with glass in the glove box using an epoxy glue. 

The TLM devices are processed on gold-coated poly(ethylene 2,6- naphthalate) (PEN). The 30 nm thick gold 

electrodes are patterned using photolithography. An O2 plasma treatment is used to clean the surface before spin-

coating the blend layer. The same solution and deposition technique are used for the OPD and this structure. The 

appropriate surface treatment is then carried out on each layer and the devices are encapsulated in a glove box. 

Current-voltage and capacitance-voltage measurements are carried out using a Keithley 2636A source meter 

and an Agilent E4980A LCR meter respectively. The set-up used to measure the EQE spectra of OPDs is 

described elsewhere [24]. Admittance spectroscopy measurements are performed in a vacuum chamber with a 

chuck cooled down to 77 K with liquid nitrogen. A heater is used to reach the required temperature. An impedance 

analyzer Keysight E4990A is used for the admittance measurements. For this study, C(f) and G(f) characteristics 

are carried out from 20 Hz to 10 MHz with an AC signal amplitude of 10 mV and a bias of 0 V. 

3. Results and Discussion 

3.1. Impact of O2 plasma on OPD performance 

Fig. 1. (a) shows the current density vs. applied bias, J(V), for the devices (shown in inset) without and with 

O2 plasma treatment in blue and red, respectively. The current density is calculated using the active area 

measured by mapping the sensitivity of the diode as described elsewhere [22]. The O2 plasma treatment induces 

a degradation of the light current density in the reverse bias regime and therefore of the diode sensitivity from 0.3 

A/W to 0.14 A/W (at a light power of 0.3 W/m2). A reduction of the current density can be due to the addition of 

deep traps leading to Shockley Read Hall (SRH) recombination. Deep traps due to disorder or impurities lead to 

recombination centers for electrons and holes, reducing the short circuit current in a solar cell [26]. In reverse bias 

regime, the recombination through SRH mechanisms is usually neglected as all carriers can be extracted [27]. 

However, if there is band bending at one interface, a low electric field is obtained in the layer and deep traps can 

be efficient in the reverse bias regime, leading to the recombination of generated electrons and holes. We note a 

one order of magnitude increase of the injection current at +2 V in the direct regime after plasma treatment. This 

evolution can be due to oxygen p-doping increasing the free carrier density. However, the dark current density in 

the reverse bias regime is not strongly influenced by the surface treatment. 
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The external quantum efficiency (EQE) measured at -2 V is given in Fig. 1.(b) for both diodes. This figure of 

merit highlights a strong impact of the surface treatment on the OPD performance. The EQE spectra exhibit two 

peaks around 440 and 660 nm reaching values of 62 and 65%, respectively, when no surface treatment is used. 

After O2 plasma, the EQE is reduced to 30% at 440 nm and 46% at 660 nm, consistent with the degradation of 

the light current density observed in the J(V) characteristics. Measurements of the active layer absorption before 

and after O2 plasma treatment (Fig. S1. Supplementary Information) show that this treatment does not induce any 

significant change in absorption in the visible part of the spectrum. Therefore, the changes in the EQE are not due 

to modifications in the absorption performances but in the carrier extraction efficiency.  

 

 

Fig. 1. Current density in the dark and under illumination (530 nm, 0.3 W/m2) for the device without plasma 
treatment in blue and the device exposed to O2 plasma in red (a). A schematic of the OPD structure is given as 
inset. External Quantum Efficiency (EQE) at -2 V (b) for the device without plasma treatment in blue and the 
device exposed to O2 plasma in red. EQE at different biases for the device without plasma treatment (c) and the 
device exposed to O2 plasma (d). 
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EQE measurements are carried out at different biases (0, -2 and -5 V) for both devices as shown in Fig. 1. (c) 

and (d). An increase in EQE with applied bias is observed for the device processed without plasma treatment and 

its shape remains independent of the electric field in the layer. The device exposed to O2 plasma exhibits an EQE 

increase with applied bias as well but the electric field has an impact on the shape of the EQE, with the 660 nm 

peak undergoing a more pronounced increase than the 440 nm peak. This electric field dependence can be 

explained by charged traps in the bandgap, leading to band bending at one interface with the formation of a 

depletion zone. This hypothesis has already been developed by Wang et al. [25] with the active layer n-type 

doping induced by poly(ethyleneimine) (PEI), which is used to tune the cathode work-function. 

To identify a potential p-doping of the active layer upon oxygen exposure, we carried out capacitance 

measurements to extract the hole density through a Mott-Schottky analysis. For a homogeneous doping density in 

the layer, the hole density p can be calculated using the following relation [28]: 

        (1) 

where  is the elementary charge,  the vacuum permittivity,  the relative permittivity of the blend and  the active 

area of the diode. A relative permittivity of  is extracted from C(V) measurements performed at 100 Hz in the 

reverse bias regime, when the whole layer is depleted and the geometric capacitance is reached. Knowing the 

diode area and the relative permittivity, the hole density is extracted for both types of devices. Fig. 2. (a) and (b) 

shows the Mott-Schottky plots for the devices processed without and with O2 plasma, respectively. When no 

surface treatment is used, a hole density of  is extracted around 0 V. Below -1 V, the Mott-Schottky plot saturates 

as the depletion width reaches the active layer thickness. However, Kirchartz et al. [29] have highlighted the limits 

of the Mott-Schottky extraction technique at low doping densities due to a violation of the depletion approximation. 

For a diode with a Schottky contact and a layer thickness around 300 nm, the Mott-Schottky technique is not 

appropriate for hole densities below . In our case of a 500 nm thick active layer, the density limit would be of the 

same order of magnitude. Therefore, it is difficult to conclude whether the extracted value of  is reliable. The Mott-

Schottky plot for the device exposed to O2 plasma does not exhibit a linear regime suggesting that the doping 

concentration is not homogeneous in the layer. The hole density is then extracted at different bias ranges, leading 

to values around . The doping profile is reconstructed using the generalized Mott-Schottky law and is shown in 

Fig. S2. (Supplementary Information). Therefore we can conclude that an O2 plasma treatment on the active layer 

before PEDOT:PSS deposition increases the hole density by at least one order of magnitude. Moreover, the 

!  5



depletion width follows a square root evolution with the applied bias (Fig. S3., Supplementary Information), as 

expected for the formation of a depletion zone at the interface [30]. 

 

Fig. 2. Mott-Schottky plots obtained from C(V) measurements performed at 100 Hz for the device without plasma 
treatment (a) and the device exposed to O2 plasma (b). 

Electrical characterizations on photodetectors processed with and without O2 plasma on the active layer 

highlight the impact of the surface treatment. The observed degradation can be explained by the formation of an 

acceptor state below the Fermi level in the bandgap. If the state is deep enough, it can lead to carrier 

recombination. If the acceptor state is filled with electrons, it induces doping and charged states leading to band 

bending and electric field dependency of the EQE. Finally, doping can explain the injection current increase in the 

direct regime. The following section is devoted to more detailed characterizations of p-doping and trap creation 

and their impacts on the OPD performance. 

3.2.Conductivity and trap characterizations 

To confirm the p-doping ability of the O2 plasma treatment on the active layer, we use the transmission line 

method (TLM) to follow the evolution of the hole conductivity  with plasma exposure time. A doping concentration 

increase should indeed induce a conductivity increase as both quantities are linked by  where  is the hole mobility 

[30]. Moreover, the structure depicted in Fig. 3. enables us to determine whether the O2 plasma treatment is 

limited to the active layer surface or if the oxygen diffuses to the bulk of the layer. The contact resistance  and 

channel resistance  extracted from I(V) measurements for different channel lengths L and widths W (see Fig. S4. 

(a), (b) and (c), Supplementary Information) are given in Table 1. Three different treatment conditions are 

analyzed: without O2 plasma, with a 60 s and with a 300 s treatment. The conductivity  is related to the series 

resistance  according to  with  the thickness of the electrodes (assuming that charge transport is mainly localized 
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at the bottom interface). The conductivities for each treatment condition are summarized in Table 1. A blend 

exposed for 60 s to the O2 plasma undergoes a conductivity increase by one order of magnitude. Increasing the 

exposure time to 300 s enhances the hole conductivity by an additional order of magnitude, reaching around  at 

the bottom part of the layer. Since oxygen needs to diffuse over 470 nm to reach the TLM channel area, this 

analysis demonstrates that O2 plasma affects the bulk as well as the surface. Moreover, the contact resistance 

decreases by two orders of magnitude after a 300 s of plasma exposure time, which is consistent with p-doping of 

the active layer, leading to the effective injection barrier lowering at the electrode/blend interface [31]. 

 

Fig. 3. Cross-section of the TLM structure showing the active layer and gold electrodes thicknesses. The variable 
channel length L and the surface exposed to the O2 plasma treatment are also indicated. 

Table 1 Contact resistance, series resistance and conductivity extracted from TLM measurements for three 
different plasma treatment exposure times. 

The evolution of EQE and light current density can be related to the formation of trap states in the bandgap 

after O2 plasma treatment. This assumption is strengthened by the work of Knipp et al., which suggests the 

formation of an acceptor trap state 290 meV above the highest occupied molecular orbital (HOMO) of the organic 

semiconductor (pentacene in their case) when exposed to oxygen [17]. Moreover, trap states 53 and 100 meV 

above the blend HOMO have been measured for poly(3-hexylthiophene) (P3HT) with (6,6)-phenyl C61-butyric 

acid methyl ester (C61PCBM) exposed to oxygen [32]. To probe the existence of trap states in the blend with and 

without O2 plasma treatment, we use admittance spectroscopy. The technique consists in analyzing the 

capacitance C and conductance G as a function of frequency at different temperatures (from 200 to 300 K in this 

study). Defects in the bandgap impact both conductance and capacitance due to the response (trapping/de-
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trapping) of charges to the oscillating signal. Typically, a step in the C vs. ω and a peak in the G/ω vs. ω curves 

are observed at transition frequency . These features are temperature dependent and enable the extraction of 

parameters related to the traps. The activation energy  of a trap can be extracted according to the following 

Arrhenius law [33]: 

              (2) 

with  the attempt-to-escape frequency,  the Boltzmann constant and  the temperature. 

To facilitate the extraction of the transition frequency , we plot  with respect to the angular frequency  with  the 

DC conductance value, evaluated here at the lowest measured frequency (20 Hz). When trap states are probed 

by admittance spectroscopy, a peak appears in conductance spectra. The position of the peak depends on the 

activation energy and capture cross-section of the energy level. Frequency dependent conductance spectra are 

shown in Fig. 4. (a) and (b) without and with O2 plasma treatment, respectively. To extract the activation energy  

using relation (2), we plot  given by the position of the peak with respect to the inverse thermal energy . Fig. 4. (c) 

shows the Arrhenius plot for the OPD that was not exposed to O2 plasma. The peak becomes visible only for 

temperatures higher than 280 K. An activation energy of approximately 290 meV is obtained, although the limited 

amount of data points makes it difficult to extract properly the parameters associated with the energy level. When 

exposed to O2 plasma, the OPD exhibits sharp peaks and transition frequencies can be extracted from 240 to 300 

K. The fitting of the Arrhenius plot in Fig. 4. (d) leads to an activation energy around 350 meV. The peak 

corresponding to the activation energy of 290 meV is no longer observed. The peak related to this trap state might 

be hidden below the large peak corresponding to the trap at 350 meV. 
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Fig. 4.  versus angular frequency  as a function of temperature at 0 V for the device without plasma (a) and with 
O2 plasma exposure (b). Arrhenius plot derived from the admittance spectroscopy measurements on the samples 
without plasma (c) and with O2 plasma exposure (d). The activation energies are extracted with a linear fit. 

To determine whether the extracted activation energies are given with respect to the blend HOMO or lowest 

unoccupied molecular orbital (LUMO), we need to consider the electrodes work functions. A defect in the 

semiconductor bandgap is probed by admittance spectroscopy when the trap level is crossed by the Fermi level 

at equilibrium or by the quasi-Fermi levels when a bias is applied. In a diode structure, the quasi-Fermi levels are 

necessarily situated between the cathode and the anode work functions. As a consequence, states below the 

anode or above the cathode quasi-Fermi levels cannot be probed by this technique [34]. In that regard, The ITO/

PEIE and PEDOT:PSS work functions are measured by Kelvin probe at 4.2 and 4.9 eV, respectively. The 

schematic in Fig. 5. illustrates the energy windows of the blend band gap that are presumably not probed by 

admittance spectroscopy (hatched area). Since the measured activation energies are both lower than the 

difference between the cathode work function and the LUMO of the blend, we can conclude that those energies 

are necessarily given with respect to the blend HOMO. A schematic of the energy level diagram with the 

corresponding trap state is given as inset in Fig. 4. (c) and (d). 
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Fig. 5. Band diagram of the OPD showing the bandgap areas that cannot be probed by admittance spectroscopy 
(hatched area). The activation energies of 290 and 350 meV are illustrated with black and red arrows respectively 
from the blend HOMO and from the blend LUMO. 

The concentration of traps  can be calculated from the amplitude of the conductance peak at the transition 

frequency  according to the relations  and  with  the capacitance associated to the trap (trapped charges) and  the 

variation of the depletion width with the oscillating signal [35]. When no plasma is used to deposit PEDOT:PSS, a 

density of  is calculated for the trap level situated approximately 290 meV above the blend HOMO. For the device 

exposed to O2 plasma, a trap concentration of  is obtained for the level situated 350 meV above the blend HOMO. 

Admittance spectroscopy measurements are limited by the amount of carriers available to be trapped and 

detrapped. Since the  values and carrier densities extracted from capacitance measurements (section 3.1) are 

close, the extracted values of  might be underestimated. 

Electrical characterizations carried out on devices processed with and without O2 plasma treatment led to the 

hypothesis that O2 plasma results in the p-doping of the active layer through oxygen diffusion in the bulk with the 

formation of an acceptor state situated below the Fermi level. We strengthened this hypothesis by further 

highlighting the blend p-doping in the bulk and the formation of a trap state 350 meV above the blend HOMO after 

plasma treatment. Supported by several studies presented in the literature [17,32,36], we suggest that the states 

observed by admittance spectroscopy are acceptor traps responsible for p-doping. This assumption will be further 

developed using TCAD simulations in the following section. 

3.3.Device simulations 

Numerical simulations were carried out using the commercial tools available in Silvaco environment. We 

performed finite element simulations using TCAD (Technology Computer Aided Design) in the software ATLAS 

enabling electro-optical simulations of our devices. All parameters used in the simulation are summarized in the 

Supplementary Information, Table S5. 
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As a first step, J(V) and EQE characteristics of the device processed without plasma treatment are used to 

optimize the fitting parameters  and , conduction and valence density of states. In order to fit properly the light 

current density and EQE values, mid-gap states must be added to the structure. These effective traps account for 

charge carrier recombination centers that cannot be probed by admittance spectroscopy under the temperature/

frequency range of our experiments (deeper states are observed at higher temperatures or lower frequencies in 

admittance spectroscopy). The energy level identified 290 meV above the blend HOMO through admittance 

spectroscopy measurements is added to the structure and leads to a good fit of the J(V) characteristics only if it is 

considered as donor state as acceptor states lead to an injection current too high in the direct regime. Fig. 6. (a) 

and (b) exhibits the J(V) and EQE characteristics of the device processed without plasma treatment with the best 

fits obtained for donor states situated 290 meV above the blend HOMO and mid-gap states. 
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Figure 6. Current density in the dark and under illumination (530 nm, 0.3 W/m2) (a) and EQE at 0, -2 and -5 V (b) 
for the device without plasma treatment. The simulations obtained with a donor trap level situated 290 meV above 
the blend HOMO are added to the graphs. Current density in the dark and under illumination (530 nm, 0.3 W/m2) 
(c) and EQE at 0, -2 and -5 V (d) for the device processed with O2 plasma treatment. The simulations obtained for 
the diode with plasma treatment are added to the graphs. 

All parameters defined above remain unchanged for the simulation of the device processed with O2 plasma 

treatment as the trap state situated 290 meV above the blend HOMO is considered intrinsic to the polymer. To fit 

the J(V) and EQE characteristics of this device, we add an additional energy level situated 350 meV above the 

blend HOMO, as measured by admittance spectroscopy. Two possibilities must be considered: the trap states are 

acceptor levels leading to p-doping or they correspond to defects induced donor levels accompanied by additional 

acceptor states. Acceptor states that would be situated too close to the blend HOMO cannot be probed by 

admittance spectroscopy in our experimental conditions (they should respond at higher frequencies or lower 

temperatures, but the signal is too weak <200K). To take these potential energy levels into account in the 

simulation, we define a hole density  corresponding to the quantity obtained by Mott-Schottky analysis. Both 

hypotheses lead to the exact same fits. Therefore, only one simulation is shown in Fig. 6. (c) and (d) along with 

the J(V) and EQE measurements for the device processed with O2 plasma treatment. A good fit is obtained for an 

acceptor trap density or hole density of , consistent with experimental results ( in Fig. 2. And ). Although TCAD 

simulations cannot be used to distinguish between both hypotheses, it confirms that O2 plasma treatment 

necessarily induce the active layer p-doping. 

In order to better understand the impact of unintentional p-doping on the OPD electrical characteristics, we 

have simulated the band diagrams for both devices at -2 V. Fig. 7. (a) exhibits the band diagram corresponding to 

the diode processed without plasma treatment. A constant electric field can be observed in the active layer of this 
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structure. When the blend is exposed to the O2 plasma, a strong band bending is created at the cathode interface 

as shown in Fig. 7. (b). 

To understand the impact of a potential band bending on the EQE evolution, we need to consider the 

absorption length in the active layer at different wavelengths. The absorption length  corresponds to the depth of 

the layer required to absorb 63% of the incident flux and is defined by  where  corresponds to the wavelength of 

the incident photons and  to the wavelength dependent extinction coefficient of the thin film. The active layer 

refractive index  and extinction coefficient  have been calculated from absorption measurements using the 

OptiChar module from OptiLayer Thin Film Software. The corresponding active layer absorption length with 

respect of the incident photons wavelength is given in Supplementary Information, Fig. S6. The absorption length 

varies between 80 and 360 nm depending on the incident wavelength. For low absorption lengths, the excitons 

are created in the high field area leading to an efficient dissociation and collection of charges. However, if the 

absorption length exceeds the depletion zone and reaches the flat band region, the probability of exciton 

recombination increases. 

  

Figure 7. Band diagrams of the photodetectors without (a) and with (b) O2 plasma treatment simulated at -2 V. 
The diagrams show the electrode work function, the active layer HOMO and LUMO (black solid line), the 
electrons and holes quasi-Fermi levels (dotted line) and the trap states. The trap level in black corresponds to the 
donor level situated 290 meV above the blend HOMO and the trap level in blue corresponds either to the acceptor 
level situated 350 meV above the blend HOMO or to the donor level at the same position with an additional hole 
density. The absorption length of 250 and 145 nm are illustrated with green and red arrows respectively. 
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The EQE spectra exhibit two peaks around 440 and 660 nm. The absorption lengths corresponding to these 

wavelengths are 250 and 145 nm respectively and are illustrated by green and red arrows on the band diagrams 

in Fig. 7. This schematic highlights the influence of the absorption length in a non-uniform electric field. The band 

bending at -2 V for the OPD processed with O2 plasma extends over 140 nm below the ITO/PEIE electrode. With 

an absorption length of 145 nm at an incident wavelength of 660 nm, most of the light intensity is absorbed in the 

region of high electric field. The resulting collection of charges is efficient. However, for an incident wavelength of 

440 nm, the absorption length of 250 nm is larger than the space charge region. The excitons generated by the 

photons reaching the flat band area have a higher probability to recombine leading to a low collection efficiency. 

The formation of a band bending therefore explains the modification of the EQE shape after plasma treatment. 

4. Conclusion 

In this work, we determine the impact of the widely used O2 plasma treatment on the performance of an OPD 

device. Taking advantage of the lamination process adapted to PEDOT:PSS deposition [10], we compare the 

same structure processed with and without plasma treatment. Electrical characterizations highlight that the light 

sensitivity and EQE decrease while the injection current increases upon the O2 plasma treatment. Moreover, we 

observe a change in the shape of the EQE spectra. The formation of acceptor states situated below the Fermi 

level could explain all the evolutions observed in the electrical characteristics. The increase in hole density and 

conductivity in the bulk confirm the p-doping effect of the O2 plasma treatment through oxygen diffusion in the 

active layer. Using admittance spectroscopy, we identify the formation of a trap state situated approximately 350 

meV above the blend HOMO after plasma treatment. However, whether this energy level is a disorder-induced 

donor state or the acceptor state responsible for p-doping is still unclear. Device simulations successfully 

reproduce J(V) and EQE characteristics for both diodes, strengthening the role of oxygen p-doping during plasma 

treatment. The simulated band diagrams allow us to understand the evolution of the EQE shape. The p-doping 

causes a strong band bending at the interface with ITO/PEIE and a low electric field closer to the PEDOT:PSS 

electrode. This band bending leads to an absorption length dependent photocurrent explaining a change in the 

shape of the EQE spectra. The study shows that the O2 plasma surface treatment is detrimental to OPD 

performances. Unintentional oxygen doping must be avoided and intentional molecular doping needs to offer a 

limited tendency to diffuse. 
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SUPPLEMENTARY INFORMATION 

!  
Fig. S1. Absorption spectra for PBDTTT-c:C60-PCBM blend before (blue) and after (red) an O2 plasma treatment 
of 60s. 

"  
Fig. S2. Hole density profile in the active layer for the diode exposed to O2 plasma. 
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!  
Fig. S3. Evolution of the depletion width w with the applied bias for the device processed with the O2 plasma 
treatment. A fit following a square root law with the applied bias is given in red. 

      

! !  

!  
Fig. S4. Extraction of the contact and series resistances with respect to L/W ratio without plasma treatment (a), 
with a 60 s (b) and with a 300 s (c) O2 plasma exposure time. 

!  20



Table S5. Parameters used in the OPD simulation in Silvaco environment for both structures. 

I(V) and EQE characteristics of the device processed without oxygen plasma treatment are used to optimize 

the density of states  and have a strong influence on the injected current density at low positive bias. Considering 

equivalent density of states in the HOMO and LUMO, a value of  has been chosen. This value is close to the 

usual density of states around  determined for organic semiconductors [38]. 

As we did not extract the electron and hole capture cross-sections of the trap states, these values are 

estimated with respect to the trap density by fitting the data. Moreover, the admittance spectroscopy does not lead 

to a good accuracy on the trap densities. As none of these variables are measured, we need to fix one of them to 

fit the second one. Therefore, there are multiple associations of capture cross-section and densities that could be 

suitable for the fitting. As a result, we cannot analyze the trap densities obtain by fitting the I(V) and EQE 

characteristics directly. 

Parameter No plasma With O2 plasma Source

Blend thickness Contact profilometer

ITO/PEIE work-function Kelvin probe

Blend electron affinity Value from supplier 
(Sigma Aldrich)

Electrical bandgap Calculated from HOMO 
measured by UPS

PEDOT:PSS work-function Kelvin probe

Relative permittivity C(V) measurements

Electron mobility From literature [37]

Hole mobility From literature [37]

Density of states  and Fitting parameter

Density of mid-gap states Fitting parameter

Capture cross-section of mid-gap 
states ()

Fitting parameter

Density of donor states 290 meV 
above the HOMO

Fitting parameter

Capture cross-section of the 290 
meV trap

Fitting parameter

Density of acceptor or donor 
states 350 meV above the HOMO

Fitting parameter

Capture cross-section of 350 meV 
trap

Fitting parameter

Hole density if donor states Fitting parameter
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Fig. S6. Absorption length of PBDTTT-c:C60-PCBM thin film with respect to the wavelength of the incident 
photons. 
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