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Databases and Artificial Intelligence

Nicole Bidoit, Patrick Bosc, Laurence Cholvy, Olivier Pivert
and Marie-Christine Rousset

Abstract This chapter presents some noteworthy works which show the links1

between Databases and Artificial Intelligence. More precisely, after an introduc-2

tion, Sect. 2 presents the seminal work on “logic and databases” which opened a3

wide research field at the intersection of databases and artificial intelligence. The4

main results concern the use of logic for database modeling. Then, in Sect. 3, we5

present different problems raised by integrity constraints and the way logic con-6

tributed to formalizing and solving them. In Sect. 4, we sum up some works related7

to queries with preferences. Section 5 finally focuses on the problematic of database8

integration.9

1 Introduction10

Research in databases and artificial intelligence have been maintaining close relations11

for more than thirty years. “Logic and databases” was the first scientific field at12

the intersection of databases and artificial intelligence (Gallaire and Minker 1987;13

Gallaire et al. 1981; Reiter 1983; Gallaire et al. 1983, 1984). Its aim was to formalize14
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2 N. Bidoit et al.

in logic some of the problems raised by databases. This approach has first met some15

difficulties in a community which did not clearly distinguish basic concepts used16

in databases from technological considerations. But its interest has gradually been17

truly appreciated. This research first focused on relational databases, then considered18

more complex information like incomplete information, deduction rules, dynamic19

integrity constraints, fuzzy information, legal information etc. This research also20

addressed new functionalities of databases like for instance, querying distributed21

databases, cooperative answers generation, preference-based queries answering or22

studying confidentiality of information.23

Logic is one of the most useful formalisms in this area: first order logic, possibilis-24

tic logic (Dubois and Prade 2004), temporal logic, (de Amo and Bidoit 1993, 1995),25

epistemic logic (Reiter 1988; Demolombe and Jones 1996), deontic logic (Cuppens26

and Demolombe 1996; Carmo et al. 1997), situation calculus (Reiter 1993), descrip-27

tion logic (Baader et al. 2003). But some other formalisms are also used, like for28

instance, fuzzy sets (Zadeh 1965) or CP-nets (Brafman and Domshlak 2004).29

An exhaustive description of all the contributions at the intersection of databases30

and the artificial intelligence goes beyond the scope of this chapter. We will only31

address some of them. Section 2 sums up the seminal work of the “Logic and32

database” area which opened a wide research field at the intersection of databases and33

artificial intelligence. Section 3 deals with dynamic integrity constraints. Section 434

considers preference-based queries. Finally, Sect. 5 addresses the problem of database35

integration.36

2 Modeling Relational Databases with Logic37

2.1 Seminal Work38

Reiter (1983) has been one of the first to promote the use of logic in the databases.39

His work aimed at using first order logic to model relational databases and describe40

their functionalities: complex information modeling, expressing queries and query41

evaluation, database updating... The use of logic has been motivated by the fact that42

this formal tool allows one to express sentences (formulas) and to reason based on43

these sentences. Reiter and his colleagues have shown that these two aspects exist in44

databases: one need to express information (data, constraints) and reason with them45

(queries must be answered, constraints must be checked...) Reiter has shown that46

modeling databases with logic can be done according to two different approaches:47

according to the model theory approach, a database instance is an interpretation of48

a particular first order language; according to the proof theory approach, a database49

instance is a set of first order formulas. In the following, we define a relational50

database with respect to the model theory approach.51
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Databases and Artificial Intelligence 3

Definition 1 A relational database is a triplet (L , I, I C) so that:52

• L is a first order language corresponding to the database schema. It is defined as53

follows:54

– Any attribute value of the database is represented by a constant symbol of L .55

To simplify, the same symbol is used.56

– Any attribute domain T of the database is represented by an unary predicate57

symbol T , called type.58

– Any n-ary relation schema R of the database is modeled by a n-ary predicate59

symbol R.60

– The binary predicate for equality = is introduced.61

• I = (DI , i) is an interpretation of the language L corresponding to a state or an62

instance of the database. Its domain DI and its interpretation function i are defined63

as follows:64

– DI is isomorphic to the set of constant symbols of L . It is thus isomorphic to65

the set of attribute values of the database.66

– i(=) = {(a, a) : a ∈ DI }. I.e., the predicate = is interpreted by the diagonal of67

D2
I .68

– Any type T is interpreted by the subset of DI which contains the constants69

associated with the values of the attribute domain T .70

– Any n-ary predicate R which represents a n-ary relation schema is interpreted71

by a set of elements of Dn
I corresponding to the tuples of the instance of the72

relation R in the database state.73

• I C is a set of formulas of L called integrity constraints. They are defined by:74

– Any constraint on the states of the database (primary key, functional or inclusion75

dependency, ?) is represented by a formula in I C .76

– The formula ∀x T (x) ↔ (x = a1
i ) ∨ ... ∨ (x = an

i ) belongs to I C , for any77

attribute domain T = {a1...an}.78

– The formula ∀x1...∀xn R(x1, ..., xn) → T1(x1) ∧ ... ∧ Tn(xn) belongs to I C for79

any n-ary relation schema R whose attribute domains are T1, ..., Tn .80

One will notice that, because of the simplification on the choice of the constants81

and their interpretation, the interpretation I is indeed, an Herbrand interpretation.82

Definition 2 The database (R, I, I C) is consistent iff |=I I C . I.e., the interpretation83

I satisfies I C or equivalently, I is a model of I C .84

In these works, the only integrity constraints which can be modeled are those that85

can be expressed in first order logic. In Sect. 3, we will come back to the notion of86

integrity constraint. We will see that there are some other kinds of integrity con-87

straints, called dynamic integrity constraints, whose expression needs the use of88

temporal logic.89
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4 N. Bidoit et al.

As for database querying, logic has proved to be useful for query simplification,90

query equivalence etc. These results were provided for queries expressed in relational91

algebra which is one of the most popular language in databases. These results are92

based on the fact that any algebraic query can be reformulated as a first order formula93

as it is shown in the following:94

95

Let DB be a relational database, Q be a query expressed in relational algebra96

and answer(Q, DB) be the answer of Q when evaluated over DB. Let (R, I, I C)97

be the logical representation of DB. Then, there is a formula of L associated with98

Q, denoted t (Q, x1, ...xn) and whose free variables are x1...xn, such that: answer99

(Q, DB) = {< d1...dn >∈ Dn
I : |=I Q(d1...dn)}.1100

101

For instance, consider two binary relations Employee(e : Person; d :102

Department) and Phone(e : Person; n : num). The first one relates employees to103

the departments they belong to, and the second one associates employees to their tele-104

phone numbers. Consider the algebraic query Q:
∏

n σd=C S (Employee(e, d) ��105

Phone(e, n)). It aims at retrieving the telephone numbers of the employees who106

belong to the computer-science department. Its translation in logic is: t (Q, x) =107

∃y(Employee(y, C S) ∧ Phone(y, x)).108

But, if any algebraic query can be reformulated as a logical formula, the109

reverse is not true. More precisely, it has been shown that some logical formulas110

do not correspond to any algebraic query. This is the case of the disjunction f111

Employee(x, computer) ∨ Employee(Sally, y) which aims to find the pairs of112

individuals (e, d) so that e is an employee of the computer science department and113

then d can be anything or conversely, d is the department Sally belongs to and e114

can be anything. Expressing such a formula in relational algebra is impossible. Note115

that the “answer” {< e, d > : |=I f } may be an infinite set of pairs. Thus, the116

language of first order logic is, in some sense, more powerful than the relational117

algebra for expressing database queries. In the next section, we will see that it is118

even too powerful for expressing queries since it allows one to express queries which119

have no meaning in the context of information and databases modeling.120

Let us come back to the consequences of the previous property. Since a relational121

database can be expressed in logic and any algebraic query can be expressed as122

a logical formula, some of the problems raised in the database context can be123

studied and solved in logic. For instance, showing that two algebraic queries Q and124

Q′ are equivalent (i.e., they provide identical answers in any coherent database state)125

comes down to showing that I C |= t (Q, x1...xn) ↔ t (Q′, x1...xn) i.e., showing that126

t (Q, x1...xn) ↔ t (Q′, x1...xn) is a logical consequence of I C . In the same way,127

showing that the answer of an algebraic query Q is always empty comes down to128

showing that the set of formulas I C ∪ t (Q, x1...xn) is inconsistent. This has been129

used in the domain of cooperative answering.130

1Remember that by convention, we take the same symbol to represent a constant and the individual
which interprets it.
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Databases and Artificial Intelligence 5

2.2 Domain-Independent Formulas131

The previous section emphasized the fact that the language of first order logic132

can be used in the context of databases to model information, queries and integrity133

constraints. However, some logical formulas do not have a clear meaning and134

thus must be discarded. For instance, the formula Employee(x, computer) ∨135

Employee(Sally, y) already discussed above, or the formula ∀x∃y Phone(x, y)136

are problematic, even if they are well-formed formulas. Indeed, the last formula137

means that the property of having a telephone number is universal and thus has no138

meaning since every individual satisfies it. In a database which manages employee139

identifiers, department identifiers, etc.... expressing such a formula as an integrity140

constraint is considered as a conceptual error. It would imply that any object, even141

a telephone number, has got a telephone number, which is a nonsense. Indeed,142

what is meant is “any employee has got a telephone number” which is written143

∀x∃y(Employe(x) → Phone(x, y)). Now, the property of having a telephone num-144

ber is restricted to employees.145

Another example of a frequent error consists in modeling the query “who does not146

belong to the CS department ?” by the formula ¬Department (x, C S). In a database147

which manages employee identifiers, department identifiers, etc.... the answer will148

necessarily contain all the telephone numbers, department identifiers etc. which obvi-149

ously do not belong to the CS department. In fact, what is meant by this query is150

“who are the employees not belonging to the CS department ?” and must be modeled151

by Employee(x) ∧ ¬Department (x, C S).152

The only formulas modeling queries for database processing are the domain-153

independent formulas (Kuhns 1967). The formulas which have been pointed out154

above are not domain-independent. The valuation of domain-independent formulas155

remains the same when one changes the interpretation domain without modifying156

the interpretation of predicates. Domain-independent formulas are defined by:157

Definition 3 (Domain-independent formulas) The formula F(x1, ..., xn) is domain-158

independent iff for any pair of interpretations I =< DI , i > and I ∗ =< DI ∪159

{∗}, i > where I ∗ differs from I by one domain element ∗, we have:160

{< d1, ..., dn >∈ Dn
I :|=I F(d1, ..., dn)} = {< d1, ..., dn >∈ Dn

I ∗ :|=I ∗ F(d1, ..., dn)}.

161 Although domain-independent formulas characterize logic formulas meaningful162

as database queries, the class of domain-independent formulas turns out not to be163

decidable. Thus, there is no algorithm which proves that any formula, modeling an164

integrity constraint or a query, is domain-independent. Studies have been carried out165

in order to find decidable subsets of domain-independent formulas. Among them,166

one finds the class of evaluable formulas (Demolombe 1992), the class of range167

restricted formulas (Nicolas 1982) or the class of Safe formulas (Ullman 1980).168

Let us mention here a different approach to solve the same issue and according to169

which formulas expressing semantic integrity constraints or queries are not restricted.170
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6 N. Bidoit et al.

This approach rather modifies the semantic of the language so that the valuation171

domain is restricted to active domains i.e, the set of individuals which have an occur-172

rence in the interpretation of one predicate or in the formula expressing the query or173

integrity constraint. For instance, consider two predicates R (binary), S (unary) and174

the interpretation I =< DI , i > shown below, supposing that DI ={a1, a2, ..., b1, ...}175

is infinite:176

R
a1 b1

a2 a2

S
a3

a2

177

The active domain adom(I ) of I is the finite set {a1, a2, a3, b1}. The first order178

formula ¬S(x) is not a domain-independent formula as shown previously but the179

number of valuations ν(x)∈ adom(I ) such that |=ν ¬S(x) is finite. It is {a1, b1} which180

is the answer to the query ¬S(x) over I according to the active domain semantics.181

Among the strongest results in the theory of query languages, recalled in (Abite-182

boul et al. 1995), are those showing the equivalence between the four following183

languages:184

• first order logic restricted to domain-independent formulas185

• first order logic restricted to Range-restricted formulas186

• first order logic whose semantic is restricted to active domain187

• relational algebra.188

These equivalences strengthen each solution provided to the initial problem and189

allows the use of any of them without loosing generality. For instance, using the190

“active domain” approach in database is quite common for simplicity reasons.191

Finally, let us notice that even if these results are quite old, they remain of inter-192

est inn the context of information modeling and its validation. This issue arises in193

database and in artificial intelligence and can be captured by: how can we be sure194

that the formula intending to model a given piece of information, really represents it195

? Identifying that the formula written to express some property is domain-dependent196

proves an conceptual error although, writing a domain-independent formula does not197

eliminate any modeling error.198

3 Integrity Constraints199

The relational model like most database models2 is quite poor from a semantic point200

of view. It allows one to specify tables (relations) whose cells contain elementary201

values. The number of columns of the table and the values allowed in each column202

are part of the table specification. However, table description through the relational203

model, is unable to exclude specific value combination, neither does it enables the204

inverse that is to enforce conditioned value occurrence. In general, the relational205

2The relational model has been chosen in the introduction but models such as non normalized,
complex value data and semi-structured models are concerned as well.
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Databases and Artificial Intelligence 7

model does not allow to capture complex properties nor general laws that data should206

verify in order to conform to the real world applications.207

The relational model, like other data models, is enriched with mechanism allow-208

ing to complement the data structure specification of tables with properties related209

to the application domain. These properties which are metadata are called integrity210

constraints. Integrity constraints acquisition and management (maintenance) are fun-211

damental in several respects: (1) as mentioned above, the key objective is to ensure212

data reliability that is their compliance with the application domain, (2) like typing213

in programming languages, integrity constraints have a powerful leverage effect for214

query and update optimization at the logical and physical level; constraints serve to215

model data and to efficiently manage data up to avoiding the evaluation of a query;216

for instance, based on the declared integrity constraints, one may statically identify217

that a query answer is empty.218

Application evolution, from relational database to XML data systems, comes with219

the increased need to develop techniques ensuring data reliability and highly efficient220

management.221

This section does not aim to address integrity constraint system features exhaus-222

tively (Abiteboul et al. 1995; Bidoit and Collet 2001), and even less to cover com-223

mercial systems. Our goal is to review some of the problems related to integrity224

constraints illustrating the link between database and artificial intelligence. The first225

part focuses on elementary notions and more specifically on first order logic formal-226

ization of integrity constraints. The second part is dedicated to dynamic integrity227

constraints and temporal logic.228

3.1 Integrity Constraints and First Order Logic229

We postpone for now the discussion on constraint types and focus on static integrity230

constraints. A static integrity constraint is a property, no matter how complex, which231

can be checked by a simple test on the database current state. For instance, the232

property stating that an employee is assigned to only one department, is a static233

constraint.234

Classically, a constraint is specified by a closed first order formula. Why? Besides235

the relative simplicity that first order logic provides for expressing properties, most236

problems related to integrity constraints are directly translated in logical terms allow-237

ing one to reuse existing formal results and tools as well as to develop new ones. Here238

follows a broad overview of the most known and common problems (see (Abiteboul239

et al. 1995; Bidoit and Collet 2001) for an extensive presentation and bibliography).240

Entailment. Integrity constraints are metadata. It is fundamental, for instance, in241

order to validate the database schema, to be able to answer the following question:242

given a set of integrity constraints C , is there any other constraint which are enforced243

by C ? and what are these constraints? This decision problem is well-known as244

the entailment problem in first order logic. The entailment, denoted C |= c, checks245

420055_1_En_3_Chapter � TYPESET DISK LE � CP Disp.:25/4/2019 Pages: 26 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

8 N. Bidoit et al.

whether a formula c is true as soon as the set of formulas C satisfied. From a246

purely syntactic point of view, the problem comes to exhibit an inference system247

(axiomatization) used, when appropriate, to build a proof of c from the formulas in248

C . Algorithmic and complexity issues of integrity constraint entailment have been249

investigated for specific classes of constraints called dependencies. The best known250

axiomatization is that of Armstrong for functional dependencies (Armstrong 1974).251

The frontier between logic and databases is drawn by the entailment complexity.252

Considering sub-classes of constraints such as acyclic, unary or tuple generating253

dependencies has been motivated by their good complexity properties as well as254

their relevance from the application point of view.255

Coherence. Once constraints dedicated to a specific application domain have been256

specified, it is unavoidable to check consistency and to answer the following ques-257

tion: do data exist that satisfy these constraints? This problem is strongly related to258

satisfiability of a set of formulas which is known as undecidable. However satisfia-259

bility and consistency slightly differ: a set of formulas is satisfiable as soon as one260

model exists, even if this model is empty while a set of formulas is coherent if a non261

empty model exists for this set.262

Semantic Optimization. Query optimization is a critical issue and traditionally its263

investigation combines two approaches. On the one hand, physical optimization264

makes use of the physical database schema (access paths like indexes) to generate265

efficient query execution code: integrity constraints like keys and foreign keys entail266

database index creation which foster query compilation. On the other hand, semantic267

query optimization takes place at an earlier stage by metadata based rewriting.3268

In extreme case, semantic optimization replaces query evaluation and produces the269

query answer avoiding data access. Example: the query extracting people having two270

partners while a constraint tells that every body has at most one partner.271

Technics such as chase (Maier et al. 1979) for semantic optimization are among272

the most elegant ones. Formalizing both queries and constraints in first order logic273

allows one to use partial subsumption to “simplify” queries. Description logics have274

greatly contributed to semantic query optimization (Chakravarthy et al. 1990).275

Description logics have extensively been used and contributed to semantic opti-276

mization (Hacid and Rigotti 1995; Bergamaschi et al. 1997; Calvanese et al. 1998;277

Beneventano et al. 2003) for their ability to provide a unique framework to express278

schemas, integrity constraints and queries.279

Although it is impossible here to review all issues related to integrity constraints280

and leading to cross fertilization between artificial intelligence and databases, we281

ought to have a short discussion about integrity constraint maintenance methods.282

Integrity constraint maintenance. Integrity constraints allow one to control the283

database evolution and thus checking database consistency arise essentially upon284

updates. But, when exactly? Choosing when constraint checking is activated leads285

to different classes of methods. The post update methods control and, if necessary,286

3Functional dependencies help in a significant way the optimization of data sorting which arises
when evaluating SQL group by, order by and distinct command (Simmen et al. 1996).
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Databases and Artificial Intelligence 9

handle integrity violation through cancellation, repair or adaptation, after update287

execution: the efficiency of this optimistic and naive strategy relies on filtering the288

relevant constraints that are checked (relevant w.r.t. the updates) and also on devel-289

oping incremental check. The pre-update methods are related to static analysis and290

takes on the challenge to predict, before executing the updates, the correctness of291

the result w.r.t. integrity constraints. These methods cannot be general. A dynamic292

variant of such strategy has been motivated by programming technics and introduc-293

ing pre-condition enforcing valid update processing. Transaction schemas and active294

rules systems offer alternative solutions, often partial ones to integrity maintenance.295

3.2 Dynamic Constraints: First Order and Temporal Logics296

Whatever the type (static, dynamic, transaction), integrity constraints participate297

to database evolution control: changing data relies on these constraints in order to298

validate the changes and maintain data integrity/quality. To be checked, a transaction299

constraint needs to access both the database state before the update and that after.300

The constraint stating that salaries can only increase is an example of a transaction301

constraint. A dynamic constraint requires, in general, the whole state history of302

the database, that is the sequence of states from the creation of the database to303

the current state. The constraint stating that an employee cannot be reassigned to304

a department where she has been working in the past, is an example of a dynamic305

integrity constraint.306

Dealing with dynamic constraints requires first to capture the notion of database307

history. We choose an abstract, simple model leaving aside a number of interesting308

problems such as concrete time measures, durations, calendar, problem induced by309

time granularity changes, multi-temporality (validity versus transaction), efficient310

storage of database history, etc. Dealing with abstract temporal or historical database311

is generally based on two equivalent simple temporal data representations.312

On the one hand, the implicit approach considers a temporal database I over a313

schema (language) R as a sequence of static states I1, . . . , In that is of interpretation314

of the language R as defined in 2. Each state Ii+1 of the sequence has been obtained315

from an update over the previous state Ii . On the other hand, the explicit representation316

of a temporal database relies on data time stamping with time stamps being stored317

in the database as regular data. Time is assumed discrete and linear and the domain318

of the time stamp attribute is N. Translating an implicit temporal database I into a319

time stamped instance uses an extension Rest of the schema R simply obtained by320

adding an attribute T to each relation schema R, leading to a schema Rest . Formally,321

the instance of Rest , denoted I est (Rest ), is given by I est (Rest ) = ⋃n
i=1(Ii (R) × {i}).322

In the implicit case, the query languages used to express dynamic or temporal323

integrity constraints are built from the linear temporal logic tl (Prior 1957; Emerson324

1990; Chomicki and Toman 1998). Formulas of tl over a language R extend first325

order formulas with the following rules: if ϕ1 and ϕ2 are formulas then ϕ1 untilϕ2 et326

ϕ1 sinceϕ2 are tl formulas.327
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10 N. Bidoit et al.

A database history I satisfies a tl formula ϕ(x) at time point i∈[1, n], given a328

valuation ν of the free variables ϕ(x), denoted [ I , i, ν]|=, if the following holds:329

• [I , i, ν]|=ϕ1(x1) until ϕ2(x2) iff there exists j>i such that [I , j, ν]|=ϕ2(x2)330

and for each k such that i<k< j , [I , k, ν]|=ϕ1(x1).331

• [I , i, ν]|=ϕ1(x1) since ϕ2(x2) iff there exists j<i such that [I , j, ν]|=ϕ2(x2)332

and for each k such that i>k> j , [I , k, ν]|=ϕ1(x1).333

Based on the temporal operators until and since, other operators may be derived334

such as next , prev, ...335

In the explicit case, queries and constraints are expressed through first order logic,336

with the restrictions explained in Sect. 2, and by distinguishing two types of variables,337

data variables and temporal ones. The language obtained is thus a first order two-338

sorted logic, denoted ts–fo.339

For instance, expressing that an employee cannot be reassigned in a department340

where she has been working in the past, is expressed by:341

• using tl : ∀ e, d G(Employee(e, d) → ¬(T rue Since Employee(e, d))) where342

G is the temporal modality “always”.343

• using ts–fo : ∀ t,∀ e, d (Employee(e, d, t) → ¬(∃ t ′ (t ′ < t ∧ Employee344

(e, d, t)) where t and t ′ are temporal variables whereas e and d are data variables.345

The comparative study of the temporal query languages tl and ts–fo is probably346

one of the topics that led to rather unexpected results. The choice of explicit versus347

implicit representations of time has no impact at the level of data representation,348

however it has an impact on the language expressivity. As opposed to the results349

established by Gabbay (1980) and Kamp (1968) in the propositional case, comparing350

tl and ts–fo expressivity showed that:351

1. the restriction of tl to the future until, next modalities is strictly less expressive352

than tl (Abiteboul et al. 1999);353

2. tl is strictly less expressive than ts–fo (Abiteboul et al. 1999; Bidoit et al. 2004;354

Toman 2003).355

This result has been proved using communication complexity on the one hand, and356

independently using Ehrenfeucht-Fraïssé games for the order invariant fragments of357

tl and ts–fo. For instance, the very simple property stating that there exists two358

distinct states for which employee assignments to departments are exactly the same,359

is invariant w.r.t. the time order; it is straightforward to express this property in ts–360

fo: ∃ t1, t2 (∀ e, d (Employee(e, d) ↔ Employee(e, d))). However, this property361

cannot be expressed in tl.362

These results have motivated a number of investigations aiming at extending tl to363

build an implicit temporal language as powerful as ts–fo : Wolper (1983) introduces364

an extension of tl based on regular expression; Toman (2003) proves that there is365

no temporal modality able to reach this goal; (Abiteboul et al. 1999; Herr 1997)366

propose temporal iterators and fixed-point operators (Vardi 1988; Bidoit and Amo367

1999) studies adding the operator “now” and (Abiteboul et al. 1999; Bidoit and368

Objois 2009) provide a hierarchy of these languages w.r.t. to expressivity.369
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Databases and Artificial Intelligence 11

As for static constraints, we conclude this subsection by providing a few pointers370

to methods dedicated to dynamic constraint maintenance. Two kinds of methods371

have been investigated. The first ones are based on the hypothesis that the database372

history is fully stored and used for constraint checking leading to technics similar to373

those developed for static constraints. The second methods try to avoid the storage374

of the whole database evolution and instead enrich the current database state with375

data relevant to the constraint checking mechanism (Chomicki 1995; Chomicki and376

Toman 1995): each update entails auxiliary relation updates. The main issue here377

is to use as least auxiliary relations as possible. For a given set of constraints, the378

number of auxiliary relations is required to be fixed and their content should only379

depend on the database. The contribution of such methods resides in decreasing380

secondary memory consumption and also improving execution time. However these381

methods suffer from the fact that storage and time optimization are pre-determined382

by and for a given set of integrity constraints, excluding the ability afterwards to deal383

with (check and evaluate) other constraints or queries at all. Bidoit and Amo (1998)384

proposes to treat temporal constraint checking using refinement technics borrowed385

from program specification: given a set of temporal constraints viewed as an abstract386

specification, a set of parameterized transactions together with composition rules,387

viewed as a concrete specification, is generated. This method, which is not general,388

however allows one to deal with a large class of temporal constraints.389

3.3 Concluding Remarks390

To conclude, it is important to highlight that integrity constraint definition and main-391

tenance is a research topic which is still active and will remain active for a long392

time because integrity constraints provide a way to fill the gap between semantically393

poor data models and real world applications, highly demanding w.r.t. to semantic394

issues. For instance, although not developed in this section, the semi-structured data395

model and the web data exchange model XML require the definition and verification396

of integrity constraints for improving the quality of data management, the accuracy397

of reasoning and for optimization purposes. Many research works (Davidson et al.398

2007; Arenas 2009) have addressed these problems for the XML format: keys, ref-399

erence and functional dependencies are classical constraints that are useful for XML400

applications; path constraints are “new” constraints linked to the XML data format401

(Buneman et al. 2001; Buneman et al. 2003; Fan and Siméon 2003) In this context402

too, logic and more precisely modal logics (Kripke 1963) have been investigated as403

they offer a unique and simple formalization of graph properties as well as powerful404

reasoning mechanisms for these structures: labelled graphs (or trees) are commonly405

used to represent XML data (Calvanese et al. 1999; Alechina et al. 2003; Demri406

2003). Specifying schemas and constraints, more specifically reference constraints407

has been investigated in (Bidoit and Colazzo 2007; Bidoit and de Amo 1998).408
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12 N. Bidoit et al.

4 Database Preferences Queries409

4.1 Introduction410

The last two decades have witnessed a growing interest in the expression of pref-411

erences in database queries. The motivations for extending database queries with412

preferences are manifold. First, it appeared desirable to provide users with more413

expressive query languages, capable of faithfully reflecting the user intentions. Sec-414

ondly, introducing preferences into queries provides a basis for rank-ordering the415

answers, which is particularly helpful when the result of a query is large. Finally,416

when a classical query produces an empty result, a relaxed (thus less restrictive)417

version has more chance to be satisfied by some of the elements of the database.418

The approaches that aim to integrate preferences inside database queries may419

be classified into two categories (Hadjali et al. 2011) according to whether they420

are of a quantitative or a qualitative nature (see chapter “Compact Representation421

of Preferences” of Volume 1). In the first family of approaches, preferences are422

expressed in a quantitative way by means of a monotonous scoring function (the423

global score is positively correlated to partial scores, and each of these is computed424

by a function of one or several attribute values). As the scoring function associates a425

numerical degree with each tuple, tuple t1 is preferred to tuple t2 if the score of t1 is426

greater than the score of t2. On the other hand, in qualitative approaches, preferences427

are defined by means of binary preference relations. These two families of approaches428

are presented hereafter through some of their most typical representatives.429

4.2 Quantitative Approaches430

4.2.1 Explicit Scores Attached to Entities431

The approach proposed by Agrawal and Wimmers (2000) enables a user to express432

his/her preference for an entity, either by associating it with a score between 0 and433

1, or by expressing a veto (using the symbol �) or an indifference statement (default434

case) related to this entity. An entity is represented by a tuple in which the value of435

a field either belongs to the domain of the corresponding attribute or is equal to *436

(symbol that stands for any domain value other than those specified in the query).437

In order to illustrate these notions, let us consider a relation car of schema (#i,438

make, model, type, color, price, . . .) describing different vehicles. A user expressing439

the preferences {(〈Renault, Clio, red〉, 0.4), (〈Renault, Clio, *〉, �), (〈Opel, Corsa,440

green〉, �), (〈Ford, Fiesta, white〉, 0.8)} means that he/she has a strong preference for441

white Ford Fiestas, a much lower preference for red Renault Clios, and that he/she442

absolutely rejects green Opel Corsas as well as any Renault Clio that is not red.443

The approach also includes a generic operator that makes it possible to combine444

preferences from several users.445
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Databases and Artificial Intelligence 13

The approach proposed by Koutrika and Ioannidis (2004) follows the same general446

philosophy but extends (Agrawal and Wimmers 2000) by considering a more general447

format for user preference profiles. It also makes it possible to express negative448

preferences (“I do not like SUVs”) and preferences about the absence of values (“I449

prefer cars without ESP”).450

4.2.2 Fuzzy-Set-Based Approach451

As classical sets can be used for defining Boolean predicates, fuzzy sets (Zadeh452

1965)—which aim to describe classes of objects whose boundaries are vague—can453

be associated with gradual predicates (see chapter “Representations of Uncertainty454

in Artificial Intelligence: Probability and Possibility” of Volume 1).455

Generally speaking, atomic fuzzy predicates correspond to adjectives of the nat-456

ural language such as recent, big, fast, etc. A fuzzy predicate P can be modeled by a457

function μP (usually of a triangular or trapezoidal shape) of one or several domains458

in the unit interval [0, 1]. The degree μP(x) represents the extent to which element459

x satisfies the gradual predicate P (or, equivalently, the extent to which x belongs460

to the fuzzy set whose membership function is μP ). An atomic fuzzy predicate may461

also compare two attribute values by means of a gradual comparison operator such462

as “approximately equal” or “much greater than”.463

It is possible to alter the semantics of a fuzzy predicate by means of a modifier,464

which is generally associated with an adverb of the natural language. For instance, the465

modified predicate very expensive is more restrictive than expensive, and rather high466

is less demanding than high. The semantics of the modified predicate mod P (where467

mod is a fuzzy modifier) can be defined compositionally, and several approaches468

have been proposed to do so, among which μmod P(x) = μP(x)n .469

Atomic and modified predicates can take place in compound conditions which go470

far beyond those that can be expressed in a classical querying framework. Conjunc-471

tion (resp. disjunction) is interpreted by means of a triangular norm (resp. conorm)472

� (resp. ⊥), for instance the minimum or the product (resp. the maximum or the473

probabilistic sum). As for negation, it is modeled by: ∀x, μ¬P(x) = 1 − μP(x).474

Operators of weighted conjunction and disjunction can also be used to assign475

different weights to the predicates of a query.476

The operations of relational algebra can be extended in a rather straightforward477

manner to fuzzy relations (i.e., to relations resulting from fuzzy queries, where tuples478

are assigned a membership degree) by considering fuzzy relations as fuzzy sets on479

the one hand, and by giving a gradual meaning to the operations whenever it appears480

appropriate. It is worth emphasizing that the fuzzy-set-based approach to preference481

queries provides a compositional framework, contrary to most of the other approaches482

(either quantitative or qualitative). The definitions of the extended relational operators483

can be found in Bosc et al. (1999). As an illustration, we give hereafter the definition484

of the fuzzy selection, where r denotes a (fuzzy or classical) relation and ϕ is a fuzzy485

predicate.486
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14 N. Bidoit et al.

μσϕ(r)(x) = �(μr (x), μϕ(x))

where � denotes a triangular norm (for instance the minimum).487

The language SQLf described in Bosc and Pivert (1995), Pivert and Bosc (2012)488

extends the SQL norm so as to authorize the expression of fuzzy queries.489

The fuzzy-set-based approach has also been applied to the querying of multimedia490

databases in Fagin (1998).491

4.2.3 Top-k Queries492

In the top-k approach (Chaudhuri and Gravano 1999), the user specifies ideal values493

for certain attributes as well as the number k of answers (the best ones) that he/she494

wants to obtain. The distance between an attribute value and the ideal value is com-495

puted by means of a simple difference, after a normalization step which maps every496

domain to the unit interval [0, 1]. The global distance is computed by aggregating497

the elementary distances using a function which can be the minimum, the sum, or498

the Euclidean distance. The global score obtained by a tuple is the complement to499

1 of its global distance to the ideal object specified in the query. The computation500

steps are as follows:501

1. from the threshold k, the chosen aggregation function, and statistics about the502

content of the relation considered, a threshold α that will be applied to the global503

score is derived;504

2. a Boolean query calculating the set of elements whose score is at least equal to505

α—or a superset of it—is built;506

3. this query is evaluated and the global score attached to every answer is calculated;507

4. if at least k tuples having a score at least equal to α have been obtained, the k508

best are returned to the user; otherwise, the procedure is executed again (starting509

from Step 2) using a lower value of α.510

4.3 Qualitative Approaches511

4.3.1 Pareto-Order-Based Approaches512

In the last decade, many algorithms have been proposed for efficiently computing the513

non-dominated answers (in the sense of Pareto order) to a given preference query.514

Seen as points in a multidimensional space, these answers constitute a so-called515

skyline. A pioneering work in this domain is that by Börzsönyi et al. (2001). First let516

us recall the principle of Pareto-order-based preference queries.517

Let {G1, G2, ..., Gn} be a set of atomic partial preferences. We denote by t �Gi t ′
518

(resp. t �Gi t ′) the statement “tuple t satisfies preference Gi better than (resp. at least519

as well as) tuple t ′”. In the sense of Pareto order, a tuple t dominates another tuple520
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Databases and Artificial Intelligence 15

t ′ if and only if ∀i ∈ [1, n], t �Gi t ′ and ∃k ∈ [1, n], t �Gk t ′. In other words, t521

dominates t ′ if it is at least as good as t ′ w.r.t. every preference, and it is strictly better522

than t ′ w.r.t. at least one preference.523

Clearly, the approach based on Pareto order does not require any commensurability524

assumption between the satisfaction levels associated with the different elementary525

preferences, contrary to the fuzzy-set-based approach for instance. As a consequence,526

some points of the skyline (i.e., some elements of the result) may perform very527

poorly w.r.t. some atomic conditions (whereas they can be excellent w.r.t. some528

others), and the skyline approach only provides a strict partial order whereas the529

fuzzy approach yields a complete preorder. Kießling (2002), Kießling and Köstler530

(2002) laid the foundations of a preference query model based on Pareto order for531

relational databases. A preference algebra including an operator called winnow has532

also been proposed by Chomicki (2003) so as to integrate formulas expressing user533

preferences inside a relational framework (and SQL). In a similar spirit, Torlone534

et Ciaccia (2002) have introduced an operator named Best that aims to return the535

non-dominated tuples of a relation.536

In such an approach, when preferences concern multiple attributes, the risk of537

obtaining many incomparable tuples tends to get high. Several techniques have been538

proposed for defining an ordering between two tuples that are incomparable in the539

sense of Pareto order, by exploiting for instance: (i) the number of tuples that each540

of the considered ones dominate (notion of k-representativity introduced by Lin et541

al. (2007)), or (ii) an order between the attributes concerned by the preferences, see542

e.g. the notions of k-dominance defined by Chan et al. (2006a), and k-frequency543

proposed by the same authors (Chan et al. 2006b).544

4.3.2 CP-nets545

The use of the structure called CP-net (Conditional Preference Network) for model-546

ing database preference queries has first been suggested by Brafman and Domshlak547

(2004)—but this preference approach was initially developed in Artificial Intelli-548

gence (Boutilier et al. 2004) (cf. chapter “Compact Representation of Preferences”549

of Volume 1). A CP-net is a graphical representation of statements expressing condi-550

tional preferences of type ceteris paribus. The underlying idea is that the preferences551

of the user generally express that, in a given context, a partially described state of552

affairs is strictly preferred to another partially described state of affairs, the two states553

being mutually exclusive, according to the ceteris paribus semantics, i.e., all other554

things being considered equal in the descriptions of the two states. Using a CP-net,555

a user can describe how his/her preferences on the values of a given variable depend556

on the values of other variables. For instance, a user may formulate the following557

statements:558

s1: I prefer SUVs to sedans;559

s2: as for SUVs, I prefer the make Ford to Chrysler;560

s3: as for sedans, I prefer the make Chrysler to Ford;561

s4: concerning Ford cars, I prefer the color black to white.562
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16 N. Bidoit et al.

In the CP-net approach applied to database querying (Brafman and Domshlak563

2004), a preference is represented by a binary relation over a relation schema (where564

the attributes are assumed to be binary). Let R be a relation schema; a preference565

query Q over R consists of a set Q = {s1, ..., sm} of statements (usually between566

sub-tuples of R, according to the ceteris paribus semantics).567

From Q, one may infer a set of preference relations {>C P (1), . . ., >C P (m)},568

from which one may derive a global preference relation >C P (Q) that defines a strict569

partial order on the tuples of R.570

It is worth emphasizing that the ceteris paribus semantics is opposed to the so-571

called totalitarian semantics which is implicitly favored by the database community572

(including those who advocate an approach based on Pareto order). The totalitarian573

semantics means that when evaluating the preference clause of a query, one does574

not take into account the values of the attributes that do not appear in this clause.575

Obviously, with the ceteris paribus semantics, the number of incomparable tuples is576

in general much higher than with the totalitarian one.577

4.3.3 Domain Linearization578

The approach proposed in Georgiadis et al. (2008) considers preferences defined as579

preorders on relational attributes and their respective domains. Let us consider again580

a relation car of schema (#i, make, model, type, color, price, . . .) describing vehicles.581

An example of preference query in the sense of (Georgiadis et al. 2008) is made of582

the following statements:583

(1) I prefer Volkswagen to both Opel and Ford (P1);584

(2) I prefer the colors black and grey to white (P2);585

(3) I prefer the type sedan to coupe, and coupe to SUV (P3);586

(4) the make is as important as the type, whereas the combination make-type is more587

important than the color (P4).588

Such statements define binary preference relations: (1), (2) and (3) on attribute589

domains, (4) on the set of attributes. These relations are supposed to be reflexive590

and transitive, i.e., to be preorders. The authors propose a technique for linearizing591

the domains associated with these partial preorders (let us recall that a domain, in592

the sense of domain theory, is a partially ordered set). This way, one can build a593

sequence of blocks (i.e., an ordered partition) of the result of the query. In such a594

sequence, each block contains tuples that are incomparable in the sense of the user595

preferences. The first block contains the elements that are the most preferred, and in596

every other block, for every element, there exists an element that is more preferred597

in the preceding block.598

The algorithms proposed in Georgiadis et al. (2008) compute the sequence of599

blocks that constitute the result of a preference query without building the order600

induced on the tuples themselves. The idea is to exploit the semantics of a preference601

expression for linearizing the Cartesian product of all the attribute values that appear602

in this expression. Concretely, one moves from a set of statements expressing partial603
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preferences to a lattice of queries, then to a lattice of answers, and finally to a sequence604

of blocks that constitutes the result.605

With respect to the approaches based on Pareto order, the originality of this tech-606

nique lies in the use of partial (as opposed to strict) preorders for modeling indepen-607

dent positive preferences. This makes it possible to distinguish between the notion608

of “equally preferred tuples” on the one hand and “incomparable tuples” on the other609

hand.610

4.3.4 Possibilistic-Logic-Based Approach611

In Hadjali et al. (2011), present a preference query model based on possibilistic logic612

(Dubois and Prade 2004), (see chapter “Representations of Uncertainty in Artificial613

Intelligence: Probability and Possibility” of Volume 1), where the queries involve614

symbolic weights expressed on a linearly ordered scale.615

For handling these weights, it is not necessary to give them a precise value, which616

leaves the user the freedom not to specify any default order on the priorities between617

the preferences (contrary to CP-nets where such an order is induced by the structure618

of the preference graph). However, the user may specify a partial order between the619

preferences.620

In the case of binary preferences, the possibilistic encoding of the conditional621

preference “in context c, a is preferred to b” is a pair of possibilistic formulas:622

{(¬c ∨ a ∨ b, 1), (¬c ∨ a, 1 − α)}. Hence, if c is true, one must have a or b (which623

are the only possible choices), and in context c, it is somewhat imperative that a624

be true. This corresponds to a constraint of the form N (¬c ∨ a) ≥ 1 − α where N625

measures the necessity of the event given as an argument; this expression is itself626

equivalent to �(¬a|c) ≤ α where � is the possibility measure dual to N .627

This constraint expresses that the possibility not to have a is upper bounded by α,628

i.e., ¬a is all the more impossible as α is small. To move from the scale of necessity629

degrees to a scale of satisfaction (or possibility) degrees, the authors use a scale630

reversal operator denoted by 1 − (.). The priority level 1 − (α) associated with a631

preference is thus transformed into a satisfaction degree α when this preference is632

violated. Even if the values of the weights are unknown, a partial order between633

the different choices, founded on the operator leximin (Dubois et al. 1997), can be634

induced.635

A parallel may be established between this approach and that based on fuzzy set636

theory where atomic conditions in a query may be assigned a weight reflecting637

their importance. These two approaches are in fact complementary and may be638

interfaced, which makes it possible to handle gradual (rather than binary) preferences639

on numerical attributes.640
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18 N. Bidoit et al.

4.4 Concluding Remarks641

It is well known that scoring functions cannot model all preferences that are strict642

partial orders (Fishburn 1999), not even some that may appear in a natural way643

in database applications (Chomicki 2003). For instance, scoring functions cannot644

capture skyline queries (see Hadjali et al. 2011). However, the skyline approach,645

and more generally dominance-based approaches, have some notable drawbacks:646

they produce in general a large number of incomparable tuples, they suffer from647

dominance rigidity (there is no distinction between tuples that are dominated by far648

and those that are near to dominant tuples), and they focus on the “best” answers only649

whereas quantitative approaches yield a layered set of items. Let us also mention that650

qualitative approaches are rather limited when it comes to combining preferences651

while the fuzzy-set-based approach makes it possible to express a great variety of652

trade-offs between criteria due to the large range of connectives coming from fuzzy653

logic.654

The aspects related to the implementation of these models, in particular query655

optimization, could not be dealt with here, due to space limitation, but they are656

of course crucial in a database context, where the volume of data to manage is in657

general very large. Some elements about this issue may be found e.g. in Pivert and658

Bosc (2012).659

5 Database Integration660

5.1 Motivations661

The goal of data integration is to provide a uniform access to a set of autonomous662

and possibly heterogeneous data sources in a particular application domain. This is663

typically what we need when, for instance, querying the deep web that is composed664

of a plethora of databases accessible through Web forms. We would like to be able665

with a single query to find relevant data no matter which database provides it.666

The goal of a mediator (Wiederhold 2002) on top of existing data sources is to667

give users the illusion that they interrogate a centralized and homogeneous database668

management system by providing a query interface based on a single global schema669

(also called mediated schema). In contrast to a standard database management sys-670

tem, a mediator does not contain any data, which remain stored in the different data671

sources according to a format and a schema specific to each data source, but contains672

abstract descriptions of those data in the form of views. The views describe the673

content of each data source in function of the mediated schema. Formally, a view is674

a query (i.e., a logical formula ) defined over the relations of the mediated schema675

and identified by a name. For answering to user queries that are expressed using the676

relations of the mediated schema, the extensions of the relations in the queries are677

not available: only the extensions of views are known by the mediator. The problem678
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of answering queries asked to a mediator is thus formally equivalent to the problem679

of computing the answers from views extensions. This problem is harder than the680

problem of standard evaluation of a query for which we have the complete informa-681

tion on the extensions of the relations appearing in the query. The difficulty comes682

from the fact that the instances of the relations in the query must be inferred from the683

instances (or extensions) of the views and from the definitions of these views. Even684

in simple cases, one cannot infer all the instances of the query’s relations, as it can685

be illustrated in the following example.686

Example 1 Let us consider a mediated schema that contains a single binary relation687

Reservation relying a person to the persons for whom s/he has made a reservation.688

Consider the query Q(x,y) : Reservation(x, y) asking all pairs of persons (x, y) such689

that the person x has made a reservation for the person y. Suppose that only three690

very specific databases are available for answering such a query :691

• DB1, that can only provide persons that have made a reservation for themselves692

and for somebody else. The content of this database can be described by the view693

V 1 defined by V 1(x) : Reservation(x, x) ∧ ∃y(y �= x ∧ Reservation(x, y)).694

• DB2, that can only provide persons that have made reservations. The con-695

tent of this database can be described by the view V 2 defined by V 2(x) :696

∃y Reservation(x, y).697

• DB3, that can only provide persons for whom reservations have been made. The698

content of this database can be described by the view V 3 defined by V 3(x) :699

∃y Reservation(y, x).700

Suppose that the extensions of these views are: V 1(a), V 2(a), V 2(b), V 3(c).701

They enable the entailment of the incomplete extension of the relation Reservation:702

Reservation(a, a), Reservation(a, ?), Reservation(b, ?), Reservation(?, c). The703

only precise answer that we can infer with certainty for the query Q is < a, a >. The704

other precise answers, such as < a, c > for example, are possible but not certain.705

5.2 Query Answering By Rewriting706

The problem is to compute all the precise answers that are certain. An answer is707

precise if it is totally instantiated. An answer to a query is certain if it is part of the708

result of the evaluation of the query against all the extensions of the relations in the709

query that are compatible with the views extensions and definitions.710

In the setting of mediator-based integration of distant data sources, the problem711

of query evaluation, that is already more complicated than the standard problem of712

query evaluation on top of a database as we have just explained it, is made even more713

complex by the fact that the data in the views extensions are not easily available.714

The cost of the transfer of these data into the mediator is prohibitive since they715

are distributed and stored in distant data sources. In addition, these data are very716

often evolving and volatile. This make impossible to base the computation of certain717
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20 N. Bidoit et al.

answers on reasoning on views extensions. The only resources available within the718

mediator are the views definitions. The computation of the answers can only be done719

by rewriting the query in terms of views. This consists in reformulating the input720

query into a union of queries built on the names of the views, called query rewritings721

in function of the views. Each of these rewritings, being a query using names of722

views only, can then be evaluated in a standard manner against the extensions of723

the views involved in the rewritings. More precisely, the rewritings represent the724

query plans enabling the extraction from the different data sources of the elements of725

answers that are relevant for computing the certain answers of the input query. Their726

concrete execution requires however software interfaces (called wrappers) between727

the mediator and the data sources.728

Finding rewritings that are equivalent (modulo views definitions) to the input729

query is not always possible. In general, we merely compute (maximal) rewritings730

subsumed by the input query. A rewriting is subsumed by the input query if, by731

replacing in the body of the rewriting each view by its definition, we obtain a logical732

formula that logically implies the body of the input query. Because of this logical733

implication, a rewriting subsumed by the input query provides a query plan whose734

execution returns answers that are guaranteed to be relevant to the input query.735

Given a query and a set of views, the problem of rewriting queries using views736

consist in determining if it is possible to compute the set of all rewritings that are737

maximally subsumed by the query.738

Example 2 Consider a mediated schema allowing one to define queries on employ-739

ees of a company using the following relations: Employee(e:Person, d:Department),740

Phone(e : Person, p : PhoneNumber), O f f ice(e : Person, b : Room Number). Let us741

suppose that the data is stored in two distinct databases DB1 and DB2 whose content742

is specified in function of the relations of the mediated schema using the following743

two views:744

• V 1(e, b, d) : O f f ice(e, b) ∧ Employee(e, d)745

• V 2(e, p) : Phone(e, p) ∧ Employee(e, “toy”).746

DB1 provides information on employees, their office number and their depart-747

ment. DB2 provides phone numbers of the employees of the toy department.748

Let us consider the query: Q(p, b) : Phone(“sally”, p) ∧ O f f ice(“sally”, b)749

asking the phone and office numbers of Sally. The only rewriting that can be obtained750

for this query using the two views V 1 and V 2 is: Qv(p, b) : V 2(“sally”, p) ∧751

V 1(“sally”, b, d).752

It is worthwhile to notice that the execution of the query plan corresponding to753

this rewriting does not guarantee to return answers, for several reasons. First, if754

Sally is not a member of the toy department, the execution of the query plan will755

not bring any result. This is due to the incompleteness of the available data for the756

relations in the mediated schema, that is declared in the view definitions: the only757

way to obtain phone numbers is to use V 2, but its definition specifies that V 2 can758

only provide phone numbers for employees of the toy department. Another cause759

for incompleteness is related to the fact that, in absence of additional information,760
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we do not know if the databases whose content is specified by views definitions are761

complete with respect to these definitions.762

A view extension is complete if we can assume that it contains all the answers763

to the query defined by the view. For instance, stating the completeness of the V 2764

extension in the above example means that we have the guarantee that the database765

DB2 whose content is modeled by V 2 definition contains effectively all the phone766

numbers of all the employees of the toy department. This completeness assumption767

is often too strong in the setting of information integration where it is reasonable768

to assume the soundness of views extensions but not their completeness. Stating769

that the V 2 extension is sound (without being necessarily complete) means that DB2770

contains phone numbers of employees of the toy department only, but not necessarily771

for all of them.772

5.3 Decidability and Complexity773

A lot of work (Beeri et al. 1997; Levy 2001; Abiteboul and Duschka 1998; Cal-774

vanese et al. 2000a, b; Goasdoué 2001) has been done on the decidability and the775

complexity of the problems of query rewriting using views and of answering queries776

using views, in function of the languages used for expressing respectively the queries,777

the views and the rewritings, and depending on the assumptions made on the views778

extensions. In particular, (Abiteboul and Duschka 1998; Calvanese et al. 2000a)779

shows the influence of the completeness assumption of the views extensions on the780

complexity of the problem of answering queries using views. It has been shown in781

Abiteboul and Duschka (1998) that under the soundness assumption on the views782

extensions, answering Datalog queries from extensions of views defined as con-783

junctive queries is polynomial (in data complexity), whereas this problem is co-NP-784

complete if the views extensions are assumed to be complete. If the views and the785

queries are expressed in Datalog, then in both cases (soundness and completeness786

of views extensions), the problem of answering queries using views is undecidable.787

These kinds of results have been extended in Calvanese et al. (2000a) to languages788

of queries and views belonging to the description logics family (Baader et al. 2003).789

The problem of rewriting queries using views has been studied in (Beeri et al.790

1997; Goasdoué 2001) when the languages for queries, views and rewritings belong to791

the CARIN (Levy and Rousset 1998) family that combines Datalog with description792

logics (see chapter “Reasoning with Ontologies” of Volume 1).793

It has been shown in Calvanese et al. (2000b) that evaluating the rewriting of a794

query does not guarantee to find all the answers that can be obtained by evaluating795

the query on top of the views extensions, even if the rewriting is equivalent to the796

query modulo the views definitions. This shows an additional cause for the possible797

incompleteness of the answers, which is the limit of the expressive power of the798

language for specifying the rewritings. It is possible that a rewriting, defined in a799

language more expressive than the rewriting language imposed for modeling the800

420055_1_En_3_Chapter � TYPESET DISK LE � CP Disp.:25/4/2019 Pages: 26 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

22 N. Bidoit et al.

allowed query plans, leads to more answers than any rewriting in the considered801

rewriting language.802

Goasdoué (2001) provides a sufficient condition that guarantees to obtain by803

rewritings all the answers that it is possible to obtain by evaluating the query from804

views extensions. If the query has a finite number of maximal rewritings defined as805

conjunctive queries with inequalities, then the result of the evaluation of the query806

against the views extensions is exactly the union of the answers obtained by executing807

the query plans corresponding to the maximal rewritings. As a consequence of this808

condition, a mediator will be able to compute all the answers in time that is polynomial809

in the size of the data (even if it is exponential in the size of the queries and of the810

views definitions). This result has been applied to design and implement the PICSEL811

mediator (Goasdoué et al. 2000; Rousset et al. 2002) in collaboration with France812

Telecom R& D.813

More recently, description logics have evolved towards the design of tractable814

fragments such as the DL-Lite family (Calvanese et al. 2007) with good computa-815

tional properties for querying data through ontologies.816

Ontologies are at the core of the Semantic Web (Berners-Lee et al. 2001). They817

provide a conceptual view of data and services available through the Web in order to818

facilitate their handling. Answering conjunctives queries over ontologies is central819

for implementing the Semantic Web. The DL-Lite family (Calvanese et al. 2007) has820

been specially designed to guarantee a polynomial data complexity for the problem821

of answering conjunctive queries over data constrained by lightweight ontologies.822

Reformulating the query in function of the constraints and axioms declared in the823

ontology is necessary for guaranteeing the completeness of the answers. The impor-824

tant point is that this reformulation step (just like rewriting the query using views) is825

a reasoning problem independent of the data.826

A major result of (Calvanese et al. 2007) is that DL-Lite is one of the maximal827

subset of first-order logic for which the problem of answering queries on top of828

massive data in presence of logical constraints on the schema is tractable.829

DL-Lite is a subset of the ontology web language OWL4 recommended by the830

W3C and more precisely of the recent standard OWL2.5 DL-Lite extends RDFS6
831

with the possibility to declare disjoint classes and to express functionality constraints832

on relations. RDFS is the W3C standard to describe metadata on resources in Linked833

Data and the Semantic Web.834

The results obtained for DL-Lite have been generalized to decentralized query835

rewriting using views in Abdallah et al. (2009). For scalability as well as for robust-836

ness and data privacy, it is indeed relevant to study a fully decentralized model of the837

Semantic Web seen as a huge peer-to-peer data and ontology management system.838

4http://www.w3.org/2004/OWL/.
5http://www.w3.org/TR/owl2-overview/.
6http://www.w3.org/TR/rdf-schema/.
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6 Conclusion839

This chapter first presented the seminal work on “logic and databases” which opened840

a wide research field at the intersection of databases and artificial intelligence. Then841

it showed some links between the two areas by focusing on integrity constraints842

satisfaction, preference-based queries and database integration.843

This chapter does not intend to present a complete overview of relations between844

databases and artificial intelligence. In particular, some recent extensions of databases845

require using artificial intelligence techniques. For instance, querying databases846

which stores uncertain data requires using techniques from uncertainty management847

(see chapters “Representations of Uncertainty in Artificial Intelligence:848

Probability and Possibility” and “Representations of Uncertainty in Artificial Intelli-849

gence: Beyond Probability and Possibility” of Volume 1); querying databases which850

stores inconsistent data requires using inconsistency-tolerant techniques (see chapter851

“Argumentation and Inconsistency-Tolerant Reasoning” of Volume 1) or informa-852

tion fusion techniques (see chapter “Belief Revision, Belief Merging and Information853

Fusion” of Volume 1).854
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